Physics 124: Lecture 4

LCD Text Display
Keypads and Time Slicing
Interrupts

2%x16 LCD

e Typically 5x8 dots per character
* Note 16 pins: indicator of common interface

. Bl R) wOwW W
" EEREEEEEREE EEEEEE B B RS B N I R

NIE) YSYWUNYSYERVIRNY | (O

Phys 124: Lecture 4

Typical LCD Unit pinout
R L e

1 ground GND

2 +5V +5V

3 VEE (contrast via potentiometer between 0 and 5V) pot on shield

4 RS (LOW = command; HIGH = data/characters) 8

5 RW (LOW = write; HIGH = read) GND

6 E (enable strobe: toggle to load data and command) 9

7-14 data bus 4,5,6,7 > D4,D5,D6,D7

15 backlight +V
16 backlight ground

Note that most features are accessible using only the 4 MSB data pins

Phys 124: Lecture 4

Arduino LCD Shield

 Handy package, includes buttons, contrast pot, some
pins/headers for other connections
— consumes Arduino pins 4, 5,6, 7,8, 9

— leaves O, 1 for Serial, 2, 3, 10, 11, 12, 13
* fails to make pin 10 available on header, though

s 124: Lecture

contrast adjust

Pl

R

Arduino pin breakout
a few other pins

U o O

xx

GND

—1"‘"11‘!:'!!'1-—0

a
N TR WA
) ﬂmm
uccC
Jul I00000000J00000000

(i
o® BE o0
wwuw. DFRobot. cn
wwuw. DFRobot. com
wuw, DFRobot. com. cn
SELECT LIEFTUp = RIGTH QST LCD Keq:adm SV
Q)

IO110O],

“DOUN

IOI 18} 550 o 8000000

AD AL AZ A3 A+ AS
SDA SCL

buttons utilize A0 analog input

— A1—A5 on “S”

Buttons

 The buttons use a voltage
divider tree to present an
analog voltage to AO

— note “RIGTH” typo made it
onto printed circuit board!

* | measure the following:
— none: 4.95V
— SELECT: 3.59V
— LEFT: 2.44V
— DOWN: 1.60V
— UP:0.70V
— RIGHT: 0.0 V

* Easily distinguishable

VCC
TR)
K
.
RIGTH [i s 3
SW5X6 -
330
B
UP == .
L 4
SW5X6
620
="
DOWN [ey 3 o
SWSXE
SW5X6 -
2
LEFT Ii — iy
- I’Q\’;
SREES 33K
=y
SELECTIit S— 3]
SW5X6

LCD Datasheet
o | |A QP P Blee P& B &5
oo | @ 4| V1 QG 2= L0 1 [EAHIE R
wooo| @ 6| 2B Rl [T 18 < | &GS o)
woi |0 |7 FICIS e s [3mE£]F [AG[E[a)
- A L e A A A EETS
oo | © | 12 S E Ll e g [o (M &G &S

For behind-the-scenes control of the LCD display, see
the datasheet

— http://www.physics.ucsd.edu/~tmurphy/phys124/labs/
doc/LCD HD44780.pdf

Above is just one snippet of the sort of things within

And one other snippet from LCD datasheet

Character Codes Character Patterns
(DDRAM data) CGRAM Address (CGRAM data)
76543210 543210 76543210
High Low High Low High Low

10 0 0 «+ +J1 11 1]0]

10 0 1 A 10 0 o1

1

‘010 1/0 0 01

01 1 11 1 1]o0] » Character

. ! — pattern (1)

00O0O0 000 ooo:100 1Mol1o o

110 1 1/0 0[1]0

1110 Y |1jo 0 o]1]

P11 1 ”‘IOOOOO}Cursorposition

10 0 0 + + + |10 0 0|1])

10 0 1) of1|o[1]0

1010 11111 ch

lo 1 1 |0 0|1|0 0 \ aracter

* ! : attern (2

00O0O0 00 1 0015100 L p 2

1

‘10 1 ‘0 o|1[0 0O

i1 10 Y oof1|o o0

i1 1 1 ”’EOOOOO}Cursorposition

e Datasheets: they build character (at least characters)

Phys 124: Lecture 4

The LiquidCrystal Library

* This is one place I'm not itching for low-level control

— or wait—where’s the fun/challenge in that attitude?

* Library makes simple

#include <LiquidCrystal.h>
LiquidCrystal 1lcd(8, 9, 4, 5, 6, 7); // matches shield config

void setup() {
lcd.begin(1l6, 2); // # columns & rows
lcd.print("Phys 124 Rules!");

}

void loop() {

lcd.setCursor (0, 1); // first col, second row (0 base)
// print the number of seconds since reset:
led.print (millis()/1000);

}

Phys 124: Lecture 4 9

The setup call

 Arguments in LiquidCrystal type are:
— pins corresponding to: RS, Enable, D4, D5, D6, D7
— don’t need shield at all; just those 6 pins and power/gnd
— here’s one without shield: must hook R/W to gnd; rig pot

Phys 124: Lecture 4 10

Same thing in schematic form

* Note this pinout is different than shield’s mapping

3V3 5V Vin Vss
Power
RST D13 f— Vee
AREF D12 Vo
Arduino on P RS
D10 oM, ¢ R/W
. D9 PWM £
2
| g D8 | = DBO
S D7 | —
p 3 DB1 —
S pe oM =i DB2 8
10K potentiometer f_é’ PWM
oo
A0 2 D5 =i DB3
Al D4 DB4
>
n 3 D3 |Pwm DB5
(=]
(0)°]
A3 - D2 DB6
=] ™p
A S D1 e DB7
RX 4
GND e

Explore the library

e Cando alot with a few functions, but more available
— LiquidCrystal() must use

— begin() must use

— clear

— homel()

— setCursor() almost certainly use
— write()

— print() almost certainly use

— cursor()

— noCursor()

— blink

— noBlink()

— display()

— noDisplay()

— scrollDisplayLeft()
— scrollDisplayRight()
— autoscroll()

— noAutoscroll()

— leftToRight()

— rightTolLeft()

— createChar()

LCD References

* Good general intro to LCD control
— http://spikenzielabs.com/SpikenzieLabs/LCD How To.html

e Arduino page
— http://arduino.cc/en/Tutorial/LiquidCrystal

* See links on course site:

— http://www.physics.ucsd.edu/~tmurphy/phys124/labs/
useful links.html

e http://www.physics.ucsd.edu/~tmurphy/phys124/labs/doc/LCD-
shield-schem.pdf

e http://www.physics.ucsd.edu/~tmurphy/phys124/labs/doc/
LCD HD44780.pdf

Phys 124: Lecture 4

13

Keypads

* Most keypads are matrix form: row contact and
column contact
— pressing button connects one row to one column

Ho—% S)S ©
| T Tl T
V20— ° © ©
| Tl Tl T
30— © © ©
| Tl Tl T
YO hS) S ©
| Tl Tl T
a 2 B

note crossings do not connect:
dots indicate connection

Phys 124: Lecture 4

14

Reading the keypad

Imagine we hooked the rows
(Y) to four digital inputs with
pull-up resistors

— and hooked the columns (X) up to "

digital outputs
Now cycle through X, putting
each to zero (LOW) in turn
— otherwise enforce high state

Read each row value and see if
any inputs are pulled low

— means switch closed, button
pressed

Called time-slicing

+5$
1O

B T T T
%\q ~| T T«

20-—% © 5 5
é\o\\o\\o\\o\

BO- % ° ° °
%\q ~ T T

“O—% S 5 %
B T T

I T

Those Pesky Pullups

* Arduino has a pinMode option to engage internal
pullup resistors
— pinMode (pin, INPUT PULLUP);
— does just what we want

* Let’s start by defining our pins (example values)
— and our key characters

#define ROW1l 12 // or whatever pin is hooked to rowl
etc.

#define COL1 8

etc.

#define ROWS 4

#define COLS 4

char keys[ROWS][COLS] = { // handy map of keys
FOG0 DR 050 gm0 // black 4x4 keypad
{'4"'5"'6"'B'}’
{'7'1'8'1'9'I'C'}I
{'*"'O"'#"'D'}

}i

Phys 124: Lecture 4

Now set up pins in setup()

pinMode (ROW1l, INPUT PULLUP);

etc.

pinMode (COL1l, OUTPUT);

etc.

digitalWrite(COL1l, HIGH); // def. state is high; start high

* Now in loop()

pressed = 0; // value for no press
digitalWrite(COL1l, LOW); // assert col 1 low
if (digitalRead(ROW1l) == LOW)

pressed = 0x11; // upper digit is row
if (digitalRead(ROW2) == LOW)

pressed = 0x21; // lower digit is col
etc.
digitalWrite(COL1l, HIGH); // reset coll to high

etc. for all 4 columns; the scheme for pressed is just one way, my first impulse

Phys 124: Lecture 4 17

Piecing together at end of loop

if (pressed != 0 && pressed != last)
{
row = pressed >> 4; // drop 4 LSB, look at upper 4
col = pressed & 0x0f; // kill upper 4 bits; keep 4 LSB
ch = keys[row-1][col-1]; // what character, from map
if (ch 1= "#") // treat # as newline
Serial.print(ch);
else
Serial.println(""); // just want return
}
last = pressed; // preserve knowledge
delay(40); // debounce delay

e print only if new press, new line if ‘#’ pressed

— note >> bit shift row look at high nibble;
— and mask lower 4 bits for isolating lower nibble

— thus decode into row and column (at least this is one way)

Phys 124: Lecture 4

18

Cleaning up code

* Repeating the sweep four times during the loop is a
bit clumsy, from a coding point of view
— begs to be function()-ized

int readCol(int column)

{

int row press = 0;

digitalWrite(column, LOW);

if (digitalRead(ROW1l) == LOW)
row _press = 1;

if (digitalRead(ROW2) == LOW)
row_press = 2;

etc.

digitalWrite(column, HIGH);

return row_ press;

Phys 124: Lecture 4

Now a function to sweep columns

int sweepCols()

{

int row press;
pressed = 0;

row press = readCol(COL1);
if (row press > 0)
pressed = (row press << 4) + 1;
etc.
row _press = readCol(COL4);
if (row press > 0)
pressed = (row press << 4) + 4;

return pressed;

now in main loop, just: pressed = sweepCols(); and otherwise same

Phys 124: Lecture 4

20

And, there’s a Library

 Of course there is...
— http://playground.arduino.cc/code/Keypad

— installed in sketch folder directory

#include <Keypad.h>
const byte ROWS = 4; //four rows
const byte COLS = 3; //three columns

char keys[ROWS][COLS] = {{'1','2",'3"'}, {'4','5"','6"},

{l7l,l8l,l9l}, {l#l,lol,l*,}};
byte rowPins[ROWS] = {5, 4, 3, 2}; //conn. to the row pins of the keypad
byte colPins[COLS] = {8, 7, 6}; //conn. to the col pins of the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

void setup(){
Serial.begin(9600);}

void loop(){
char key = keypad.getKey();
if (key != NO KEY)
Serial.println(key);

Phys 124: Lecture 4 21

Some Notes on the Keypad Library

Note that the key map is taken seriously by Keypad.h

if any character appears twice, it messes up

— therefore more than a printing convenience; a core

functional element of the operation

Functions

void begin(makeKeymap (userKeymap))
char waitForKey()

char getKey/()

KeyState getState()

boolean keyStateChanged()
setHoldTime (unsigned int time)
setDebounceTime (unsigned int time)
addEventListener (keypadEvent)

Consult link on previous slide for descriptions

Phys 124: Lecture 4

22

Combining LCD and Keypad?

The LCD uses six digital pins

A 4x4 keypad needs &8 pins

Uno has 14, but pins 0 and 1 are used by Serial
— could forgo serial communications, and max out pins
Need a better way,

Take a page from LCD shield buttons: use analog input

Many schemes are possible

— generally: +5 V on rows/cols, GND on other, resistors
between

— could have all 16 buttons map to a analog input
* interesting problem in designing appropriate network

— or make it easier and map to four analog inputs

Four-Input Scheme

+5 Rl
~W-O0——=% S 5 Y

R2
A RS 0 RS O

R3

R4

Al A2 A3 A4
R5 R6 R7 R8
GND

e R1 thru R4 could be 10 k<2, 4.7 k<2, 2.2 kQ2, 1 k€2

 R5 thru R8 could be all 3.3 k€2, or in that ballpark

— voltages will be 0 (nothing pressed), 1.25 V (top row),
2.06V; 3V; and 3.8 V for resp. rows — lots of separation

* Poll each A# input to ascertain keypress

Interrupts

* Sometimes we can’t afford to miss a critical event,
while the main loop is busy, or in a delay, etc.

* Interrupts demand immediate attention

* Uno has two interrupts
— int.0 on pin 2; int.1 on pin 3
— Mega has 6 available interrupts

* You can exempt some of loop from interruption

— may be rare that you need to do this, but...
void loop()

{

noInterrupts();

// critical, time-sensitive code here
interrupts();

// other code here

Easily implemented

e Just have to attach an interrupt to a service routine

— attachInterrupt (, ,) ;
— the interrupt number is 0 or 1 on Uno (pins 2 or 3)

— the function is some function you’ve created to service the
interrupt: name it whatever makes sense

— trigger_type can be
* RISING: detects edge from logic low to logic high
* FALLING: detects falling edge
 CHANGE: any change between high/low (watch out for bounce!)
 LOW: a low state will trigger an interrupt

— note that delay () will not work within the service routine
* need delayMicroseconds (), only good up to 16383 us
* but not often interested in delay in interrupt routine

Simple example

* Turn on/off LED via interrupt; note volatile variable

int pin = 13;
volatile int state = LOW;

void setup()

{
pinMode (pin, OUTPUT);
attachInterrupt(0, blink, CHANGE) ;

}
void loop()
{
digitalWrite(pin, state);
}
void blink()
{
state = !state;

}

Phys 124: Lecture 4

27

Interrupt Notes

 Inside the attached function, delay() won't work and
the value returned by millis() will not increment.
Serial data received while in the function may be lost.
You should declare as volatile any variables that you
modify within the attached function.

e See the page for attachInterrupts():
— http://arduino.cc/en/Reference/Attachinterrupt

Interrupts from analog?

 What if we need to make a digital interrupt out of an
analog signal like the analog-scheme keypad?

e Canuse a to sense if we’re above or

below some threshold voltage
— output is digital state

— could also use a high-pass (differentiator) to sense any
significant change in the analog level, fed into a
comparator

Comparator Basics

+5
V

R V

n
Vout V.

ref

time
Scheme is: when + input larger than - input, transistor driven to ON
— then current flows through transistor and output is pulled low
When V. <V, g V. is pulled high (through the pull-up resistor—
usually 1 k€2 or more)

— this arrangement is called “open collector” output: the output is basically
the collector of an npn transistor: in saturation it will be pulled toward
the emitter (ground), but if the transistor is not driven (no base current),
the collector will float up to the pull-up voltage

The output is a “digital” version of the signal
— with settable low and high values (here ground and 5V)

Can Gang Open-Collector Comparators into Chain

:

* Put same (or different)

threshold values on - inputs
and four different analog
signals on +

— tie all four open collectors
together with common pull-up

— if any comparator activates, the
associated transistor will pull the
combined output low, and the
other (off) transistors won’t care

* The “311” comparator is
standard

vvy

Phys 124: Lecture 4

Upcoming Lab

 Monday is a holiday, so this is it for lab prep!

* |n Week 3 lab, we will:
— make an LCD analog voltage meter
— read a 4x4 keypad using the time-slice method and 8 pins
— combine the keypad, LCD, and interrupts into a party

