

UW ASTR 597
Reflection, continued

- Also consistent with "principle of least time"
- If going from point A to point B, reflecting off a mirror, the path traveled is also the most expedient (shortest) route

Spring 2011 3

UW ASTR 597

Reflection

- We describe the path of light as straight-line rays - "geometrical optics" approach
- Reflection off a flat surface follows a simple rule
- angle in (incidence) equals angle out
- angles measured from surface "normal" (perpendicular)

Spring 2011
2

Lecture 5

Curved mirrors

- What if the mirror isn't flat?
- light still follows the same rules, with local surface norma
- Parabolic mirrors have exact focus
- used in telescopes, backyard satellite dishes, etc
- also forms virtual image

Spring 201

UW ASTR 597

Refraction

- Light also goes through some things
- glass, water, eyeball, air
- The presence of material slows light's progress
- interactions with electrical properties of atoms
- The "light slowing factor" is called the index of refraction
- glass has $n=1.52$, meaning that light travels about 1.5 times slower in glass than in vacuum
- water has $n=1.33$
- air has $n=1.00028$
- vacuum is $n=1.00000$ (speed of light at full capacity)

Driving Analogy

- Let's say your house is 12 furlongs off the road in the middle of a huge field of dirt
- you can travel 5 furlongs per minute on the road, but only 3 furlongs per minute on the dirt
- this means "refractive index" of the dirt is $5 / 3=1.667$
- Starting from point A, you want to find the quickest route:
- straight across (AD)-don't mess with the road
- right-angle turnoff (ACD)—stay on road as long as possible
- angled turnoff (ABD)-compromise between the two

leg	dist.	$\Delta t @ 5$	$\Delta t @ 3$
AB	5	1	-
AC	16	3.2	-
AD	20	-	6.67
BD	15	-	5
CD	12	-	4

AD: 6.67 minutes
ABD: 6.0 minutes: the optimal path is a "refracted" one ACD: 7.2 minutes
Spring 2011
Note: both right triangles in figure are 3-4-5

Let's get focused...

- Just as with mirrors, curved lenses follow same rules as flat interfaces, using local surface normal

A lens, with front and back curved surfaces, bend light twice, each diverting incoming ray towards centerline.

Follows laws of refraction at each surface.

Parallel rays, coming, for instance from a specific direction (like a distant bird) are focused by a convex (positive) lens to a focal point.

Placing film at this point would record an image of the distant bird at a very specific spot on the film. Lenses map incoming angles into positions in the focal plane.

In a pinhole camera, the hole is so small that light hitting any particular point on the film plane must have come from a particular direction outside the camera
object

In a camera with a lens, the same applies: that a point on the film plane more-or-less corresponds to a direction outside the camera. Lenses hav the important advantage of collecting more light than the pinhole admits Spring 2011 14

Negative Lenses

- Thinner in middle
- Bend rays away from the axis
- Form virtual focus

Spring 2011

Spring 2011

Raytracing made easier

UW ASTR 597

- In principle, to trace a ray, one must calculate the intersection of each ray with the complex lens surface, compute the surface normal here, then propagate to the next surface
- computationally very cumbersome
- We can make things easy on ourselves by making the following assumptions:
- all rays are in the plane (2-d)
- each lens is thin: height does not change across lens
- each lens has a focal length (real or virtual) that is the same in both directions

Spring 2011

Tracing an arbitrary ray (positive lens)

1. draw an arbitrary ray toward lens
2. stop ray at middle of lens
3. note intersection of ray with focal plane
4. from intersection, draw guiding (helper) ray straight through center of lens (thus undeflected)
5. original ray leaves lens parallel to helper
why? because parallel rays on one side of lens meet each other at the focal plane on the other side

Spring 2011

UW ASTR 597
Tracing an arbitrary ray (negative lens)

1. draw an arbitrary ray toward lens
2. stop ray at middle of lens
3. draw helper ray through lens center (thus undeflected) paralle to the incident ray
4. note intersection of helper with focal plane
5. emerging ray will appear to come from this (virtual) focal point why? parallel rays into a negative lens appear to diverge from the same virtual focus on the input side

Spring 2011

- Place arrow (object) on left, trace through image
- 1) along optical axis (no defl.); 2) parallel to axis, goes through far focus with optical axis ray; 3) through lens center; 4) through near-side focus, emerges parallel to optical axis; 5) arbitrary ray with helper
- Note convergence at image position (smaller arrow) - could run backwards just as well

Spring 2011
22

The lens-maker's formula

- We saw the Gaussian lens formula before

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

- f is positive for positive lenses, negative for negative lenses
- s is positive on left, s^{\prime} is positive on right
- But in terms of the surface properties:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

- R_{1} is for the left surface (pos. if center of curvature to right)
$-R_{2}$ is for right surface (pos. if center of curvature to right)
- bi-convex (as in prev. examples) has $R_{1}>0 ; R_{2}<0$
$-n$ is the refractive index of the material (assume in air/vac)

Spring 2011

- A telescope has an "objective" lens and an eyepiece - sharing a focal plane; giving the eye the parallel light it wants
- Everything goes as ratio of focal lengths: f_{1} / f_{2}
- magnification is just $M=\theta_{2} / \theta_{1}=f_{1} / f_{2}$
- after all: magnification is how much bigger things look
- displacement at focal plane, $\sigma=f_{1} \theta_{1}=f_{2} \theta_{2} \rightarrow$ relation above
- ratio of collimated beam (pupil) sizes: $P_{1} / P_{2}=f_{1} / f_{2}=M$

Spring 2011
28

- For the purposes of understanding a reflecting system, one may replace with lenses (which we know how to trace/analyze)
- focal length and aperture the same; rays on other side
- for a reflector, $f=R / 2$ [compare to $1 / f=(n-1)\left(1 / R_{1}-1 / R_{2}\right)$ for lens] - for $\mathrm{n}=1.5, R_{2}=-R_{1}$ (symmetric lens), $f=R$ - so glass lens needs twice the curvature of a mirror

Cassegrain focus - Abstracting mirrors as lenses, then lenses as sticks: - trace central ray with angle θ_{1} - figure out θ_{2} and then focal length given s^{\prime} and d_{12} - $y_{2}=d_{12} \theta_{1}$ (adopt convention where θ_{1} is negative as drawn) - $y_{1}=f_{2} \theta_{1}$ (f_{2} is negative: negative lens) - $\theta_{2}=\left(y_{1}-y_{2}\right) / f_{2}=\theta_{1}\left(f_{2}-d_{12}\right) / f_{2}$ - $y_{\mathrm{f}}=y_{2}+\theta_{2} s^{\prime}=\theta_{1}\left(d_{12}+s^{\prime}\left(f_{2}-d_{12}\right) / f_{2}\right)$ - $f_{\text {eff }}=d_{12}+s^{\prime}\left(f_{2}-d_{12}\right) / f_{2}=-f_{1} s^{\prime} / s$ after lots of algebra - for Apache Point 3.5 meter, this comes out to 35 meters
Spring 2011

- The f-number is a useful characteristic of a lens or system of lenses/mirrors
- Simply $\eta=$ f/D
where f is the focal length, and D is the aperture (diameter)
- "fast" converging beams (low f-number) are optically demanding to make without aberrations
- "slow" converging beams (large f-number) are easier to make
- aberrations are proportional to $1 / \eta^{2}$
- so pay the price for going "fast"

Spring 2011

- Lens curvature to scale for $n=1.5$
- obviously slow lenses are easier to fabricate: less curvature

Spring 2011
34 -

Vignetting

- Rays that don't make it through an optical system are said to be vignetted (shadowed)
- maybe a lens isn't big enough
- maybe your eye's pupil isn't big enough, or is improperly placed
- Often appears as a gradual darkening as a function of distance from the field center
- the farther out you go, the bigger your lenses need to be
- every optical system has a limited (unvignetted) field of view
- beyond this, throughput goes down

- An infrared detector is very sensitive to terrestrial heat
- so want to keep off of detector
- if detector located at primary focal plane, it is inundated with emission from surroundings and telescope structure
. note black lines intersectino primary focal plane
- Putting a "cold" stop at a pupil plane eliminates stray emission - cool to LN_{2}; image of primary objective onto cold stop
- only light from the primary passes through; detector focal plane then limits field of view to interesting bit
- Also the right place for filters, who prefer collimated light

Spring 2011
38
38

UW ASTR 597

Aberrations: the real world

- Lenses are thick, $\sin \theta \neq \theta$
$-\sin \theta \approx \theta-\theta^{3} / 6+\theta^{5} / 120-\theta^{7} / 5040+$.
$-\tan \theta \approx \theta+\theta^{3} / 3+2 \theta^{5} / 15+17 \theta^{7} / 315+$
- Different types of aberration (imperfection)
- spherical aberration
- all spherical lenses possess; parabolic reflector does no - coma
- off-axis ailment: even aspheric elements have this
- chromatic aberration
- in refractive systems only: refractive index is function of λ
- astigmatism
if on axis, then lens asymmetry; but can arise off-axis in any
- field curvature/distortion
- detectors are flat: want to eliminate significant field curvature

Spring 2011

Raytracing Program

- While it may not be Zemax, l've cobbled together a C-program (and Python) to do raytracing of any number of lenses/mirrors
- restricted to the following conditions:
- ray path is sequential: hitting surfaces in order defined
- elements are flat or have conic surfaces
- refractive index is constant, and ignorant of dispersion

2-d only (though later will migrate to 3-d

- We can use this package to
- analyze simple lens configurations
- look at aberrations
- build lens systems (beam expanders, telescopes)

Spring 2011
UW ASTR 597

Representing Mirrors

- The default/conventional behavior has light going from left to right (toward positive z)
- But changing the sign of the refractive index signals a change of direction
- after all, refractive index indicates the speed of light in a medium, and the speed changes sign at a reflection
- Example: APO 3.5 m scope (dims in mm)
2
.0
$-1.0 \quad 0.0-12279.7-1.01927$
$1.0-4833.421-3164.172-2.18427$
- Note index changes from +1.0 initially to -1.0, then back to +1.0
Spring 2011
oing

\square

- Can have as many surfaces as you want!
- Must take care in defining physical systems
- e.g., make sure lens is thick enough for the diameter you need

Spring 2011
46

Raytracing Algorithm

- Detailed math available on website (raytrace link)
- Basically, compute intersection of ray with surface, then apply Snell's Law

UW ASTR 597

