
September 7, 2006 14:36 WSPC/140-IJMPB 3544

International Journal of Modern Physics B
Vol. 20, No. 22 (2006) 3257–3278
c© World Scientific Publishing Company

BAND COLLAPSE AND THE QUANTUM HALL

EFFECT IN GRAPHENE

B. ANDREI BERNEVIG∗,†, TAYLOR L. HUGHES∗ and SHOU-CHENG ZHANG∗

∗,†Department of Physics, Stanford University, Stanford, CA 94305, USA
†Princeton Center for Theoretical Physics, Jadwin Hall,

Princeton University, Princeton, NJ 08544, USA

HAN-DONG CHEN

Department of Physics, University of Illinois at Urbana-Champaign,

1110 W. Green St., Urbana, IL 61801, USA

CONGJUN WU

Kavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA

Received 11 August 2006

The recent quantum Hall experiments in graphene have confirmed the theoretically
well-understood picture of the quantum Hall (QH) conductance in fermion systems with
continuum Dirac spectrum. In this paper we take into account the lattice and perform
an exact diagonalization of the Landau problem on the hexagonal lattice. At very large
magnetic fields the Dirac argument fails completely and the Hall conductance, given
by the number of edge states present in the gaps of the spectrum, is dominated by
lattice effects. As the field is lowered, the experimentally observed situation is recovered
through a phenomenon which we call band collapse. As a corollary, for low magnetic
fields, graphene will exhibit two qualitatively different QHE’s: at low filling, the QHE
will be dominated by the “relativistic” Dirac spectrum and the Hall conductance will
be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic
spectrum, and the Hall conductance will span all integers, even and odd.
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1. Introduction

The quantum Hall effect (QHE) is one of the richest phenomena studied in con-

densed matter physics. This effect is characterized by certain conductance proper-

ties in two-dimensional samples, i.e. the vanishing of the longitudinal conductance

σxx ∼ 0 along with the onset of a quantized transverse conductance σxy = ν e2

h .

Recently several experimental groups have produced two-dimensional plane films

of graphite, commonly known as graphene sheets,1,2 which exhibit interesting QHE

behavior.
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Graphene has a theoretical history beginning with the study of the band struc-

ture of this planar system in Ref. 3. From these humble beginnings it has gone

on to be studied intensely because of its Dirac structure. The bands can be effec-

tively characterized by massless (2 + 1)d Dirac fermions.4 This continuum model

of graphene has been subsequently used to study the (2 + 1)d parity anomaly5 and

as a model system for the relativistic quantum Hall effect (RQHE).6–8 A quantum

spin Hall effect has also been predicted in graphene Refs. 9 and 10 but the intrinsic

spin orbit gap is probably too small to support a measurable phase.11,12

The latter studies were based on the recent experimental work done on the QHE

in graphene by two independent groups.1,2 These two groups confirm an interesting

behavior in graphene in which the transverse conductance is quantized as an integer

plus a half-integer σxy = (n+ 1
2 )4e2/h, where band and spin degeneracies have been

taken into account. Although unrelated to the parity anomaly, this behavior of the

Hall conductance was in fact obvious in the seminal work of Jackiw and Rebbi.13

On the basis of the argument for the RQHE6–8 the experimental groups conclude

that this is an interesting new phenomena completely explained by the relativistic

Dirac spectrum of graphene. We want to improve on this argument for several

reasons. For very largeB the lattice is expected to dominate the behavior of the Hall

conductance. In this regime the Dirac argument cannot be valid, since, by virtue

of being a continuum argument, it ignores lattice effects and the torus structure of

the Brillouin zone. We will see this is indeed the case, and the large-B limit does

not match the Dirac argument prediction. On the other hand, in the experimental

situation the magnetic field is weak (with respect to the unit quantum flux per

plaquette) and the Dirac argument applies, it is nonetheless desirable to have a

description of the quantum Hall effect valid for both strong and weak magnetic

fields. At low filling, we show how graphene evolves from a high-B regime with

non-Dirac behavior to a low-B regime with Dirac behavior through a phenomenon

we dub “band collapse.” Two adjacent bands close the gap between them across

the whole Brillouin zone and form a new band with twice the degeneracy of each

of the initial bands. The edge structure reflects this degeneracy.

We begin with a restatement of the RQHE argument based on the relativistic

(2+1)d Dirac spectrum. We then present the exact solution of the Landau problem

on the graphene lattice which has been previously studied in Ref. 14. The agree-

ment we find between numerical diagonalization and analytic calculations done

with Hatsugai’s theoretical framework15 lead us to our conclusions and illustrate

the competition between the relativistic and non-relativistic character of the band

structure of graphene in a magnetic field.

2. The Relativistic Quantum Hall Effect in Graphene

We start with the tight-binding nearest neighbor Hamiltonian for the hexagonal

lattice given by Semenoff in Ref. 4:

H = −t
∑

~A,i

c†( ~A)c( ~A+~bi) + c†( ~A+~bi)c( ~A)
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Fig. 1. One dimensional lattice on which Harper’s equation is defined, graphene honeycomb
lattice, and Brillouin zone with special points of symmetry labeled.

+β
∑

~A

c†( ~A)c( ~A) − c†( ~A+~bi)c( ~A+~bi) (1)

where c( ~A), c( ~A +~bi) are the annihilation operators for sites on sublattice A and

B, and β is an energy difference for electrons localized on the A and B sublattices.

We will call this term the Semenoff mass. Graphene is effectively massless which is

approximated by taking β → 0. In this limit the band structure is gapless at two

inequivalent points K = 4π√
3a

( 1
2 ,

1
2
√

3
),K ′ = −K, where a is the nearest-neighbor

lattice constant. Around these points, the Hamiltonian is described by (in the ideal

case massless) Dirac fermions with:4,5

HK = σxkx + σyky ; HK′ = −σxkx + σyky (2)

which act on a two-spinor wavefunction describing the sublattices A and B, (see

Fig. 1). There is also an overall 2-fold spin degeneracy which we neglect for the

remainder of the paper. Note that parity switches A � B and K � K ′ while time

reversal switches K � K ′. The Semenoff term opens a gap of value m = 2β/
√

3ta

at K and −m at K ′ = −K so time reversal symmetry is preserved.

Now consider one Dirac fermion at the K-point with mass m in magnetic field

B. The Hamiltonian is H = σxkx+σy(ky−eBx)+mσz. For eB > 0, the eigenstates

are

u±k,n =
eiky

4παn

(

i
√
αn ±mψn(x − x±0 (k))

±√
αn ∓mψn−1(x− x±0 (k))

)

(3)
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with

αn =
√

2|eB|n+m2

x±0 =
1

eB
(k ± αn)

E± = ±αn

where ψn(x) are harmonic oscillator eigenstates and u± are the eigenstates of HK

with energies E±. Notice that all the energy levels are paired except the n = 0

level. There is a common misconception that unpaired “zero-modes” occur only for

a massless fermion but observe that for m > 0 we have u−k,0 = 0 while for m < 0

we have u+
k,0 = 0, so such levels are unpaired even for non-zero mass. In the field

theory formalism, the current is defined to be Jµ = − 1
2eγ

µ
βα[ψα, ψβ ] and is odd

w.r.t. charge conjugation symmetry. We find that

〈0|J0|0〉 = ρ =
1

2
(N− −N+)

|eB|
2π

(4)

where N+ and N− are the numbers of filled positive and negative energy Landau

levels (LL). Hence the Hall conductance is

σxy =
1

2
(N− −N+) (5)
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Fig. 2. Zero mode in the Dirac Equation.
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Fig. 3. Hall conductance as a function of the chemical potential. The dashed and dotted lines
are the individual conductances from the two Dirac cones. The inset shows the total combined
Hall conductance.

in units of e2/h. Due to the unpaired level, this will be half-integer and the position

of the unpaired level depends on the sign of eB and m as in Fig. 2.

This analysis is correct for the fermion located around the K-point, but as

mentioned before the graphene bandstructure contains two such fermions. For the

purpose of being well defined, we consider a small positive Semenoff mass m at K

which means a small negative mass at K ′. Consider the case of eB > 0. The Hall

conductance gets a contribution from both fermions and is zero when the Fermi

level is in the gap −m < µ < m and odd integer otherwise. This is then an odd

integer quantum Hall effect as in Fig. 3. When the gap is vanishingly small, m→ 0

the region of zero Hall conductance becomes infinitely narrow.

3. Harper Equation For Graphene

We now present a different argument that reproduces the experimental results and

is valid for both high and low B. The solution to this problem is to carefully examine

the band structure and edge states of graphene in a magnetic field with rational

flux φ = p/q. The analysis is based on a generalization of Hatsugai’s work in Ref. 15

to the honey-comb lattice. The energies of the bands and edge states are found as

zeroes of certain polynomial equations. By using general polynomial theory we are

able to characterize the bands, find the number of band crossings, and determine
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the conditions for zero modes and edge states. By identifying the Hall conductance

as the winding index of the edge state around the band gap, we find that, as the

magnetic field is decreased, the winding number of the edge states starts taking odd-

integer values due to electron bands collapsing in pairs. The theoretical spectrum

is obtained, and in addition, exact diagonalization results are presented to support

it. It will be evident from the calculated bandstructure that for large magnetic

fields the Dirac argument does not apply because the Hall conductances of bands

at low-filling do not form a sequence of odd-integers in this case, as predicted by

the relativistic argument.

We use the Landau gauge Ay = Bx, Ax = 0, with B = 2Φ/3
√

3a2, where

Φ = p/q is the flux per plaquette (hexagon) and p, q are relatively prime integers.

With a Peierls substitution the effect of the magnetic field is c†i cj → c†i cj exp
∫ i

j
~Ad~r.

In this gauge ky = k is a good quantum number and the Hamiltonian for each k is:

H(k) = −t
∑

j

c†k,2j−1ck,2jAj(k) + c†k,2jck,2j+1 + h.c. (6)

where

Aj(k) = eiπ p

q
(j− 5

6
) + e−iπ p

q
(j− 5

6
)eik . (7)

Note that we have not included a mass term in our tight-binding Hamiltonian

because graphene is essentially massless. Since Aj+q = (−1)pAj the Hamiltonian is

periodic with period 2q, (Aj+2q = Aj) but the energy spectrum, which depends only

on |Aj | is periodic with period q. We start with the one-particle states |Ψ(k, φ)〉 =
∑

i ψi(k, φ)c†k,i|0〉 and act on these with the Hamiltonian to obtain the equation

H |Ψ〉 = E|Ψ〉. There are two independent amplitude equations, one for i odd and

one for i even:

εψ2j−1 +Ajψ2j + ψ2j−2 = 0

A?
jψ2j−1 + εψ2j + ψ2j+1 = 0

(8)

where ε = E/t with E the energy. There are now two Harper equations for the

hexagonal lattice, in contrast to the single Harper equation for the square lattice.

After some manipulation we find in a transfer matrix formalism:
(

ψ2j+1

ψ2j

)

=
1

Aj
M̃j

(

ψ2j−1

ψ2j−2

)

(9)

with

M̃j =

(

ε2 −AjA
?
j ε

−ε −1

)

. (10)

As opposed to the transfer matrix for the square lattice, which hops by one site and

is linear in energy,15 the graphene transfer matrix hops by two sites and is quadratic

in energy. This reflects the lattice periodicity. Since M̃j+q = M̃j , the periodicity of
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the energy spectrum is q. We can now define the transfer matrix over the magnetic

unit cell:

M(ε) =

(

M11(ε) M12(ε)

M21(ε) M22(ε)

)

≡ M̃qM̃q−1 · · · M̃1 . (11)

By induction we find that M11 is a polynomial of order (ε2)q , M12 and M21 are of

the form ε× (ε2)q−1, while M22 is a polynomial of order (ε2)q−1. These polynomials

have coefficients which depend on k and the magnetic flux. We pick our sample of

order Ly = 2ql, commensurate with the magnetic unit cell, where l is a large integer

and the factor of 2 is added because we will require periodic conditions ψLy
= ψ0,

hence Ly ≡ 0 ≡ even. The transfer matrix across the length of this sample is M l.

From Hatsugai15 we know that the important polynomial to consider is:

[M l]21(ε) = 0 . (12)

The entire spectrum of energy levels for each k value comes from the zeroes of this

polynomial of which there are Lx − 1. Some of these states are bulk states and

others are edge states. We will now characterize the edge and bulk states (bands).

It is easy to find one solution to Eq. (12). Simply take M21(ε) = 0 and this will

imply that Eq. (12)is satisfied since all upper-triangular matrices remain so when

multiplied by another upper-triangular matrix. Hatsugai argues15 that the energies

of the edge states are given by the zeroes of exactly this polynomial: M21(ε) = 0.

Since M21(ε) ∼ ε × (a(ε2)q−1 + b(ε2)q−2 + · · ·), there is always one ε = 0 solu-

tion (zero mode edge state) which does not disperse and 2(q − 1) non-zero energy

solutions(edge-states) which come in pairs: −µq−1 ≤ −µq−2 ≤ · · · ≤ −µ1 ≤ 0 ≤
µ1 ≤ · · · ≤ µq−2 ≤ µq−1. Depending on whether M11(µi)/|Aq · · ·A1| is 〈 , 〉, or = 1

the edge state will be localized on the left edge, right edge, or be degenerate with

the bulk i.e. touching a bulk state.15

The bulk states are obtained from the lattice periodicity j → j + q and the

Bloch condition:
(

ψ2q+1

ψ2q

)

= ρ(ε)

(

ψ1

ψ0

)

(13)

with ρ(ε) a pure imaginary phase, i.e. |ρ(ε)| = 1. We also note that we have the

transfer matrix equation
(

ψ2q+1

ψ2q

)

=
1

AqAq−1 · · ·A1
M

(

ψ1

ψ0

)

. (14)

Therefore, combining these two, ρ(ε) is an eigenvalue of the 2 × 2 transfer matrix

ρ± =
1

2Aq · · ·A1
[TrM ±

√

(TrM)2 − 4|Aq · · ·A1|2] (15)

where we have used Det[M ] = Det[Mq] · · ·Det[M1] = |Aq · · ·A1|2. It is easy to see

that the Bloch condition |ρ(ε)|2 = 1 is satisfied for (TrM)2 − 4|Aq · · ·A1|2 < 0,
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based on the fact that ρ+ρ− = 1. Since M11 and M22 are both polynomials of order

q in ε2 the solutions are again paired. Let us rewrite

(TrM(ε2))2 − 4|Aq · · ·A1|2 =

2q
∏

i=1

(ε2 − λi) , (16)

with 0 < λ1 ≤ λ2 ≤ · · · ≤ λ2q . The energy bands are thus

{

λ2j+1 ≤ ε2 ≤ λ2j+2 bulk state

λ2j ≤ ε2 ≤ λ2j+1 gap region
(17)

for j = 0, 1, . . . , q − 1 and λ0 = 0. The edge states lie in the gap region of the bulk

band structure and the µ’s are given by

µj ∈ [λ2j , λ2j+1] j = 1, . . . , q − 1 . (18)

We hence have 2q energy bands bounded by 4q λ’s, there are 2q−1 gaps and 2q−1

edge states as in Fig. 4.

Besides the above results of band structure, many more details about the spec-

trum can already be learned from the behavior of the function |AqAq−1 · · ·A1|(k),

Fig. 4. Schematic plot of the bulk band structure and edge states obtained from the transfer
matrix formalism. Edge states are solid lines while bulk bands are denoted by the shaded areas
bounded by dash and dotted lines.
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(1) The Hall conductance can be determined from the number of k’s that satisfy

M11(µ[j/2])M22(µ[j/2]) = |AqAq−1 · · ·A1|2(k1) .

(2) The first bulk eigenvalue touches the zero energy edge state at the k points

where |Aq · · ·A1|(k) = 1.

(3) Bulk band width vanishes at k if |Aq · · ·A1|(k) = 0.

For graphene, |AqAq−1 · · ·A1|(k) can be explicitly written as

|AqAq−1 · · ·A1|(k) = 2q

q
∏

j=1

∣

∣

∣

∣

cos

(

k

2
+

(5 − 6j)pπ

6q

)∣

∣

∣

∣

. (19)

The periodicity of this function is 2π/q. Hence the number of k’s at which

|AqAq−1 . . . A1|(k) = 0 is equal to q while the number of k’s at which

|AqAq−1 · · ·A1|(k) = 1 is equal to 2q.

We shall now show how to obtain the details of the band structure from

|AqAq−1 · · ·A1|(k). Let us assume that the edge state µ[j/2](k) touches the bulk

at some point k = k1

µ[j/2](k1) = εj(k1) = ±
√

λj(k1) (20)

where [j/2] represents the largest integer less than or equal to j/2 and j = 1, . . . , 2q.

Since εj(k1) is on the band edge, we have

M11(µ[j/2]) +M22(µ[j/2]) = ±2|AqAq−1 · · ·A1|(k1) . (21)

From the edge state condition M21(µ[j/2](k1)) = 0, we also know

M11(µ[j/2])M22(µ[j/2]) = |AqAq−1 · · ·A1|2(k1) . (22)

Hence we have

M11(µ[j/2](k1)) = M22(µ[j/2](k1)) = ±|Aq · · ·A1|(k1) (23)

when the edge state touches the bulk state. Thus, we can determine how many times

the edge state starts from λ2[j/2] at k1 and goes up in energy to touch λ2[j/2]+1 at

some k2 and then comes down again to touch λ2[j/2] at some k3, etc. This defines

the number of wrappings around the gap and represents the Hall conductance.15,16

As a function of the momentum k the first bulk eigenvalue λ1 might touch the

zero energy line (the zero mode) when ε1(k) = 0. This happens when

M11(0) = (−1)q|AqAq−1 · · ·A1|2 ; (24)

M22(0) = (−1)q ; (25)

M21(0) = 0 . (26)

But from the previous analysis we know that when a bulk state touches an edge

state M22 = ±|Aq · · ·A1|. Hence the first bulk eigenvalue touches the zero energy
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edge state in 2q points in the first Brillouin zone, namely where |Aq · · ·A1| = 1.

This result is confirmed by our exact diagonalization, which will be presented later.

Using polynomial theory we can in fact prove a more stringent constraint. We

separate the polynomial of order 2q: (TrM(ε2))2 − 4|Aq · · ·A1|2 = (TrM(ε2) −
2|Aq · · ·A1|)(TrM(ε2) + 2|Aq · · ·A1|). Now, denote the eigenvalues of the two sub-

factors as g and b and put them in ascending order:

TrM(ε2) − 2|Aq · · ·A1| =

q
∏

j=1

(ε2 − λg
j ) ,

TrM(ε2) + 2|Aq · · ·A1| =

q
∏

j=1

(ε2 − λb
j) ,

where λg
1 < λg

2 < · · · < λg
q and λb

1 < λb
2 < · · · < λb

q . (For q = 2 the < sign changes

into ≤ due to the fact that in that case the system does not break T and we can

have gapless states.) Depending on whether q is even or odd we have the following

order:

q odd: λb
1 ≤ λg

1 < λg
2 ≤ λb

2 < · · · < λb
q ≤ λg

q

q even: λg
1 ≤ λb

1 < λb
2 ≤ λg

2 < · · · < λb
q ≤ λg

q .
(27)

We can see that bulk states are between b and g eigenvalues |[λb
i , λ

g
i ]|, whereas

the gaps are in between the consecutive b − b and g − g eigenvalues |[λg
i , λ

g
i+1]| or

|[λb
i , λ

b
i+1]|. As such, the width of a band is |

√

λg
i −

√

λb
i |. The band will become

infinitely thin when λg
i = λb

i , or when |Aq · · ·A1| = 0. This happens at q points in

the first Brillouin zone.
As an example, we can see everything above explicitly for the case q = 3, p = 1.

There are 2q − 1 = 5 edge states with energies −µ2(k), −µ1(k), 0, µ1(k), µ2(k),
where

µ1,2(k) =



3 + cos

(

k −
7π

9

)

+ cos
(

k −
π

9

)

∓

√

5

2
− cos

(

2k −
8π

9

)

+ cos

(

k −
7π

9

)(

2 + cos

(

k −
7π

9

))

+

(

cos

(

k −
7π

9

))

2





1

2

There are q = 3 points in the Brillouin zone where each band becomes infinitely

thin given by

|A3A2A1|(k) = 0 at k =
4π

9
,
10π

9
,
16π

9
. (28)

The bands closest to zero energy touch the zero energy mode at 2q = 6 places in

the Brillouin zone where

|A3A2A1|(k) = 1 at k =
π

3
,
5π

9
, π,

11π

9
,
5π

3
,
17π

9
. (29)

We also find that the condition M11(µ1(k)) = M22(µ1(k)) is satisfied at two points

in the Brillouin zone, which means that, in the first gap, the edge state touches the
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Fig. 5. Left: Theoretical edge state and band structure configuration. The edge states are indi-
cated with a µi while the bulk bands are in between the consecutive lines indicated by (λb

i , λg
j ).

The number of times an edge state wraps around the bulk is the Hall conductance, which in this
case is unity (σxy = 1) for the both the first gap and the second gap. Right: The band structure
obtained from direct diagonalization, upper right is just the ε > 0 and lower right is the full
spectrum which is reflection symmetric about ε > 0. Thus, from now on we will plot only the
positive energy part. The horizontal axis in all the band structure plots is k plotted across the
entire Brillouin zone. The vertical axis is the energy in arbitrary units (a.u.). This will be the case
for all such plots in this work.

lower band λg
1 once and the upper band λg

2 also once, hence the Hall conductance is

one. This is the same for when the Fermi level rests in the second gap, the condition

M11(µ1(k)) = M22(µ1(k)) being satisfied for two points in the Brillouin zone as well

(see Fig. 5).

4. Hall Conductance in Graphene

This section contains the theoretical results from the transfer matrix approach, as

illustrated in the previous section, and the numerical results from exact diagonal-

ization. The Hall conductance in graphene is defined, as usual, as the number of

times the edge state wraps around the gap between neighboring energy bands. The

number of left or right edge states that traverse the entire way across the gap is the

Hall conductance. We then look at the evolution of the bands and edge states as the

magnetic field is varied from very strong to weak. We will see how the edge states

and band configuration for strong magnetic field, which do not match experiment,

evolve into the weak-field limit, which does match the experiments.
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Fig. 6. Left: Theoretical edge state and band structure configuration for q = 4 and q = 6. Right:
Direct diagonalization.

This is accomplished in two ways: first, the “theoretical” edge states and band

structure are found by numerically solving for the zeroes of the characteristic poly-

nomials M21(µi) = 0 and (TrM(λg,b
i ))±2|Aq · · ·A1| = 0 introduced in the previous

section. We plot only the ε ≥ 0 states, the negative energy states being a mirror

image. We also confirm the theoretical picture by exact numerical diagonalization

of the Hamiltonian matrix for a relatively large number of lattice sites.

We start with q = 3 in Fig. 5. We see that the Hall conductance is unity for a

Fermi level in either the first or second gap, clearly in contradiction with the Dirac

argument which would give σH = 1 or 3 depending on which gap. The number of

bands is 2q = 6, there are 2q − 1 = 5 gaps and edge states, q = 3 spots where each

band becomes infinitely thin, and 2q = 6 points where the first band touches the

zero energy mode.

We now continue by decreasing the magnetic field to q = 4 and then q = 6, (see

Fig. 6). For q = 4 we have σxy = 1 for a Fermi level in the first gap, σxy = 2 for

Fermi level in the second gap, and σxy = 1 for Fermi level in the third gap. For

q = 6 the sequence is σxy = 1, 4, 3, 2, 1 from the first to the fifth gap. This does not

match the experimental observation of σxy = 1, 3, 5, 7, etc.

One crucial observation to notice is that, as we increase q (decrease the magnetic

field), the second and third bulk bands become closer and closer together in energy;

the gap between them becomes smaller and smaller over the whole Brillouin zone.

Eventually the second and third bands move entirely together upon increasing q
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(lowering B). For q > 12, one cannot distinguish between the second and third band

(nor can one distinguish the edge states between these bands). The second and third

band have “collapsed” into a new band, a process which we call “band collapse.”

After these bands have collapsed there are distinguishable gaps between the first

band and the combined band, and then between the combined band and the fourth

band. There are edge states between the top of the combined band and the fourth

band, and these give σxy = 3, for the Fermi level in what is now the second gap. If

we then go to the next gap, this again does not match the experiment, with Hall

conductance being 8.

By increasing q even further, we see that the fourth and fifth bands collapse in a

similar fashion, and the gap between them vanishes uniformly across the k spectrum

as they become a single new band. This happens around q = 22. The edge states

between the collapsed second and third bands and the collapsed fourth and fifth

bands remain the same as before, giving σxy = 3 but now the edge states between

the collapsed fourth and fifth bands and the sixth band give σxy = 5. This process

repeats itself while q is increased. The total number of bands increases when q is

increased. But some of these bands collapse together so that we cannot distinguish

them unless we have infinite resolution. We present the results for q = 31 (see

Fig. 8).

Upon increasing q the band collapse leads to double degeneracy of each of the

bands except the zero energy band, and this gives the odd integer Hall conductance

Fig. 7. Left: Theoretical edge state and band structure configuration for q = 12. Right: Direct
diagonalization. The region of band collapse is indicated with the arrows. The second and third
bands come together upon increasing q (decreasing B). For q > 12 one cannot distinguish between
the second and third bands (nor can one distinguish the edge state between these bands). This
new band hence has double degeneracy.
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Fig. 8. Theoretical edge state and band structure configuration for q = 31. The integer quantum
Hall conductance is indicated in each gap.

in graphene. This is beautifully seen as the number of positive or negative-slope

edge states that disperse in the resolvable gaps. Hence the experimental situation

is theoretically confirmed as the weak-field limit of graphene.

The theoretical band structure can actually be continued to large q, as the

polynomials are well behaved. We give the q = 49 plot as well, where we can see all

the odd-integer quantum hall effects from 1, 3, 5, 7, 9, 11 (see Fig. 9).

By examining the common properties of each bandstructure plot it appears that

the spectrum of bands and edge-states can be classified into two parts: a relativistic

section and a non-relativistic section. This structure originates from the original

tight-binding dispersion relations without the B field,

ε(kx, ky) = ±t

√

1 + 4 cos2
√

3

2
kx + 4 cos

√
3

2
kx cos

3

2
ky . (30)

The Dirac nodes are located at (± 4π
3
√

3
, 0) and (± 2π

3
√

3
,± 2π

3 ). The linearized dis-

persion relations persist up to around E ≈ t. Above this energy scale the bands

become parabolic. Accordingly, in Fig. 9, σxy = 1, 3, 5, . . . at low energy and the

energy of bulk levels goes as En ≈ √
n, a feature of relativistic Landau levels. On

the other hand σxy = 1, 2, 3, . . . starting from the top of the bands (where parabolic

bandstructure is expected) and there is almost equal spacing between each of these

Landau levels, which is a feature of the harmonic-oscillator-like non-relativistic Lan-

dau levels. A σxy of 1 is seen in the first gap from the band ceiling and increases
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Fig. 9. Theoretical edge state and band structure configuration for q = 49.

by one for each Landau level below the top. A similar thing occurs for the non-

relativistic levels near the bottom of the set of bands. The crossover region is at

E ≈ t, where the band collapse occurs.

The odd-integer sequence shown in Fig. 9 is clearly represented in the experi-

mental data which, as stated before, is in the low magnetic field limit of graphene.

With a flux φ = 1/q in each unit cell the magnetic field is ∼ 1.3×105

q Tesla which is

a very large magnetic field. For experimentally realizable magnetic fields we would

expect q ∼ 1000 and the odd-integer sequence would be continued to larger values.

Abnormalities in this sequence would not arise until more Landau levels were filled.

Overall, there will be a sequence (possibly very long) of odd-integer quantum Hall

conductances followed by conductances which do not follow a certain pattern. Then

there will be a relativistic-non-relativistic crossover region where the Landau level

spacings change character from n1/2 to n. The non-relativistic energy levels will

then persist to higher energies.

4.1. Effect of disorder

We have considered the stability of the edge-states under disorder. Although not

tractable analytically, we were able to use numerical diagonalization (which up to

now has remarkably matched the analytic results) to study the introduction of

disorder into the system. The disorder term we added to the system is:

Hdis(k) = XDδIJ (31)
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where XD is a random variable with gaussian distribution and mean 0, and

I, J = 1, 2, . . . , L − 2, L − 1. We also tested a uniform distribution for the XD

with essentially the same results. For relatively high disorder e.g. the variance of

XD ∼ 0.15 the structure of the lowest energy edge state is robust (see Fig. 10).

However, the edge states representing higher plateaus, such as n = 3, 5, 7, 9, 11, . . .

Fig. 10. Numerical calculation for edge states and band structure for q = 10 and disorder variance
0.15.

Fig. 11. Numerical calculation for edge states and band structure for q = 50 and disorder variance
0.01.
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are washed out. Note that the hopping parameter is defined to be 1, so 0.15 is

very high disorder. For lower disorder, with the variance of XD ∼ 0.01, all of the

edge states are clearly visible up to the relativistic-non-relativistic crossover (see

Fig. 11), just as in the disorder-free plots given above; e.g. as in Fig. 7.

4.2. Non-zero Semenoff term

The previous formalism can be easily extended to incorporate the case of a non-zero

Semenoff mass m. As an example, for Boron Nitride (BN) the hamiltonian has the

form:

H = −t
∑

j

((c†2j−1c2jAj + c†2jc2j+1 + h.c.) +m(c†2j−1c2j−1 − c†2jc2j)) . (32)

The new Harper’s equations are:

(ε+m)ψ2j−1 +Ajψ2j + ψ2j−2 = 0

A?
jψ2j−1 + (ε−m)ψ2j + ψ2j+1 = 0

(33)

and the transfer matrix now becomes:

M̃j =

(

ε2 −m2 −AjA
?
j ε−m

−(ε+m) −1

)

. (34)

As we can see, M̃qM̃q−1 · · · M̃1 = (ε+m) × P (q−1)(ε2) where P (q−1)(ε2) is a poly-

nomial of order q−1 in ε2. Hence the former zero energy edge state has now moved

to µ0 = −m. There are no edge states between [−|m|,+|m|] but the rest of the

analysis applies. We plot the band structure for m = 1, q = 17 (see Fig. 12).

Fig. 12. Theoretical edge state and band structure configuration for q = 17, with Semenoff mass
m = 1.
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5. Spin and Valley Splitting in the n = 0 Landau Level

We now focus on the breaking of spin and/or valley degeneracy in the n = 0 Landau

Level. The idea of spin splitting is very natural since g ∼ 2 in graphene and there

is a large magnetic field applied perpendicular to the sample. Splitting the valleys

however, is more subtle since there is no natural alternating sublattice potential or

applied strain. We investigate the changes to the QHE plateau structure and edge

states when these splittings can be resolved energetically.

First we consider the case of only spin splitting. Due to the Zeeman effect the

spin states in each Landau level will be split by gµBB. For the n = 0 Landau

level one spin state is pushed above zero energy and the other is pushed below zero

energy. When the chemical potential lies in the gap at zero energy between the

split spin states there is an additional QH plateau with σxy = 0. The picture is not

quite this simple because this gap, unlike the Semenoff mass gap discussed above,

contains edge states which can be seen in Fig. 13(a).17 Usually the presence of edge

states in the gap signals a non-zero QH conductance but here there is actually one

electron edge state and one hole edge state. These two edge states combine together

to give zero Hall conductance but produce a non-zero spin-Hall conductivity since

they are spin-polarized in opposite directions:

σspin = 2
e2

~
. (35)

This spin current can be observed in a 4-terminal geometry or in a system with

magnetic leads.

The case where only the valleys are split in the n = 0 level, no matter by what

means, is very similar to the case of a non-zero Semenoff mass given above. As in

that case there is a gap at zero energy leading to an additional zero conductance

plateau, however here there are no edge states in the gap, thus no spin Hall conduc-

tivity. The band picture and sequence of quantum Hall conductances can be seen

in Fig. 13(b).

Finally we come to the case where there are both spin and valley splittings.

Gaps will appear when the n = 0 level is unfilled, 1/4-filled, 1/2-filled, 3/4-filled,

and completely filled yielding a sequence of QH conductances σxy = −2,−1, 0, 1, 2

in units of e2/h when the chemical potential lies in each of these gaps. The band

picture with each of these conductances can be seen in Fig. 13(c). This sequence

matches the data recently produced in Ref. 18 in very high magnetic fields.In the

graphene sample there will be some small valley splitting due to imperfections

(shear strain, impurities, or surface roughness) but not enough to produce a gap

large enough to exhibit the quantum Hall effect. Since there is no applied strain we

must look for many-body effects that would give rise to this splitting.

The idea of exchange ferromagnetism, which applies in the non-relativistic quan-

tum Hall effect is also applicable here with some differences. In a normal QH system

we expect that for the lowest Landau level we should see valley-polarized ground

states.19,20 The
√
n dependence in the graphene Landau level spectrum should not
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(a)

(b)

(c)

Fig. 13. Landau level bands and edge states around E = 0 for (a) Spin splitting only (b) Valley
splitting only (c) Spin and valley splitting. Quantum Hall conductances for particular gaps are
noted by the integer labels and are in units of e2/h.
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be important as long as the Landau gap is large i.e. ~ωc � e2/`B, ~/τ . The excita-

tion energy of skyrmions has been calculated in Ref. 21. However, if we considered

higher Landau levels there would be some quantitative corrections.

The second thing to consider is the correlation between the valley index and the

sublattice index. For the n = 0 level if an electron is in a particular valley then its

spatial wavefunction resides on a single sublattice, A or B. If this Landau level is

1/4-filled or 3/4-filled there will be a valley and spin polarized ground state. The

spin polarization is from the Zeeman splitting and the system will form a valley-

polarized “ferromagnet”-like state due to exchange correlations. In this level the

valley and sublattice are correlated, but they are correlated such that if the electrons

reside in only one valley then they reside on a single sublattice which minimizes the

Coulomb interaction. This leads to a spin-polarized charge modulation where there

will be an excess of charge on one sublattice. This will form a weak charge density

wave with charge density modulation where the percentage of charge modulation is

proportional to N0/NT , the amount of electrons in the n = 0 Landau level divided

by the total number of electrons in the system. The electrons that participate in the

charge modulation are effectively the difference between the number of electrons at

half-filling and the number of electrons currently in the system.

This valley polarized ground state will produce an interaction gap characterized

by the energy to produce a charged excitation. Since there is no applied strain we

expect that SU(2) valley skyrmions will be cheaper to create than particle-hole

excitations.22 We do not expect to see full SU(4) skyrmions because the g-factor in

graphene is not small.22 This raises the possibility of measuring valley skyrmions

in graphene as was recently done in AlGaAs.23 Since we are projecting into the

n = 0 Landau level we can use the calculation of Refs. 21 and 24 to estimate the

spin stiffness and thus give an estimate of the energy to create a skyrmion: Esk =

4πρs = 1
4

√

π/2(e2/ε`B). If we compare the energy width of the plateau of the spin-

split states to that of the valley-split states shown in Ref. 18 they are roughly of the

same order of magnitude. However Esk/(gµBB) ∼ 54 at B = 45T so our skyrmion

energy is clearly an overestimate. For the valley skyrmions measured in AlGaAs23

the data also clearly shows that Esk is an overestimate by a factor of ∼ 40 for their

systems at zero applied strain. This factor compensates for the overestimation and

brings the skyrmion energy to the right order of magnitude. Another interesting fact

is that at low magnetic field this valley splitting gap vanishes and the σxy = ±1

plateaus disappear. This could be the result of there being two few electrons in

the n = 0 Landau level to produce this well correlated effect. Overall the valley

degeneracy splitting suggests that small spin-polarized charge density modulation

or valley skyrmions could be measured in graphene.

6. Conclusion

We have shown that the “relativistic” quantum Hall effect in graphene has its origin

in a band-collapse picture where two bands become degenerate upon decreasing the
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flux per plaquette. A series of exact results for the honeycomb lattice are given, as

well as an index theorem for the number of dirac modes in a magnetic field. At

large magnetic fields, the system has a transition between “relativistic” and non-

relativistic QHE. When the spin-gap is resolved, the system exhibits a spin-Hall

effect due to existence of opposite spin electron and hole edge states in the gap. We

discussed the effects of disorder and adding a Semenoff mass term. We concluded

with discussion on spin and valley splitting in the n = 0 Landau level and its

implications for the quantum Hall effect.

Note

During the preparation of this paper, we have noticed a series of other pa-

pers that have independently reached some of the conclusions presented in this

manuscript.17,25–30
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