Physics 121: Final Exam

March 22, 2012

- Be sure to write your name at the top of each page
- Calculators are allowed/encouraged, but of course with no "cheat sheet" programmed in
- Show your reasoning, write formulas where appropriate
- If you miss one part of the short answer, but need the number for the next part, make up a number and proceed

Formula List:

- $\sigma=\epsilon E ; E$ and σ in Nm^{-2}, or Pa
- $\epsilon \equiv \frac{\delta L}{L}$
- $y_{\text {max }}=\frac{m g L^{3}}{3 E I} ;$ end-loaded cantilever beam
- $y_{\max }=\frac{m g L^{3}}{8 E I}$; self-weighted cantilever beam
- $y_{\text {max }}=\frac{m g L^{3}}{48 E I} ;$ center-loaded simply-supported beam
- $y_{\text {max }}=\frac{5 m g L^{3}}{384 E I}$; self-weighted simply-supported beam
- $I=\iint\left(y-y_{c}\right)^{2} d x d y$; where bending is in y-direction; y_{c} is centroid y-value
- $I=\frac{a b^{3}}{12}$ for rectangular geometry; $I=\frac{\pi R^{4}}{4}$ for circular geometry
- $P=\epsilon A \sigma T^{4} ; A$ in $\mathrm{m}^{2} ; \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} /{ }^{\circ} \mathrm{K}^{4} ; T$ in Kelvin
- $P \approx 4 \epsilon A \sigma T^{3} \Delta T$ for radiation equilibrium and small ΔT
- $P=\kappa A \Delta T / t ; \kappa$ in $\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}$
- $P=h A \Delta T ; h$ in $\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-1}$
- $T\left({ }^{\circ} \mathrm{K}\right)=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273$
- $\frac{1}{?_{1}}+\frac{1}{?_{2}}=\frac{1}{?}=(n-1)\left(\frac{1}{?_{1}}-\frac{1}{?_{2}}\right)$
- $\tau=R C ; \tau$ is in seconds if R in Ω and C in F ; initial slope hits axis in time, τ.

