Name:

Student ID Number:

Physics 110A: Final Exam

December 12, 2012

- Read directions/problems carefully. It's worth the minute to read every word.
- Answer questions on paper provided (and backs, if needed)
- Show all work/reasoning; really stinks to get points off for a correct answer!
- No calculators are needed/permitted
- No formula sheets are permitted; use those appearing below
- But don't be a formula hunter problem solver. Use your head first!
$\int \frac{d x}{1+x^{2}}=\arctan x$

$$
\begin{array}{r}
\int \frac{d x}{1-x^{2}}=\operatorname{arctanh} x \\
\int \frac{d x}{\sqrt{1+x^{2}}}=\operatorname{arcsinh} x \\
\int \tanh x d x=\ln \cosh x \\
\tan \delta=\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}} \\
r=\frac{s}{1+\epsilon \cos \phi} \\
a=\frac{s}{1-\epsilon^{2}}=\frac{b}{\sqrt{1-\epsilon^{2}}} \\
\tau^{2}=\frac{4 \pi^{2} a^{3}}{G M} \\
U=\frac{1}{2} \sum_{j, k} K_{j k} q_{j} q_{k} ; K_{j k}=\frac{\partial^{2} U}{\partial q_{j} \partial q_{k}}
\end{array}
$$

$\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x$
$\int \tan x d x=-\ln \cos x$
$A^{2}=\frac{f_{0}^{2}}{\left(\omega_{o}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}$
$E=\frac{1}{2} \mu \dot{r}^{2}+\frac{\ell^{2}}{2 \mu r^{2}}-\frac{G M \mu}{r}=T_{\text {radial }}+U_{\mathrm{eff}}$

$$
s=\frac{\ell^{2}}{G M \mu^{2}}
$$

$$
E_{\mathrm{tot}}=-\frac{G M \mu}{2 a}=\frac{G^{2} M^{2} \mu^{3}}{2 \ell^{2}}\left(\epsilon^{2}-1\right)
$$

$$
T=\frac{1}{2} \sum_{j, k} M_{j k} \dot{q}_{j} \dot{q}_{k}
$$

