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Problem 1 (Griffiths 5.8)
(a) Find the magnetic field at the center of a square loop, which carries a steady current I. Let R be the distance

from center to side (Fig. ?).
Solution: (B =

√
2µ0I/(πR).)

By using the Biot-Savart law, we can calculate the contribution from each side of the square wire separately. We
find each side contributes the same magnetic field at the center of the square. By using Eq. 5.35 (please refer to
Example 5.5), with s = R, θ2 = −θ1 = π/4, we get

B = 4× µ0I

4πR
(sin θ2 − sin θ1) = 4× µ0I

4πR

(
sin

π

4
− sin(−π

4
)
)
= 4× µ0I

4πR
(

√
2

2
+

√
2

2
) =

√
2
µ0I

πR
.

(b) Find the field at the center of a regular n-sided polygon, carrying a steady current I. Again, let R be the
distance from the center to any side.

Solution: (B = nµ0I/(2πR)× sin (π/n) .)
Similar to the above analysis, we now have n sides. By using Eq. 5.35, with s = R, θ2 = −θ1 = 1

2 · 2π/n = π/n,
we get

B = n× µ0I

4πR
(sin θ2 − sin θ1) = n× µ0I

4πR

(
sin

π

n
− sin(−π

n
)
)
= n× µ0I

2πR
sin

π

n
.

(c) Check that your formula reduces to the field at the center of a circular loop, in the limit n → ∞.
Solution: (B = µ0I/(2R).)
At the limit n → ∞, π/n ≪ 1,

sin
π

n
≈ π

n
.

B ≈ n× µ0I

2πR
× π

n
=

µ0I

2R
.

Problem 2 (Griffiths 5.13)
A steady current I flows down a long cylindrical wire of radius a (Fig. ?). Find the magnetic field, both inside

and outside the wire, if
(a) The current is uniformly distributed over the outside surface of the wire.
(b) The current is diastributed in such a way that I is proportional to s, the distance from the axis.

Figure 1: Problem 5.8
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Figure 2: Problem 5.13

Solution: (a) B = 0, r < a;B = µ0I/(2πr)ϕ̂, r > a.(b) B = µ0Ir
2/(2πa3)ϕ̂, r < a;B = µ0I/(2πr)ϕ̂, r > a.

By Ampère’s law, we have ∫
loop

B · dl = B2πr = µ0Iencircled.

Here, r is the radius of the Amperian loop. Noticing the rotational symmetry with respect the axis of the cylinder,
we take the Amperian loop, as shown in the dashed line in the figure, so that the magnitude of B is constant around
this loop when we do the integration above.

The dashed blue loop is designed for finding the magnetic field inside the cylindrical wire; the dashed red loop is
for detecting the magnetic field outside.

For case (a), the current is distributed over the outside surface of the cylinder of radius a.
For r < a, the blue loop does not encircle any current, Iencircled = 0. ⇒ B = 0, B = 0.
For r > a, the red loop encircles all the current, Iencircled = I. ⇒ B = µ0I/(2πr) .

For case (b), J ∝ r. Let
J = kr.

The current

I =

∫
JdA,

where, J is the volume current density, dA = (2πr′) dr′ is the area element between the circles of radius r′ and of
radius (r′ + dr′).

I =

∫ a

0

(kr′) (2πr′) dr′ =
2πka3

3
. ⇒ k =

3I

2πa3
.

For r < a,

Iencircled =

∫ r

0

(kr′) (2πr′) dr′ =
2πkr3

3
= I

r3

a3
.

B =
µ0Iencircled

2πr
=

µ0Ir
2

2πa3
.

For r > a,

Iencircled = I.

B =
µ0Iencircled

2πr
=

µ0I

2πr
.

Problem 3 (Griffiths 5.16)
A large parallel-plate capacitor with uniform surface charge σ on the upper plate and −σ on the lower is moving

with a constant speed v.
(a) Find the magnetic field between the plates and also above and below them.

Solution: (B =

{
µ0σv, between the plates;

0, elsewhere.
)

Please refer to example 5.8, where the surface current density K = σvx for the upper plate, K = −σvx for the
lower plate. Using the result from example 5.8, the upper plate produces the magnetic field

Bupper =

{
+µ0

2 σvy, below the upper plate;
−µ0

2 σvy, above the upper plate.
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Figure 3: Problem 5.16

The lower plate produces the magnetic field

Blower =

{
−µ0

2 σvy, below the lower plate;
+µ0

2 σvy, above the lower plate.

⇒

B = Bupper +Blower.

B =

{
µ0σv, between the plates;

0, elsewhere.

(b) Find the magnetic force per unit area on the upper plate, including its direction.
Solution: (fm = µ0σ

2v2/2ẑ)
Since the upper plate cannot feel the magnetic field porduced by itself, the magnetic force here corresponds to

the magnetic field produced by the lower plate and felt by the upper plate.
Lorentz force law says F =

∫
(K×B) da, so the force per unit area is

fm = K×B.

Here, K = σvx̂ for the upper plate, B = Blower = µ0

2 σvŷ.

fm =
µ0

2
σ2v2ẑ.

(c) At what speed v would the magnetic force balance the electrical force?
Solution: (v = c, the speed of light).
The electric field of the lower plate is σ/(2ε0). The attractive electric force per unit area on the upper plate is

fe = − σ2

2ε0
ẑ.

They balance if
µ0

2
σ2v2 =

σ2

2ε0
⇒ v =

1
√
ε0µ0

= c.

Problem 4 (Griffiths 5.17)
Show that the magnetic field of an infinite solenoid runs parallel to the axis, regardless of the cross-sectional

shape of the coil, as long as that shape is constant along the length of the solenoid. What is the magnitude of the
field, inside and outside of such a coil? Show that the toroid field (5.58) reduces to the solenoid field, when the radius
of the donut is so large that a segment can be considered essentially straight.

Proof:
(Example 5.9 and Example 5.10 give us the spirit for solving this problem.)
Let us first pick up a point M (0, y, 0) located on the y axis, and then use the Biot-Savart law to calculate the

magnetic field at this point.

B =
µ0I

4π

∫
dl× r

r3
.
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Figure 4: Problem 5.17

To fully use the translational symmetry along the z-axis, we pick up line elements dl1 and dl2 at points P(x′, y′, z′)
and P’(x′, y′,−z′) symmetrically with respect to the x-y plane, and consider their contribution to the integration
element dB together:

dB =
µ0I

4π

(
dl1 × r1

r31
+

dl2 × r2
r32

)
,

r1 = rM − rP = −x′x̂+ (y − y′) ŷ − z′ẑ,

r2 = rM − rP ′ = −x′x̂+ (y − y′) ŷ + z′ẑ,

r1 = r2 =

√
x′2 + (y − y′)

2
+ z′2 ≡ r̃,

dl1 = dl2 = dx′x̂+ dy′ŷ ≡d̃l.

⇒ dB = µ0I/ (4π)
d̃l×(r1+r2)

r̃3 . Since d̃l and (r1 + r2) are in the same x-y plane, dB ∥d̃l × (r1 + r2) is always along
the z-axis, which is perpendicular to the x-y plane.

dB =
µ0I

4π

d̃l× (r1 + r2)

r̃3
=

µ0I

4π

(dx′x̂+ dy′ŷ)× (−2x′x̂+ 2 (y − y′) ŷ)(√
x′2 + (y − y′)

2
+ z′2

)3

=
µ0I

4π

(2 (y − y′) dx′ + 2x′dy′)(√
x′2 + (y − y′)

2
+ z′2

)3 ẑ.

Using Ampère’s law, we find the magnetic field is

B =

{
µ0nI, inside the coil;
0, outside the coil.

where n is the number of turns in a unit length, which equals the total number of turns, N, divided by the length of
the circumference, 2πs, for a toroid with large radius s.
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