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Two- and three-dimensional topological insulators with isotropic and parity-breaking Landau levels
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We investigate topological insulating states in both two and three dimensions with the harmonic potential
and strong spin-orbit couplings breaking the inversion symmetry. Landau-level-like quantization appear with the
full two- and three-dimensional rotational symmetry and time-reversal symmetry. Inside each band, states are
labeled by their angular momenta over which energy dispersions are strongly suppressed by spin-orbit coupling,
to being nearly flat. The radial quantization generates energy gaps between neighboring bands at the order of
the harmonic frequency. Helical edge or surface states appear on open boundaries characterized by the Z2 index.
These Hamiltonians can be viewed from the dimensional reduction of the high-dimensional quantum Hall states
in three- and four-dimensional flat spaces. These states can be realized with ultracold fermions inside harmonic
traps with synthetic gauge fields.
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I. INTRODUCTION

The study of topological insulators has become an impor-
tant research focus in condensed matter physics.1,2 Histori-
cally, the research of topological band insulators started from
the two-dimensional (2D) quantum Hall effect. Landau level
(LL) quantization gives rise to a nontrivial band topology
characterized by integer-valued Chern numbers.3,4 In fact,
LLs are not the only possibility for realizing topological
band structures. Quantum anomalous Hall band insulators
with the regular Bloch-wave structure are in the same
topological class as 2D LL systems in magnetic fields.5

Later developments generalize the anomalous Hall insulators
to time-reversal (TR) invariant systems in both two and
three dimensions.6–14 This is a new class of topological
band insulators with TR symmetry that are characterized
by the Z2 index. Experimentally, the most obvious sig-
natures of band topology appear on open boundaries, in
which they exhibit helical edge or surface states. Various
2D and 3D materials are identified as topological insula-
tors, and their stable helical boundary modes have been
detected.15–20 Furthermore, systematic classifications have
been performed in topological insulators and superconductors
in all spatial dimensions, which contain 10 different universal
classes.21,22

Although the current research is mostly interested in
topological insulators with Bloch-wave band structures, the
advantages of LLs make them appealing for further studies.
We use the terminology of LLs here in the following general
sense not just for the usual 2D LLs in magnetic fields:
topological single-particle level structures labeled by angular
momentum quantum numbers with flat or nearly flat spectra.
On open boundaries, LL systems develop gapless surface or
edge modes which are robust against disorders. For example,
in 2D quantum Hall LL systems, chiral edge states are
responsible for quantized charge transport. For 2D LL-based
quantum spin Hall systems, helical edge modes are robust
against TR-invariant disorders.9 Similar topological properties
are expected for even high-dimensional LL systems, which
exhibit stable gapless surface modes. For the usual 2D LLs,
the symmetric gauge is used, in which angular momentum is

conserved. We do not use the Landau gauge because it does not
maintain rotational symmetry explicitly. LL wave functions
are simple and explicit, and their elegant analytical properties
nicely provide a platform for further study of topological
many-body states in high dimensions.

Generalizing LLs to high dimensions started by Zhang and
Hu23 on the compact S4 sphere by coupling large spin fermions
to the SU(2) magnetic monopole, where fermion spin scales
with the radius as R2. Later on various generalizations to
other manifold were developed.24–28 Two of the authors have
generalized the LLs of nonrelativistic fermions to arbitrary
dimensional flat space RD .29 The general strategy is very
simple: the harmonic oscillator plus spin-orbit (SO) coupling
Lij�ij , where Lij and �ij are the orbital and spin angular
momenta in a general dimension. Reducing back to two
dimensions, it becomes the quantum spin Hall Hamiltonian
in which each spin component exhibits the usual 2D LLs
in the symmetric gauge, but the chiralities are opposite
for two spin components.8 For a concrete example, say, in
three dimensions, each LL contributes a branch of helical
Dirac surface modes at the open boundary, thus its topology
belongs to the Z2 class. Furthermore, LLs have also been
constructed to arbitrary dimensional flat spaces for relativistic
fermions,30 which is a square root problem of the above
nonrelativistic cases. It is a generalization of the quantum Hall
effect in graphene31–33 to highdimensional systems with full
rotational symmetry. This construction can also be viewed
as a generalization of the Dirac equation from momentum
space to phase space by replacing the momentum operator
with the creation and annihilation operators of phonons. The
zero-energy LL is a branch of half-fermion modes. When
it is empty or fully occupied, fermions are pumped from
the vacuum, a generalization of parity anomaly34–37 to high
dimensions.

In this article, we study another class of isotropic LLs with
TR symmetry but breaking parity in two and three dimensions,
which can also be straightforwardly generalized to arbitrary
dimensions. The Hamiltonians are again harmonic oscillator
plus SO couplings, but here the SO coupling is the coupling
between spin and linear momentum, not orbital momentum.
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In 2D, it is simply the standard Rashba SO coupling, and
in 3D it is the �σ · �p–type SO coupling. In both cases, parity
is broken. The strong SO coupling provides the projection
of the low-energy Hilbert space composed of states with the
proper helicity. The radial quantization from the harmonic
potential further generates gaps between LLs. The SO coupling
strongly suppresses the dispersion with respect to the angular
momentum within each LL. In two and three dimensions,
they exhibit gapless helical boundary modes which are
stable against TR-invariant perturbations, thus they belong to
the Z2 topological class. In fact, parent Hamiltonians, whose
first LL wave functions are obtained analytically and whose
spectra are exactly flat, can be constructed by the dimensional
reduction method from the high-dimensional LL Hamiltonians
constructed in Ref. 29.

This paper is organized as follows. The study of isotropic
and TR-invariant LLs with parity breaking is presented in
Sec. II. The generalization to three dimensions is given in
Sec. III. The experimental realization of the 3D Rashba-like
�σ · �p–type SO coupling is performed in Sec. IV. Conclusions
and outlook are summarized in Sec. V.

II. TWO-DIMENSIONAL SPIN-ORBIT-COUPLED LANDAU
LEVELS WITH HARMONIC POTENTIAL

In this section, we consider the Hamiltonian of Rashba SO
coupling combined with a harmonic potential,

H2D = −h̄2∇2

2m
+ 1

2
mω2r2 − λ(−ih̄∇xσy + ih̄∇yσx), (1)

where ω is the trapping frequency; λ is the SO coupling
strength with the unit of velocity. Equation (1) is invariant
under the SO(2) rotation and the vertical-plane mirror re-
flection. In other words, the system enjoys Cv∞ symmetry.
Equation (1) also satisfies the TR symmetry of fermions, i.e.,
T = iσ2K , with T 2 = −1 and K the complex conjugation.
However, parity symmetry is broken explicitly by the Rashba
term.

Equation (1) can be realized in solid-state quantum wells
and ultracold atomic traps. Rashba SO coupling due to
inversion symmetry breaking at 2D interfaces has been studied
extensively in the condensed matter literature;38 its energy
scale can reach very large values.39 Furthermore, Wigner
crystallization in the presence of Rashba SO coupling has
been studied.40 In the context of ultracold atoms, Bose-
Einstein condensation with Rashba SO coupling plus harmonic
potential was studied by one of the authors and Mondragon
in Ref. 41, in which the spontaneous generation of a half-
quantum vortex is found. Later, there was great experimental
progress in generating a synthetic gauge field from light-
atom interaction,42 which inspired a great deal of theoretical
interest.43–48

A. Energy spectra

In a homogeneous system with Rashba SO coupling,
i.e., ω = 0 in Eq. (1), the single-particle states ψ±(�k) are
eigenstates of the helicity operator �σ · (�k × ẑ) with eigenvalues
±1, respectively. The spectra for these two branches are
ε±(�k) = h̄2(k ∓ k0)2/(2m), and the lowest energy states are

located around a ring with radius k0 = mλ/h̄ in momentum
space. Such a system has two length scales: the characteristic

length of the harmonic trap lT =
√

h̄
mω

and the SO length scale
lso = 1/k0. The dimensionless parameter α = lT / lso describes
the SO coupling strength with respect to the harmonic
potential.

As presented in Ref. 49 for the case of strong SO coupling,
i.e., α � 1, the physics picture is mostly clear in momentum
representation. The lowest energy states are reorganized
from the plane-wave states ψ+(�k) with �k near the SO ring.
Energetically, these states are separated from the opposite-
helicity ones ψ−(�k) at the order of Eso = h̄k0λ = α2Etp,
where Etp = h̄ω is the scale of the trapping energy. As shown
below, the band gap in such a system is at the scale of Etp.
Since α � 1, we can safely project out the negative-helicity
states ψ−(�k). After the projection, the harmonic potential in
momentum representation becomes Laplacian coupled to a
Berry connection �Ak as

Vtp = m

2
ω2(i �∇k − �Ak)2, (2)

which drives particles moving around the ring with a moment
of inertial I = Mkk

2
0; Mk = h̄2/(mω2) is the effective mass in

momentum representation. The Berry connection Ak is defined
as

�Ak = i〈ψk+| �∇k|ψk+〉 = 1

2k
êk, (3)

where |ψk+〉 is the lower branch eigenstate with momentum
�k. It is well known that for the Rashba Hamiltonian, the Berry
connection Ak gives rise to a π flux at �k = (0,0) but without
Berry curvature at �k 	= 0.50 This is because a two-component
spinor after a 360◦ rotation does not come back to itself but
acquires a minus sign.

The crucial effect of the π flux in momentum space
is that the angular momentum eigenvalues become half-
integers as jz = m + 1

2 . The angular dispersion of the spectra
becomes Eagl(jz) = h̄2j 2

z /2I = (j 2
z /2α2)Etp. On the other

hand, the radial potential in momentum representation is
V (k) = 1

2Mkω
2(k − k0)2 for positive-helicity states. For states

with energies much lower than Eso, we approximate V (k) as
harmonic potential, thus the radial quantization is Erad(nr ) =
(nr + 1

2 )Etp up to a constant. The same dispersion structure
was also noted in recent works (Refs. 45–47), which show

Enr,jz
≈

(
nr + 1

2
− α2

2
+ j 2

z

2α2

)
Etp, (4)

where the zero-point energy is restored here. Since α � 1, we
treat nr as a band index and jz as a good quantum number for
labeling states inside each band.

B. Dimensional reduction from the 3D
Landau level Hamiltonian

Equation (1) not only can be introduced from the solid-state
and cold atom physics contexts, but also can be viewed as a
result of dimensional reduction from a 3D LL Hamiltonian
[Eq. (5)] proposed by the authors in Ref. 29. This method
builds up the connection of two topological Hamiltonians in
three dimensions with inversion symmetry and two dimensions
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with inversion symmetry breaking. The resultant 2D Hamilto-
nian [Eq. (7)] exhibits the same physics that Eq. (1) does for
eigenstates with jz < α in the case of α � 1. The advantage
of Eq. (7) is that its lowest LL wave functions are analytically
solvable and their spectra are flat.

Just like the usual 2D LL Hamiltonian in the symmetric
gauge, which is equivalent to a 2D harmonic oscillator plus
the orbital Zeeman term, the 3D LL Hamiltonian is as simple
as a 3D harmonic potential plus SO coupling29

H3D,LL = p2

2m
+ 1

2
mω2r2 − ω �L · �σ , (5)

which possesses 3D rotational symmetry and TR symmetry.
Its eigensolutions are classified into positive- and negative-
helicity channels according to the eigenvalues of �σ · �L = lh̄

or −(l + 1)h̄, respectively. In the positive (negative-)-helicity
channel, the total angular momentum j± = (l ± 1

2 )h̄. The
spectra in the positive-helicity channel, Enr,l = (2nr + 3

2 )h̄ω,
are dispersionless with respect to the value of j+, thus these
states are LLs. In the presence of an open boundary, each
filled LL contributes a branch of helical Dirac Fermi surface
described as

Hsf = vf (�σ × �p) · êr − μ, (6)

where êr is the local normal direction of the surface, vf the
Fermi velocity, and μ the chemical potential. The stability of
surface states under TR-invariant perturbations are character-
ized by the Z2 topological index.

Now let us perform the dimension reduction on Eq. (5)
by cutting a 2D off-centered plane perpendicular to the z axis
with the interception z0. Within this 2D plane of z = z0, Eq. (5)
reduces to

H2D,re = H2D − ωLzσz. (7)

The first term is just Eq. (1) with Rashba SO strength λ = ωz0,
and the 2D harmonic trap frequency is the same as the
coefficient of the Lzσz term. The dimensionless parameter α =
lT / lso = |z0|/lT . If z0 = 0, Rashba SO coupling vanishes.
In this case, Eq. (7) becomes the 2D quantum spin Hall
Hamiltonian proposed in Ref. 9, which is a double copy
of the usual 2D LL with opposite chiralities for spin-up
and -down components. At z0 	= 0, Rashba coupling appears,
which breaks the conservation of σz.

Two of the authors found the lowest LL solutions for Eq. (5),
whose center is shifted from the origin to �rc = (0,0,z0) in
Ref. 29. These states do not keep j conserved but do maintain
jz as a good quantum number, as

ψ3D,jz,z0 (ρ,φ,z) = e
− ρ2+(z−z0)2

2l2
T eimφ

×
(

Jm(k0ρ)

−sgn(z0)eiφJm+1(k0ρ)

)
, (8)

where ρ =
√

x2 + y2, jz = m + 1
2 , k0 = z0/l2

T , and φ is the
azimuthal angle around the z axis. The ψ3D,jz,z0 ’s form a
complete set of the lowest LL wave functions, but they are
nonorthogonal if their jz’s are the same. By setting z = z0

in the above wave functions, we define the 2D reduced wave

functions as

ψ2D,jz
(ρ,φ) = e

− ρ2

2l2
T

(
eimφJm(k0ρ)

−sgn(z0)ei(m+1)φJm+1(k0ρ)

)
. (9)

Noting that ∂zψ3D,jz,z0 |z=z0 = 0, it is straightforward to check
that ψ2D,jz

’s are solutions for the lowest LLs for the 2D reduced
Hamiltonian in Eq. (7) as

H2D,reψ2D,jz
=

(
1 − α2

2

)
h̄ωψ2D,jz

. (10)

The TR partner of Eq. (9) can be written as

ψ2D,−jz
(ρ,φ)

= e
− ρ2

2l2
T

(
sgn(z0)e−i(m+1)φJm+1(k0ρ)

e−imφJm(k0ρ)

)

= (−)m+1sgn(z0)e
− ρ2

2l2
T

(
e−i(m+1)φJ−(m+1)(k0ρ)

−sgn(z0)e−imφJ−m(k0ρ)

)
. (11)

C. Relation between Eq. (1) and Eq. (7)

The difference between the two Hamiltonians, Eq. (7) and
Eq. (1), is the Lzσz term. Its effect depends on the distance ρ

from the center. We are interested in the case of |z0| � lT , i.e.,
α � 1. Let us first consider the lowest LL. With small values of
jz, i.e., m < α, Jm(k0ρ) and Jm+1(k0ρ) already decay before
reaching the characteristic length lT of the Gaussian factor.
We approximate their classic orbital radii as the locations of
the maxima of Bessel functions, which are roughly ρc,jz

≈
m
α
lT < lT . In this regime, the effect of Lzσz compared to the

Rashba part is a small perturbation, of the order of ωρc,jz
/λ =

ρc,jz
/z0 � 1. Thus, these two Hamiltonians share the same

physics. On the other hand, let us consider the case of very
large values of jz, say, m � α2. The Bessel function behaves
like ρm or ρm+1 at 0 < ρ < m

α
lT . The classic orbit radii are

just ρc,jz
≈ √

mlT . The physics of Eq. (7) in this regime is
dominated by the Lzσz term and, thus, is the same as that of 2D
quantum spin Hall LL wave functions. However, for Eq. (1),
the projection to the sub-Hilbert space spanned by ψ+(�k) is
not valid. Its eigenstates in this regime cannot be viewed as
LLs anymore. For intermediate values of jz, i.e., α < m < α2,
the physics is a crossover between the above two limits.

For higher LLs of Eqs. (7) and (1), we expect that their
wave functions can be approximated by a form of Eq. (9)
by multiplying a polynomial of ρ at the nr -th power. As
a result, the physics is similar to what is analyzed in the
previous paragraph. At small values of jz < α, the energy
gap is quantized in terms of the unit of Etp = h̄ω as in Eq. (4)
for both Hamiltonians. At very large values of jz � α2, the
LLs of Eq. (7) become flat again and the quantization gap is
at 2Etp = 2h̄ω.

We perform the numerical calculation of the energy levels
of the reduced 2D Hamiltonian, Eq. (7), as plotted in Fig. 1.
The numerically calculated spectra of Eq. (1), which were
plotted in Refs. 46 and 47, are also presented for comparison.
Only the spectra of jz > 0 are plotted, and those of jz < 0
are degenerate with their partners by the TR transformation,
which flips the sign of jz. The lowest LL of Eq. (7) is flat as
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FIG. 1. (Color online) Energy dispersions of the solutions for the
first four LLs to the 2D reduced Hamiltonian, Eq. (7) (solid lines),
and those for Eq. (1) (dashed lines). The value of α = lT / lso = 35.
The lowest LLs of Eq. (7) are dispersionless with respect to jz. Please
note that the overall shift of the zero-point energy difference 1

2h̄ω is
performed for the spectra of Eq. (1) for a better illustration.

expected, while higher LLs are weakly dispersive, which is
hardly observable for the range of jz presented. The LLs of
Eq. (1) are dispersive, with the dependence on jz shown in
Eq. (4). Inside the gaps between adjacent LLs of Eq. (1), the
number of states is of the order of α.

D. Z2 nature of the topological properties

Due to their connection to the 2D reduced version of the LL
Hamiltonian, we still denote the low-energy bands of Eq. (1)
as 2D parity breaking LLs. As shown in Eq. (4), although
these LLs are not exactly flat, their dispersion over jz is
strongly suppressed by the large value of α. If the chemical
potential μ lies in the middle of the band gap, the Fermi angular
momentum jz,f is of the order of α. The classic radius of such
a state is roughly lT . As analyzed in Sec. II B, for states with
|jz| < α, two Hamiltonians, Eqs. (1) and (7), share the same
physics.

Compared to the usual 2D LL states, the SO-coupled LLs
of Eq. (1) in the form of Eq. (9) are markedly different. The
smallest length scale is not lT , but the SO-coupling length
scale lso = lT /α � lT . Instead, we can use lT as the cutoff of
the sample size by imposing an open boundary condition at
the radius of lT . States with |jz| < α are considered as bulk
states which localize within the region of ρ < lT . States with
|jz| ∼ α are edge states.

We take the thermodynamic limit as follows. First, ω is
fixed, which determines the LL gaps. Then we set m → 0
and λ → ∞ while keeping lso = h̄/(mλ) unchanged, such that

lT =
√

h̄
mω

→ ∞. The number of bulk states scales linearly
with α, and the level spacing scales as 1/α → 0 at the Fermi
angular momentum jz,f .

The next important question is the stability of the gapless
edge modes. This situation is different from the usual 2D LL
problem, in which, inside each LL, for each value of angular
momentum m, there is only one state. Those edge modes are
chiral and, thus, robust against external perturbations. Since
Eq. (1) is TR symmetric, for each filled LL there is always a
pair of degenerate edge modes ψnr ,±jz

on the Fermi energy,
where nr is the LL index. Nevertheless, these two states are
Kramer pairs under the TR transformation satisfying T 2 = −1.
In other words, the edge modes are helical rather than chiral.

We generalize the reasoning in Refs. 6 and 7 for topological
insulators with good quantum numbers of lattice momenta to
our case with angular momentum good quantum numbers. Any
TR-invariant perturbation cannot mix these two states to open
a gap. In other words, the mixing term,

Hmx = g(ψ†
2D,nr ,jz

ψ2D,nr ,−jz
+ H.c.), (12)

is forbidden by TR symmetry. On the other hand, if two LLs
with indices nr and n′

r cut the Fermi energy, the mixing term

Hmx = g′(ψ†
2D,nr ,jz

ψ2D,n′
r ,−jz

− ψ
†
2D,n′

r ,jz
ψ2D,nr ,−jz

+ H.c.)

(13)

is allowed by TR symmetry and opens the gap. Consequently,
the topological nature of such a system is characterized by
the Z2 index, even though it is not clear how to define the
Pfaffian-like formula for it due to the lack of translational
symmetry.7 Similarly to the 2D topological insulators based
on lattice Bloch-wave states, in our case, if odd numbers of
LLs are filled such that there are odd numbers of helical edge
modes, the gapless edge modes are robust.

Imagining an open boundary at ρ ≈ lT , we derive an
effective edge Hamiltonian for these helical edge modes. As
|jz| ∼ α and taking the limit of α → +∞, these edge modes
are pushed to the boundary. We expand the spectra around jz,f .
The edge Hamiltonian in the basis of jz can be written as

Hedge =
∑
jz

(
h̄vf

lT
|jz| − μ

)
ψ

†
nr ,jz

ψnr ,jz
, (14)

where μ = h̄vf

lT
jz,f . The edge modes ψnr ,±jz

around jz,f can
also be expanded as

ψnr ,jz
=

(
fnr

eimφ

gnr
ei(m+1)φ

)
, ψnr ,−jz

= T ψnr ,jz
. (15)

fnr
and gnr

are real numbers parameterized as

fnr
= cos

θnr

2
, gnr

= sin
θnr

2
, (16)

which are determined by the details of the edge. We neglect
their dependence on |jz| for states close enough to the Fermi
energy. The effective edge Hamiltonian can also be expressed
in the plane-wave basis if we locally treat the edge as flat,

Hnr,edge = vf (sin θnr
[( �p × êr ) · ẑ)](�σ · êr )

+ cos θnr
( �p × êr ) · σz) − μ, (17)

where êr is the local normal direction on the circular edge; both
terms are allowed by the rotational symmetry, TR symmetry,
and vertical mirror symmetry in such a system. Each edge
channel is a branch of helical 1D Dirac fermion modes.

Equation (1) can be defined on the compact S2 sphere,
which takes the simple form

H = L2

2I
− ω �L · �σ . (18)

The eigenvalues of �L · �σ take lh̄ and −(l + 1)h̄ for the
positive and negative helicities of j± = l ± 1

2 , respectively.
For convenience, we choose the parameter value of Iω/h̄ as
a large half-integer, then for the lower energy branch, the
energy minimum takes place at j0,+ = l0 + 1

2 = Iω/h̄. The
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lowest LLs become SO-coupled harmonics with j+ = j0,+
and (2l0 + 2)–fold degeneracy. The gap between the lowest
LLs and higher LLs is � = h̄2/(2I ), which is independent of
ω. To take the thermodynamic limit, we keep I constant while
increasing the sphere radius R, and maintain ω scaling with
R2, such that the density of states on the sphere is a constant.

III. THREE-DIMENSIONAL SPIN-ORBIT �σ · �p COUPLING
IN THE HARMONIC TRAP

In this section, we generalize the results in Set. II to
three dimensions. We consider the �σ · �p–type SO coupling
combined with a 3D harmonic potential:

H3D = −h̄2∇2

2m
+ 1

2
mω2r2 − λ(−ih̄ �∇ · �σ ). (19)

Equation (19) possesses the 3D rotational symmetry and TR
symmetry of fermions with T 2 = −1. The parity symmetry is
broken by the �σ · �k term, and there is no mirror plane symmetry
either. The quantities lso, lT , α, and k0 are defined in the same
way as in Sec. II.

Although it is difficult to realize strong SO coupling in the
form of σ · �p in solid-state systems, it can be designed through
light-atom interactions in ultracold atom systems. We present
an experimental scheme to realize Eq. (19) in Sec. IV.

A. Energy spectra

Again, we consider the limit of strong SO coupling, i.e.,
α � 1. It is straightforward to generalize the momentum
space picture in Set. II to the 3D case as presented in
Ref. 45 and summarized below. The helicity operator �σ · k̂

is employed to define the helicity eigenstates of plane waves
(�σ · k̂)ψ�k,± = ±ψ�k,±. Only positive-helicity states ψ�k+ are
kept in the low-energy Hilbert space. The harmonic potential
becomes the Laplacian operator in momentum space and,
thus, is equivalent to a quantum rotor subject to the Berry
phase in momentum space as Vtp = 1

2m(i �∇k − �Ak)2. The
moment of inertia is again I = Mkk

2
0 and Mk = h̄2/(mω2).

The Berry connection �Ak = i〈ψ�k,±| �∇k|ψ�k,±〉 is the vector
potential of the U(1) magnetic monopole. As a result, the
angular momentum quantization changes to that j takes
half-integer values starting from 1

2 . The energy dispersion
becomes Eagl(j ) = h̄2j (j + 1)/2I = (j (j + 1)/2α2)Etp, and
each level is (2j + 1)–fold degenerate. The radial quantization
is the same as before. Thus the dispersion can be summarized
as

Enr,j,jz
≈

(
nr + 1

2
− α2

2
+ j (j + 1)

2α2

)
Etp, (20)

where nr is the band index, or the LL index, and j is the
angular momentum quantum number.

B. Dimensional reduction from the 4D
Landau level Hamiltonian

Following the same logic as in Sec. II B, we present the
dimensional reduction from the 4D LL Hamiltonian [Eq. (22)]
to arrive at a 3D SO-coupled Hamiltonian closely related to
Eq. (19). The 3D LL Hamiltonian, Eq. (5), can be easily

generalized to arbitrary dimensions by combining the n-D
harmonic potential and the n-D SO coupling between orbital
angular momenta and fermion spins in the fundamental
spinor representations.29 In four dimensions, there are two
nonequivalent fundamental spinors, both of which have two
components. Without loss of generality, we choose one of them
as

σij = εijkσk, σi4 = σi, (21)

where i,j = 1, 2, and 3. The orbital angular momentum
operators are defined as Lij = −ih̄xi∇j + ih̄xj∇i where i,j =
1, 2, 3, and 4. The 4D LL Hamiltonian in the flat space is
defined as

H4D,LL =
4∑

i=1

−h̄2∇2
i

2m
+ mω2

2

4∑
i=1

r2
i − ω

∑
1�i<j�4

Lijσij ,

(22)

which possesses TR and parity symmetry.
The lth-order 4D orbital spherical harmonics coupled to

the fundamental spinor can be decomposed into the 4D
SO-coupled spherical harmonics in the positive- and negative-
helicity sectors, where Lijσij take eigenvalues of lh̄ and
−(l + 2)h̄, respectively. The eigen–wave functions of Eq. (22)
in the positive-helicity channel are dispersionless with respect
to l as Enr,+ = (2nr + 2)h̄ω. Their radial wave functions
are Rnr ,l(r) = rle−r2/2l2

T F (−nr,l + 2,r2/l2
T ), where F is the

standard confluent hypergeometric function. With an open
boundary of an S3 sphere, each filled LL contributes to a
gapless surface mode of 3D Weyl fermions as

H3D,surface = vf êr,iσijpj − μ, (23)

where êr is the unit vector normal to the S3 sphere. The
topological index for such a 4D LL system with TR symmetry
is Z rather than Z2.

We perform the dimensional reduction on Eq. (22) from
four to three dimensions. We cut a 3D off-center hyperplane
perpendicular to the fourth axis with the interception x4 = w0.
Within this 3D hyperplane of (x1,x2,x3,x4 = w0), Eq. (22)
reduces to

H3D,redc = H3D,so − ω �L · �σ , (24)

where the first term is just Eq. (22) with the SO coupling
strength λ = ωw0. It contains another SO coupling term,
�L · �σ , and its coefficient is the same as the harmonic trapping
frequency. Similarly to the previous reduction from three
to two dimensions, here we have α = lT / lso = |w0|/lT . At
w0 = 0, Eq. (24) becomes the 3D LL Hamiltonian of Eq. (5)
with parity symmetry. If w0 	= 0, the �σ · �p term breaks parity
symmetry. Following the same reasoning as in Sec. II B,
Eqs. (19) and (24) share the same physics for eigenstates with
j < α in the case of α � 1.

Similarly as before, we construct an off-center solution
to the 4D LL problem. We use �r to denote a point in the
subspace of x1,2,3, and �̂ as an arbitrary unit vector in the
x1-x2-x3 space. We consider the plane of �̂-x̂4 spanned by
the orthogonal vectors �̂ and x̂4. It is easy to check that the
following wave functions, which depend only on coordinates
in the �̂-x̂4 plane, are the lowest LL solutions to the 4D LL

125122-5



YI LI, XIANGFA ZHOU, AND CONGJUN WU PHYSICAL REVIEW B 85, 125122 (2012)

Hamiltonian, Eq. (22),

(�r · �̂ + ix4)le
− r2+x2

4
2l2

T ⊗ α�̂, (25)

where α�̂ = (cos θ
2 , sin θ

2 eiφ)T satisfies

(σi4�i)α�̂ = (�σ · �̂)α�̂ = α�̂. (26)

In this set of wave functions, both the orbital angular
momentum and spin are conserved and added up; they are
called the highest weight states in group theory. In fact,
these states can be rotated into any plane accompanied by
a simultaneous rotation in the spin channel. Based on the
structure of the highest weight states, we can still define the
magnetic translation operator in the �̂-x4 plane along the x4

axis as

T�̂x4
(w0x̂4) = exp

(
− w0∂x4 − i

l2
T

(�r · �)w0

)
. (27)

Applying this operator to the Gaussian pocket of the solution
with l = 0 in Eq. (25), we arrive at the off-center solution,

ψ�,w0 (�r,x4) = e
− r2+x2

4
2l2

T e
−i

rw0
l2
T ⊗ α�̂. (28)

This solution, however, breaks the rotational symmetry. In
order to restore the 3D rotational symmetry around the new
center (0,0,0,w0), we perform a Fourier transformation over
the direction of � as

ψ4D;j,jz
(�r,x4) =

∫
d�Y− 1

2 ,l+ 1
2 ,m+ 1

2
(�̂)ψ�,w0 (�r,x4), (29)

where j = l + 1
2 and jz = m + 1

2 . Please note that due to
the singularity of α� over the direction of �̂, monopole
spherical harmonics, Y− 1

2 ,l+ 1
2 ,m+ 1

2
(�), are used instead of

regular spherical harmonics.
Again, noting that ∂x4ψ4D;j,jz

(�r,x4)|x4,w0 = 0, we simply set
x4 = w0; then it is simple to check that the reduced 3D wave
functions,

ψ3D;j,jz
(�r) = ψ4D;j,jz

(�r,w0), (30)

are the solutions to Eq. (24) for the lowest LLs as

H3D,redcψ3D,j,jz
(�r) =

(
3

2
− α2

2

)
h̄ωψ3D,j,jz

(�r). (31)

ψ3D,j,jz
(�r) can be simplified as

ψ3D,jjz
(�r) = e

− r2

2l2
T {jl(k0r)Y+,j,l,jz

(�r ) + ijl+1(k0r)

×Y−,j,l+1,jz
(�r )}, (32)

where k0 = w0/l2
T = mλ/h̄ and λ = w0ω; jl is the lth-order

spherical Bessel function. Y±,j,l,jz
’s are the SO-coupled spher-

ical harmonics defined as

Y+,j,l,jz
(�) =

(√
l + m + 1

2l + 1
Ylm,

√
l − m

2l + 1
Yl,m+1

)T

,

with a positive eigenvalue of lh̄ for �σ · �L, and

Y−,j,l,jz
(�) =

(
−

√
l − m

2l + 1
Ylm,

√
l + m + 1

2l + 1
Yl,m+1

)T

,

with a negative eigenvalue of −(l + 1)h̄ for �σ · �L.

The difference between Eq. (24) and Eq. (19) is the term
�σ · �L, whose effect is weakened as the distance from center r

gets small. The radial distributions of jl(k0r) in Eq. (32) and
Jm(k0ρ) in Eq. (9) are similar. Following the same reasoning
presented in Sec. II B, in the limit of α � 1, we can divide
the lowest LL states of Eq. (32) into three regimes: j < α,
j � α2, and α < j < α2. At j < α, the classic orbit radius
scales as rc,j ≈ j

α
lT < lT . Again, in this regime, the effect of

�σ · �L is a perturbation of the order of rc,jz
/z0 � 1; thus the

two Hamiltonians, Eqs. (24) and (19), share the same physics.
Similarly, in the regime of j � α2, �σ · �L dominates, and the
physics of Eq. (24) comes back to the 3D LL Hamiltonian,
Eq. (5), while that of Eq. (19) is no longer LL-like.

C. Z2 helical surface states

Following the same reasoning as in Sec. II D, we denote
the low-energy bands of Eq. (19) as 3D parity breaking LLs.
For the lowest LL, below the energy of the bottom of the
second LL, the angular momentum j takes values from 1

2 to
the order of α at which the radius of the LL approaches lT . For
this regime j < α, Eqs. (19) and (24) share the same physics.
Again, the smallest length scale is the SO coupling length
scale lso = lT /α � lT . States with |j | � α are considered
bulk states which localize within the region ρ � lT . States
with |jz| ∼ α are edge states. The number of bulk states scales
linearly with α2.

Now we impose an open boundary condition of an S2 sphere
with radius r ≈ lT and consider the stability of the edge modes
against TR-invariant perturbations. Let us consider one filled
LL. The Fermi energy lies between the gap and, thus, cuts
the dispersion at surface states. In the limit of α → ∞, the
energy level spacing between adjacent angular momenta j

and j + 1 scales as h̄ω/α → 0 for surface modes with j ∼ α.
Thus we can always choose the Fermi angular momentum jf

satisfying jf = 2l + 1
2 . For this value of jf , there is an odd

number of 2l + 1 Kramer pairs between ψjf ,±jz
for jz = 1

2 to
jf . Again, according to the reasoning of the Z2 classification
in Refs. 6 and 7, these states cannot be fully gapped out by
applying TR-invariant perturbations. Certainly, for those states
with j = 2l + 3

2 close to the Fermi energy, they can be fully
gapped, but they are only part of the spectra and do not change
the topological properties. Again, if two LLs with different
indices nr and n′

r cut the Fermi energy, the zero-energy states
at the Fermi level can be fully gapped out. Thus, the topological
nature of Eq. (19) is Z2.

We further present the effective surface Hamiltonian for
surface modes in the limit of jf ∼ α → +∞. The effective
surface Hamiltonian of 3D topological insulators with the
spherical boundary condition has also been discussed in
Refs. 51 and 52. The surface Hamiltonian in the eigenbasis
of j and jz can be written as

Hsf =
∑
j,jz

(
h̄vf

lT
|j | − μ

)
ψ

†
nr ,j,jz

ψnr ,j,jz
, (33)

where μ = h̄vf

lT
jf . The construction of the accurate surface

Hamiltonian in the plane-wave basis depends on the detailed
information of surface modes ψj,jz

(r,�r ) for j ≈ jf and, thus,
is cumbersome. Nevertheless, based on the symmetry analysis,
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FIG. 2. (Color online) Level diagram for atom-laser coupling.
Four lower energy levels are coupled to two excited levels to compose
a hybrid tripod and tetrapod configuration.

we can write the general form as

Hnr,edge = vf {sin θnr
( �p × �σ ) · êr

+ cos θnr
[ �p · �σ − ( �p · êr )(�σ · êr )]} − μ, (34)

where êr is the local norm direction on the S2 sphere. Both
terms obey the local SO(2) rotational symmetry around the êr

and TR symmetry. The first Rashba term also obeys the vertical
mirror symmetry, while the second term does not. The second
term favors the spin aligning with the momentum, while the
second favors a relative angle of 90◦. For a general value of θnr

,
which is determined by the nonuniversal surface properties and
θnr

, Eq. (34) determines a relative rotation between spin and
momentum orientation at the angle of θnr

. It is still a helical
Dirac Fermi surface.

IV. EXPERIMENTAL REALIZATION FOR
3D SO COUPLING

In the ultracold atom context, there has been great progress
in the synthetic gauge field, or artificial SO coupling from light-
atom interactions.53 Experimentally, artificial SO coupling has
been generate in ultracold atom systems.42 Two-dimensional
Rashba and Dresselhaus SO coupling in the harmonic potential
has been proposed using a double-tripod configuration.54 Since
the pseudospin degrees of freedom are represented by the two
lowest energy levels, this scheme is immune to decay due to
collision and spontaneous emission process.55

In this section, we propose the experimental realization
for the 3D SO coupling of the �σ · �p type in Eq. (19). Here
we generalize the scheme in Ref. 54 to a combined tripod
and tetrapod level configuration as depicted in Fig. 2. Three
internal levels |1〉, |2〉, and |3〉 couple the excited state |a〉 to
form a tripod configuration. A tetrapod-like coupling is formed
by coupling the four levels |1〉–|4〉 to the common excited state
|b〉. The single-particle Hamiltonian reads

H = p2

2m
+ 1

2
mω2r2 + Hal, (35)

where m is the mass of the atom; Hal represents the atom-laser
coupling. In the interaction picture, Hal can be written under
the rotating-wave approximation as

Hal = −h̄
∑

m=a,b

{�1m|m〉〈1|+�2m|m〉〈2|+�3m|m〉〈3|+H.c.}

−h̄[�4b|b〉〈4| + H.c.], (36)

where �im are the corresponding Rabi frequencies between
the internal states |i〉 and |m〉 with m = a,b.

2

aBa

2

~
bBb

D bB
~

2

~
bBb

2

aBa

c

0

c

FIG. 3. Energy levels of the atom-laser coupling Hamiltonian,
Eq. (40).

We introduce the two bright states

|Bm〉 = (�∗
1m|1〉 + �∗

2m|2〉 + �∗
3m|3〉)/�m, (37)

where m = a,b and �m =
√

|�1m|2 + |�2m|2 + |�3m|2. The
atom-laser coupling can be rewritten as

Hal = −h̄{�a|a〉〈Ba| + H.c.}
− h̄{�b|b〉〈Bb| + �4b|b〉〈4| + H.c.}. (38)

To further simplify the model, here we assume 〈Ba|Bb〉 = 0,
which can be achieved by choosing

�jm = �m√
3
ei(�kj ·�r+θjm) (j = 1,2,3; m = a,b) (39)

with θja = (j − 2)2π/3 and θjb = −(j − 2)2π/3. We also

choose �4b = �4e
i(�k4·�r+θ4) and set �c = �a , �b = �c cos φ

and �4 = �c sin φ. Using these notations, Hal is simplified as

Hal = −h̄[�c(|a〉〈Ba| + |b〉〈B̃b|) + H.c.], (40)

where |B̃b〉 = cos φ|Bb〉 + sin φ|4̃〉 and |4̃〉 = e−i(�k4·�r+θ4)|4〉.
The above Hamiltonian supports three pairs of degenerated
eigenstates with energy difference h̄|�c|, as depicted in Fig. 3.
Explicitly, the eigenvectors are written as

|G1〉 = |Ba〉 + |a〉√
2

, |G2〉 = |B̃b〉 + |b〉√
2

,

|G3〉 = |D〉, |G4〉 = |B̃⊥
b 〉, (41)

|G5〉 = |Ba〉 − |a〉√
2

, |G6〉 = |B̃b〉 + |b〉√
2

,

where |D〉 = ∑
j e−i�kj ·�r |j 〉/√3 and |B̃⊥

b 〉 = sin φ|Bb〉 −
cos φ|4̃〉. Therefore, the two degenerate ground states can be
used as pseudo-spin-1/2 degrees of freedom.

If the trapping frequency satisfies ω � |�c|, according to
the adiabatic approximation, we neglect the coupling between
the ground-state manifold and other states. Therefore, atoms
in the subspace spanned by |G1〉 and |G2〉 evolve according to
the effective Hamiltonian

He = ( �p − �A)2

2m
+ 1

2
mω2r2 + �, (42)

where the non-Abelian gauge potential �A is a 2 × 2 matrix
with the elements

�Aij = ih̄〈Gi | �∇|Gj 〉, (43)
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2
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2
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3,3 FM

2
9F

2
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2
1, FMa

2
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FIG. 4. (Color online) Energy level scheme for alkali atoms
40K. The Zeeman sublevels of two hyperfine states F = 9

2 and
F = 7

2 can be used to fulfill our requirements. Lines or curves with
an arrow indicate effective transitions between different magnetic
levels which can be implemented using resonant Raman processes.
Other levels, which are not involved in the scheme, are not
shown.

where i,j = 1,2; � is a scalar potential induced by the
coupling laser beams.

An isotropic 3D �σ · �p–like SO coupling can be obtained by
a 3D setup of laser configurations as

�k1 = κ

(
− 1

2
, −

√
3

2
,0

)
, �k2 = κ(0,1,0),

(44)

�k3 = κ

(
− 1

2
,

√
3

2
,0

)
, �k4 = κ

(
0,0, −

√
7 + √

17

8

)
.

In this case, the corresponding vector and scale potential are
calculated as

�A
h̄

= 0.166κ[σx �ex + σy �ey + (σz − I )�ez], � = 0.445
h̄2κ2

2m
Î .

(45)

The � term is a constant and, thus, can be dropped off. The
Abelian part in the gauge potential Az is a constant, which
can be absorbed by a gauge transformation. Consequently, the
remaining constant non-Abelian gauge potential behaves as a
�σ · �p–type SO coupling.

The above-considered level structure can be found, for
example, in alkali atoms with large spins. Figure 4 shows
the hyperfine ground-state manifolds of 2S1/2 for 40K atoms
under an external magnetic field. The energy levels |1〉 ∼ |4〉,
|a〉, and |b〉 can be selected as different Zeeman sublevels of
F = 9

2 and F = 7
2 . Using the notation of |FMF 〉 to denote each

state, we choose |1〉 = | 9
2 , − 1

2 〉, |2〉 = | 9
2 , 3

2 〉, |3〉 = | 7
2 , 3

2 〉,
|4〉 = | 7

2 , − 1
2 〉, |a〉 = | 9

2 , 1
2 〉, and |b〉 = | 7

2 , 1
2 〉. The coupling

between different levels is achieved, for example, by using
two laser beams under second-order resonant Raman process.
The two lasers can be chosen to be circularly polarized and
π polarized, respectively, in order to satisfy the selection rule.
Finally, wave vectors of individual laser beams can also be
adjusted so that Eq. (45) is fulfilled.

V. CONCLUSION AND OUTLOOK

We have studied rotationally and TR symmetric LL systems
in both 2D and 3D systems with breaking parity symmetry,
whose topological properties are characterized by the Z2

class. These Hamiltonians are simply 2D harmonic potentials
plus Rashba SO coupling or 3D harmonic potentials plus
�σ · �p–type SO coupling with a strong SO coupling strength.
For low-energy bands, the dispersions over angular momenta
are strongly suppressed by SO coupling, to be nearly flat.
Up to a small difference which can be treated perturbatively,
these Hamiltonians can be systematically investigated through
dimensional reduction on the high-dimensional LL problems
by cutting an off-center plane in the 3D LL Hamiltonian or an
off-center hyperplane in the 4D LL Hamiltonian. The parity
breaking LL wave functions in two and three dimensions are
presented explicitly. With open boundary conditions, helical
edge states are found in two dimensions, and surface states
are found in three dimensions. These states can be realized
in ultracold atom systems in a harmonic trap combined
with synthetic gauge fields, i.e., artificial SO coupling. In
particular, we propose an experimental scheme to realize the
3D Hamiltonian.

The above dimensional procedure can be straightforwardly
generalized to arbitrary dimensions based on our previous
construction of high-dimensional LL Hamiltonians,29 and so
can the general parity breaking LL wave functions in N

dimensions. The nice analytical properties of the 2D and 3D LL
wave functions breaking parity symmetry also provide a good
opportunity to further construct many-body wave functions
of the factional topological states. These properties will be
investigated in a future publication.
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