

Transistors: The Main Building Block

- Transistors, as applied to logic designs, act as voltagecontrolled switches
- n-channel MOSFET is closed when positive voltage (+5 V) is applied, open when zero voltage
- p-channel MOSFET is open when positive voltage $(+5 \mathrm{~V})$ is applied, closed when zero voltage
- (MOSFET means metal-oxide semiconductor field effect transistor)

What does a computer do?

- Computers store and manipulate information
- Information is represented digitally, as voltages
- Digital format avoids ambiguity
- below 1.5 V interpreted as 0 (5 V CMOS logic)
- above 3.5 V interpreted as 1 (5 V CMOS logic)
- Information can be manipulated in many ways:
- can be compared to other information
- mathematical operations
- define state of devices (display, speakers, motors, etc.)

Logic Gates

- The logic operations are carried out electronically by gates, represented by the symbols just introduced
- Gates are constructed out of transistors, typically 4-6 per gate
- Transistors simply act like switches, controlling data flow
- Gate response is typically ~1 nanosecond (1 billionth sec.)
- Can theoretically build an entire computer using only NAND (or NOR) gates...
- And then you can take over the world! (sinister laugh...)

Spring 2006 5 \square ,

- 0 V input turns OFF lower (n-channel) FET, turns ON upper (p-channel), so output is connected to +5 V
- 5 V input turns ON lower (n-channel) FET, turns OFF upper (p -channel), so output is connected to 0 V
- Net effect is logic inversion: $0 \rightarrow 5 ; 5 \rightarrow 0$
- Complementary MOSFET pairs \rightarrow CMOS

Spring 2006

Arithmetic Example

- Let's add two binary numbers:
$00101110=46$
$+\underline{01001101=77}$ $01111011=123$
- How did we do this? We have rules:
$0+0=0 ; 0+1=1+0=1 ; 1+1=10(2):(0$, carry 1$)$;
$1+1+($ carried 1$)=11(3):(1$, carry 1$)$
- Rules can be represented by gates
- If two input digits are A \& B, output digit looks like XOR operation (but need to account for carry operation)

XOR
$\left.\left.\begin{array}{l}\mathrm{A} \\ \mathrm{B}\end{array}\right) \square \quad \begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \hline 0 & 0\end{array}\right]$
Spring 2006
110

UCSD: Physics 8; 2006

8-bit binary arithmetic (cascaded)

0 MSB
-1
1
Carry-out tied to carry-in of next digit.
"Magically" adds two binary numbers
Up to ~300 transistors for this basic Up to ~ 300 transistors for this basic
function. Also need,$- \times, /, \&$ lots more.

1 LSB $=$ Least Significant Bit
Integrated one-digit binary arithmetic unit (prev. slide
Spring 2006

$$
\begin{aligned}
00101110 & =46 \\
+01001101 & =77 \\
\hline 01111011 & =123
\end{aligned}
$$

$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array} \quad$ Each gate has ~ 6 transistors | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |

$\begin{array}{lll}1 & 1 & 1\end{array}$
Spring 2006
\square

Can make rule table:

$\mathrm{C}_{\text {in }}$	A B	D	$\mathrm{C}_{\text {out }}$
0		0	0
0	$0 \quad 1$	1	0
0	10	1	0
0	11	0	1
1	$0 \quad 0$	1	0
1	$0 \quad 1$	0	1
1	10	0	1
1	11	1	1

- Digits A \& B are added, possibly accompanied by carry instruction from previous stage
- Output is new digit, D, along with carry value
- D looks like XOR of A \& B when $C_{i n}$ is 0
- D looks like XNOR of A \& B when $C_{i n}$ is 1
- $C_{\text {out }}$ is 1 if two or more of $A, B, C_{\text {in }}$ are 1

Spring 2006

$\left.$| $\mathrm{C}_{\text {in }}$ | A | B |
| :--- | :--- | :--- |
| 0 | 0 | 0 |$\quad \mathrm{D} \right\rvert\, \mathrm{C}_{\text {out }}$

| 0 |
| :--- | :--- |
| 0 |
| 0 |

\begin{abstract}

Abstract

\square

\end{abstract}

$$
\text { ming zuvo } \quad \square
$$

Computer technology built up from pieces

- The foregoing example illustrates the way in which computer technology is built
- start with little pieces (transistors acting as switches)
- combine pieces into functional blocks (gates)
- combine these blocks into higher-level function (e.g., addition)
- combine these new blocks into cascade (e.g., 8-bit addition)
- blocks get increasingly complex, more capable
- Nobody on earth understands Pentium chip inside-out
- Grab previously developed blocks and run
- Let a computer design the gate arrangements (eyes closed!)

Data Storage

- Within the computer, data is stored in volatile memory (RAM)
- essentially charge held on a capacitor
- also possible to rig two NAND gates to hold one bit - called a flip-flop
- volatile because it goes away when turned off
- Also store data permanently, usually on magnetic media (floppies, hard drives, tapes) or on optical discs (CD-ROMs, DVDs)
- information encoded as polarization of magnetic domains
- older technology used wire coils around ferrite cores (like transformer) to detect/generate magnetic fields

UCSD: Physics 8; 2006

UCSD: Physics 8; 2006

Example: Flip-Flop Memory

Input A:	NAND		flip-flop	
	A B	C	AB	CD
	00	1	00	11
	01	1	01	10
	10	1	10	01
	11	0	11	??

- This simple arrangement of two NAND gates retains a memory:
- Imagine A and B are in the high state (both 1)
- $C=0, D=1$ is valid, but so is $C=1, D=0$
- can set the state by dropping A or B low momentarily
- when A and B are restored to high, the previous state is "remembered": e.g., B went low \rightarrow D sticks on 1

Spring 2006 15

Digital Data Everywhere
Remote Controls
Computer Communications

UCSD: Physics 8; 2006

Most of today's information is digital

- Most of today's information is digital
- Computer communications
- Cell phone signals
- TV is moving this way
- TV remote controls
- Even our beloved in-class infrared transmitters
- Today, we'll look at a number examples
- start with H-ITT transmitter
- also check out TV remote (actually for stereo)
- look at serial data communication

Comparison of A \& B first packets
Ucs: Physics 8; 2006
We will represent "high" states (light on) as 1's, and lows (off) as 0's
Notice standard widths: choices are single- or double-width
(both for the zeros and the ones)

UCSD: Physics 8; 2006		
Decoding the A signal		
Sequence starts out: $01101001001101001001001001 \ldots$		
Notice the 01 delimiters: $01101001001101001001001001 \ldots$		
This gives the signal its choppy appearance (never see 3 1's or 0's in a row)		
Actual data appears between delimiters: 1's look fat, O's look skinny		
Resulting bit-sequence for A signal (both packets) is:		
$1001000000001101100100010010111110111$ 		
$100111111111001001101110101000011000$		
$\underbrace{\text { transmitter ID (normal and inverted) }}_{$ button code Spring 2006$} \underbrace{21}_{\text {checksum }}$		

The Transmitter ID bytes

- Transmitter number is binary-coded in the usual sense:

000000001101100100010101

- Sum is:
$-32768+16384+4096+2048+256+16+4+1=55573$
- this exactly the number pasted behind the battery
- Second packet inverts all the bits to ensure data integrity

Spring 2006 23

Stereo Remote Control

- Similar to H-ITT transmitters in principle:
- bursts of infrared light carrying digital information
- punctuated by delimiters so no long sequences of 1's or 0's
- Key differences:
- signal initiated by a WAKE UP! constant-on burst
- pattern that follows is repeated indefinitely until button is released
- I can never get fewer than three packets...
- packet is variable in length depending on button
$\square \sqrt{\text { data packet }} \quad$ data packet \quad data packet

Spring 2006 26

UCSD: Physics 8; 2006

Sample patterns for data packet

POWER		000000000
VOL +		100000000
VOL -		010000000
1		100000
2		010000
3		110001000
4		001001000
5		101001000
6		011001000
7		111001000
Spring 2006	remote ID? ${ }^{\text {a }}$ data	

A Different Code...

- The radio remote uses a different scheme:
- does not use the 01 delimiters like H-ITT did
- instead, uses 10 to represent zero, and 1000 to represent 1
- sequence for the 5 button is:
- 100010001000100010001010100010001010001010...

- in data part, least significant bit (LSB) is first
- so the number part of " 5 " is $101001000 \rightarrow 1010$
- least significant digit is first, so reverse order for more familiar form: $0101=5$

Spring 2006

UCSD: Physics 8; 2006

Serial Communication: Getting the Data

- Once the H-ITT receiver gets your IR signal, it must communicate this to the computer
- It does this through the serial port
- serial refers to the fact that data bits arrive in series (one at a time)
alternative is parallel (one wire for each bit), where typically 8 bits (a byte) arrive simultaneously
- Most digital communications are of serial type
- IR transmitters! (only one "channel" for light)
- USB, Firewire
- ethernet, modems
- cell phones
- Parallel sometimes used for printers, but most notably on computer motherboards
- now 32-bit wide communications is the standard
- parallel is faster, but more complicated to pull off: lots of wires

Spring 2006

Wrap-up: Digital Data Everywhere

- Our world now runs on information
- and most of this is broken down to binary bit codes for transmission, manipulation, storage
- Digital advantage is noise immunity
- very easy to tell a 1 from a 0 , even in the presence of environmental noise

