

On the Brightness of Bulbs

Resistance
Blackbody Radiation
Ohm's Law

UCSD: Physics 8; 2006

Review: What makes a bulb light up?

- The critical ingredient is closing a circuit so that current is forced through the bulb filament
 - more on filaments and what is physically going on later
- The more the current, the brighter the bulb
- The higher the voltage, the brighter the bulb
- Power "expended" is P = VI
 - this is energy transfer from chemical potential energy in the bulb to radiant energy at the bulb

Spring 2006

UCSD: Physics 8; 2006

What makes the bulb light up?

- Bulb contains a very thin wire (filament), through which current flows
- The filament presents resistance to the current
 - electrons bang into things and produce heat
 - a lot like friction
- Filament gets hot, and consequently emits light
 - gets "red hot"

Spring 2006

4

Lecture 7

UCSD: Physics 8; 2006

Everything is Aglow

- All objects emit "light"
 - Though almost all the light we see is reflected light
- The color and intensity of the emitted radiation depend on the object's temperature
- Not surprisingly, our eyes are optimized for detection of light emitted by the sun, as early humans saw most things via reflected sunlight
 - no light bulbs, TVs
- We now make some artificial light sources, and ideally they would have same character as sunlight
 - better match to our visual hardware (eyes)

Spring 2006

		UCSD: Physics 8; 200
	Color Temperature)
Object	Temperature	Color
You	~ 30 C ≈ 300 K	Infrared (invisible
Heat Lamp	~ 500 C ≈ 770 K	Dull red
Candle Flame	~ 1700 C ≈ 2000 K	Dim orange
Bulb Filament	~ 2500 C ≈ 2800 K	Yellow
Sun's Surface	~ 5500 C ≈ 5800 K	Brilliant white
The hot	ter it gets, the "bluer" the emi	itted light
The hotter it gets, the more intense the radiation		
Spring 2006		6

Lecture 7 2

UCSD: Physics 8; 2006

Bulbs aren't black! Blackbody??!!

- · Black in this context just means reflected light isn't important
- Hot charcoal in a BBQ grill may glow bright orange when hot, even though they're black
- Sure, not everything is truly black, but at thermal infrared wavelengths (2–50 microns), you'd be surprised
 - your skin is 90% black (absorbing)
 - even white paint is practically black
 - metals are still shiny, though
- · This property is called emissivity:
 - radiated power law modified to P = εAσT⁴, where ε is a dimensionless number between 0 (perfectly shiny) and 1.0 (perfectly black)
 - $-\sigma$, recall, is 5.67×10⁻⁸ in MKS units, T in Kelvin
- · Why do we use aluminum foil?

Spring 2006

UCSD: Physics 8; 2006

Predicting Brightness in Bulb Networks

- This is a very instructive (and visual) way to learn about the behavior of electronics, how current flows,
- The main concept is Ohm's Law:

V = IR

 $voltage = current \times resistance$

- We've already seen voltage and current before, but what's this R?
- R stands for resistance: an element that impedes the flow of current
 - measured in Ohms (Ω)
- Remember the bumper-cars nature of a bulb filament? Electrons bounce off of lattice atoms
 - this constitutes a resistance to the flow of current

Spring 2006

11

UCSD: Physics 8; 2006

What Limits a Bulb's Lifetime

- · Heated tungsten filament drives off tungsten atoms
 - heat is, after all, vibration of atoms: violent vibration can eject atoms occasionally
- · Tradeoff between filament temperature and lifetime
 - Brighter/whiter means hotter, but this means more vigorous vibration and more ejected atoms
 - "Halogen" bulbs scavenge this and redeposit it on the filament so can burn hotter
- Eventually the filament burns out, and current no longer flows no more light!
- · How "efficient" do you think incandescent bulbs are?
 - Ratio between energy doing what you want vs. energy supplied
 - Efficiency = (energy emitted as visible light)/(total supplied)

Spring 2006

UCSD: Physics 8; 2006

Interpretation of Ohm's Law

- The best way to think about Ohm's law is:
 - when I have a current, I, running through a resistance, R, there will be a voltage drop across this: $\Delta V = IR$
 - "voltage drop" means change in voltage
- Alternative interpretations:
 - when I put a voltage, V, across a resistor, R, a current will flow through the resistor of magnitude: I = V/R
 - if I see a current, I, flow across a resistor when I put a voltage, V, across it, the value of the resistance is R = V/I
- Ohm's Law is key to understanding how current decides to split up at junctions
 - try to develop a qualitative understanding as well as quantitative

Spring 2006

12

Lecture 7

UCSD: Physics 8; 2006

Lecture 7

UCSD: Physics 8; 2006

Numerical examples of Ohm's Law $(V = I \cdot R)$

- How much voltage is being supplied to a circuit that contains a 1 Ohm resistance, if the current that flows is 1.5 Amperes?
- If a 12 Volt car battery is powering headlights that draw 2.0 Amps of current, what is the effective resistance in the circuit?

Spring 2006

UCSD: Physics 8; 2006

Answer #2

(If a 12 Volt car battery is powering headlights that draw 2.0 Amps of current, what is the effective resistance in the circuit?)

- Again need V = IR
- Know I, V, need R
- Rearrange equation: R = VII

= (12 Volts)/(2.0 Amps)

= 6 Ohms

Spring 2006 11

Answer #1:

(How much voltage is being supplied to a circuit that contains a 1 Ohm resistance, if the current that flows is 1.5 Amperes?)

- Use the relationship between Voltage, Current and Resistance, V = IR.
- Total resistance is 1 Ohm
- Current is 1.5 Amps

Spring 2006

So V = IR = (1.5 Amps)(1 Ohms) = 1.5 Volts

UCSD: Physics 8; 2006

UCSD: Physics 8; 2006

Conductors are at Constant Voltage

 Conductors in circuits are idealized as zeroresistance pieces

- so $\Delta V = IR$ means $\Delta V = 0$ (if R = 0)

 Can assign a voltage for each segment of conductor in a circuit

batteries in series add voltage

20

Lecture 7 5

UCSD: Physics 8; 2006

Answer

- The entire current goes through bulb F so it's going to be the brightest
- The current splits into 3 branches at C,D,E and they each get 1/3 of the current
- The current splits into 2 branches at A,B and they each get half the current, so

Spring 2006

If I disconnect bulb B, does F get brighter or fainter? Spring 2006

Answer

UCSD: Physics 8; 2006

• By disconnecting B, the resistance of the (AB)

- combination goes up, so the overall current will be reduced.
- If the current is reduced, then F will be less bright.

Spring 2006

UCSD: Physics 8; 2006

Power Dissipation

- How much power does a bulb (or resistor) give off?
 - -P=VI
 - but V = IR
 - so $P = I^2R$ and $P = V^2/R$ are both also valid
- Bottom line: for a fixed resistance, power dissipated is dramatic function of either current OR voltage

Spring 2006 29

How about multiple resistances?

UCSD: Physics 8; 2006

UCSD: Physics 8; 2006

- · Resistances in series simply add
- Voltage across each one is $\Delta V = IR$

Total resistance is $10 \Omega + 20 \Omega = 30 \Omega$ So current that flows must be $I = V/R = 3.0 \text{ V} / 30 \Omega = 0.1 \text{ A}$ What are the Voltages across R_1 and R_2 ?

Spring 2006

UCSD: Physics 8; 2006

Parallel resistances are a little trickier....

• Rule for resistances in parallel:

$$1/R_{\text{tot}} = 1/R_1 + 1/R_2$$

Can arrive at this by applying Ohm's Law to find equal current in each leg. To get twice the current of a single $10~\Omega$, could use $5~\Omega$.

Spring 2006

A Tougher Example

 What is the voltage drop across the 3 resistors in this circuit?

Spring 2006

UCSD: Physics 8; 2006 Answer · First, need to figure out the current that flows in the circuit. This depends on the total resistance in the loop. · Combine the parallel resistors into an equivalent single series resistor, the parallel pair are equal to a single resistor of 10 • The total resistance in the loop is 5 + 10 = 15 Ohms • So the total current is I = V/R = 3/15 = 0.20 Amps Voltage across R₁ is V = IR = 0.2A × 5 Ohms = 1 Volt • Voltage across R_2 , R_3 is equal, $V = IR = 0.2A \times 10 \Omega = 2 V$ · Note that the sum of the voltage drops equals battery voltage! $R_2=20 \Omega$ $R_1=5 \Omega$ V = 3.0 Volts $R_3=20 \Omega$ Spring 2006 33

UCSD: Physics 8; 2006 **Complex Example** · Say battery is 5.5 Volts, and each bulb is 6Ω AB combo is 3Ω CDE combo is 2Ω total resistance is 11Ω current through battery is 5.5V/11 $\Omega = 0.5 A$ • A gets 0.25 A, so ΔV = 1.5V C gets 0.1667 A, so ΔV = 1.0 V $E \bullet F gets 0.5 A, so \Delta V = 3.0 V$ D note voltage drops add to 5.5 V Use V2/R or I2R to find: $- P_{AB} = 0.375 W each$ $- P_{CDE} = 0.167 \text{ W each}$ $-P_{\rm F} = 1.5 \, {\rm W}$ Spring 2006

UCSD: Physics 8; 2006

Assignments

- Read pp. 224-231, 332-333, 407 for this lecture
- HW #3: Chapter 10: E.2, E.10, E.32, P.2, P.13, P.14, P.15, P.18, P.19, P.23, P.24, P.25, P.27, P.28, P.30, P.32
- Next Q/O (#2) due next Friday: only submit one this week if you missed it last week.

Spring 2006

Lecture 7

9