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This treatment follows the conventions of F. D. Stacey’s Physics of the Earth, and is largely an
elaboration on this work.

1 Tidal Potential

The gravitational influence of the moon and sun, in combination with revolution about the respective
centers of mass of these systems, produces a potential gradient across Earth’s surface, giving rise to a
tidal deformation of the earth. The full expression for the induced potential, limited to second-order, is:
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where M is the earth mass, m is the perturber mass, R is the center-to-center distance between Earth
and the perturber, a0 is the earth radius, ψ is the angle between the mass centers and the observer, ωL

is the (siderial) rate of revolution of the two bodies, and θ is the co-latitude of the observer referenced
to Earth’s center of mass.

The last, rotational term, simply adds to the rotational potential of the earth, adding one part in
∼ 750 to the flattening of the earth (about 30 meters) in the case of the moon, but does not appear as a
tidal perturbation. The second term is the term of importance, describing the tidal potential resulting
in a prolate ellipsoidal deformation aligned along the center of mass line.

This important term is designated
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and it is the rotation of the earth within this potential that produces the observed tides. The term in
parentheses is the second order Legendre polynomial, P2(cosψ).

The equipotential surface for a rigid Earth (which is not followed by the rigid surface) affected by
the lunar tide would be vary between (W2/g)max = 0.358 m and (W2/g)min = −0.179 m for a total tidal
amplitude of 0.538 m. The tidal potential from the sun is 0.45 times that from the moon.

2 Deformable Response

The reaction of a deformable body in the presence of a tidal potential is to reach an equilibrium whereby
the surface describes an equipotential. But this redistribution of matter further modifies the potential,
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exaggerating the effect. A Love number, k, is introduced to account for this added effect:

Vtotal = W2(1 + k). (3)

Let’s say the earth’s surface comes to fluid equilibrium with this modified potential. The radial displace-
ment from the unperturbed surface is then roughly
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which we characterize as ∆r = αP2(cosψ), where
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The deformation part of the total potential is just
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which, in a generalized axisymmetric potential expanded into spherical harmonics,
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corresponds to the P2(cosψ) term, with
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at r = a0.
We need to be able to relate J2 to a given mass distribution, which in this case is a prolate ellipsoid

with a surface described by
Rsurf = a0 + αP2(cosψ). (9)

To do this, we integrate the mass distribution, dM , to give us the total potential:
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where ρ is the internal radial coordinate being integrated over. Stacey’s book expands this potential,
keeping terms to order 1/r2, through which it is found that this expression reduces to
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which is known as MacCullugh’s formula, where A, B, and C are moments of inertia about the x, y,
and z axes, respectively, and I is the moment of inertia about the axis to the observer at distance, r. If
we place the moon (or sun) along the z axis, this reduces to a familiar form:
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whereby we can associate J2 from Equation 7 with the moments of inertia of the body:
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This can now be associated with k through Equation 8, but only after computing the moments of inertia
of the prolate ellipsoid about its major and minor axes.

2.1 Uniform Density Case

Under the assumption of uniform density, the moments of inertia take the form
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after implicitly performing the integration over ϕ in Equation 15, and with µ ≡ cosψ in both. The
expression for the upper limit of the r integrals is found in Equation 9, which just becomes a0 + α

2 (3µ2−
1). These integrals are simple to perform, amounting to just polynomials, though of very high order.
However, because α � a0, many higher order terms (with α2 or higher) can be ignored. The moments
of inertia become
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Now using Equation 5 to replace α/a0 above, and associating this with the identification of J2 in
Equation 8, we find that
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leading to a solution for k:
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3
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2.2 Real Earth Density Profile

Of course the real earth is not uniform in density. It is, however, in fluid equilibrium with the rotational
potential. So we can compute the k value of the fluid earth with the real density profile based on its
observed response to the rotational potential.

There are two approaches, delivering similar answers. The first notes that the rotational potential,

Vrot = −1
2
ω2r2, (20)
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swings by 1
2ω

2a2
0 from equator to pole. The shape-induced potential, as would be felt by a satellite

not rotating with the earth’s surface, is characterized by the P2(cos θ) term in Equation 7, which has a
corresponding equator-to-pole swing of
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where c0 is the earth’s polar radius. The ratio of these two potantial swings is defined as k, which
computes to
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with J2 = 1.082626× 10−3 being determined empirically.
The other method is more similar to the technique used in Section 2.1, with 3

2α = a0 − c0 as the
peak-to-peak amplitude corresponding to the swing in the total potential, which is given by Vtotal =
(1 + k)Vrot = 1
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which produces an estimate for k of
k = 0.937, (24)

matching the value of k given in Stacey’s book for the fluid earth with the real density profile. I think the
value of k in Equation 22 is the more reliable of the two, given that the earth’s ellipticity is represented
here, whereas the value of g in Equation 24 is the equatorial value, and not averaged over the geoid.

3 Earth’s Tidal Response

The real earth does not have time to arrive at equilibrium with respect to the W2 tidal potential
it rotates underneath. As such, an additional Love number, h, describes how much deflection the
earth body experiences relative to that which would be expected directly from the perturbing potential.
Empirically, the h, k, and l Love numbers are seen to be:

h = 0.612, (25)

k = 0.303, (26)

l = 0.04. (27)

The definitions of these numbers are somewhat slippery, so I offer here my best interpretation of what
these numbers mean.

• h describes the height (radial) displacement attained by the (solid) surface relative to what would
have been attained by a perfectly fluid body in response to the perturbing force, neglecting the
additional potential generated by the redistribution of matter. Therefore a perfectly fluid body in
tidal equilibrium has h = 1+k (see below). The value h = 0.612 is presumably for the solid earth,
with a value nearer unity for the oceans.
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• k is the ratio of the potential contributed by the tidally deformed body to that of the perturbing
potential (i.e., W2). A rigid body has k = 0 because there is no redistribution of matter. A
uniform density fluid body has k = 3/2, and a fluid body with the earth’s density profile has
k = 0.94. The observed earth tidal response has k = 0.303 for the solid earth, and k = 0.245 for
the earth-plus-oceans. I assume these are lower than the equilibrium value of 0.94 because only
the low-density exterior of the earth responds to the transient tidal disturbance.

• l is the ratio of horizontal displacement observed to that which would be exhibited by a completely
fluid surface. The fact the l is so low is good, but the horizontal displacement of a fluid earth
would be comparable to the radial displacement, in the ballpark of 0.5 m. Thus horizontal tidal
displacements register on the cm scale.

If I understand everything correctly, the height of the earth body tide is

∆r = h
W2

g
, (28)

which, for a perfectly fluid earth (k = 0.94 → h = 1.94) would have a peak-to-peak amplitude of 1.04 m,
and for empirical values has a 0.33 m amplitude.

I had much confusion over this for a while, partly owing to conflicting published information. Stacey’s
book claims that h reflects the deformation relative to that which would be achieved by a marine
tide in tidal equilibrium. This implies that the deformation includes the response to the modified
potential induced by the deformation itself (pulling on it’s own bootstraps). This self-pulling process
converges to an equilibrium indicated, for example, in Equation 18. If Stacey’s claim is correct, then
∆r would be equal to h(1 + k)W2/g, rather than the expression presented in Equation 28, such that
h = 1 for a perfectly fluid body. But other evidence (including an explicit statement on the website:
http://www.treasure-troves.com/physics/LoveNumber.html) says that h = 1+k for a perfect fluid
body. This convention is consistent with some of the published derivations of observable quantities,
which match, incidently, the corresponding expressions given in Stacey’s book.

3.1 Effect on Surface Gravity

Now for the thing we really care about. Fortunately, gravimeters have been a primary tool for measuring
tidal effects, so that the theoretical response is well developed. There’s only a slight problem in that I
do not fully follow the development. But hopefully this will get us mostly there.

The acceleration due to gravity can be expressed as the gradient of the potential at the location of
interest. Let us then start by accounting for the total potential. First, there is the base potential from
the rotating, oblate earth, V0. Then a tidal potential (deforming potential) is introduced by the moon or
sun, Wn (allowing for higher orders than n = 2). The tidally induced deformation generates additional
potential, Vn, which we have previously characterized as knWn. Then, because the surface moves in
response by some amount ζ, the potential of the surface changes:

V = V0 +Wn + Vn + ζn
∂V
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. (29)

Here, the derivative is evaluated at the surface, where r = a (formerly a0), and

ζn = hn
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g
, (30)
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as in Equation 28. It should be noted that a fluid body in tidal equilibrium would arrange such that the
displacement, ζn, arrives at equipotential, cancelling the Wn and Vn terms, leaving V = V0. The total
gravity from the potential given in Equation 29 is
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The first term on the right-hand side is just g0, the ordinary surface gravity in the absence of tides. For
the last term, the first order effect is from the V0 part of the earth’s potential, such that it is equivalent
to 2g/r. The form of Wn follows the form of W2 in Equation 2:

Wn = Gm
rn

Rn+1
Pn(cosψ), (32)

such that the second term on the right in Equation 31 is nWn/a. And here’s the part I can’t make
complete sense of. In the book by Melchior, The Tides of the Planet Earth, an expression is given for
Vn, the redistribution potential, as
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where ρ is the density and Yn is a spherical harmonic describing the distortion. If one ignores the
dependence of the integral on the upper limit, a, and differentiates with respect to a (as is the effect
of differentiating with respect to r and evaluating at a), one finds that the third term in Equation 31
amounts to −(n + 1)Vn/a. The catch is twofold. First, I don’t see why one can ignore the integral in
the differentiation. Second, if Vn = knWn then this derivative would be nknWn/a, which differs by a
factor of −n/(n + 1) from the earlier expression. Yet it is the earlier expression which appears in the
development of Melchior. Suspending disbelief and continuing with the analysis,

g = g0 −
nWn

a
+ (n+ 1)

Vn

a
− ζn

2g
a
, (34)

so that the change in surface gravity, incorporating Equation 30, and Vn = knWn, is
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and observing that ∂Wn/∂r|r=a = nWn/a,
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This form mimics the gravitational contribution directly from the deforming potential, Wn, with a
coefficient differing from unity as a result of earth’s deformation. For the only significant terms, n = 2
and n = 3 (moon only), this coefficient, δn, is

δ2 = 1 + h2 −
3
2
k2, and (37)

δ3 = 1 +
2
3
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4
3
k3. (38)
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The values of h3 and k3 are approximately the same as their second-order cousins.
Again, this analysis is not completely satisfying to me because I don’t understand the treatment

of Vn, as elaborated above. But Equation 37 is exactly the same expression that appears in Stacey’s
book, and that quoted by Ken in his e-mail. As long as Stacey didn’t snag his equation (which appears
only in the second edition—not the third) from Melchior’s book, then one may justify placing increased
confidence in these results.

The total peak-to-peak swing of the gravity signal from the moon is then about 190 µGal, equivalent
to a 0.622 m peak-to-peak displacement from the earth center—roughly twice the displacement actually
experienced.

With realistic values for h and k, δ2 = 1.16. For a rigid earth where h and k are zero, δ2 = 1. For a
uniform density fluid body in tidal equilibrium, δ2 = 1.25. For a fluid body with Earth’s density profile,
δ2 = 1.53. These values are remarkably similar for a wide range of scenarios, which I can’t say I would
have predicted.

3.2 Relation to Gravimeter

One may develop an expression for the signal generated by the gravimeter that includes tides and other
local effects. This may look like
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where the parentheses as subscripts represent contributions from the moon. The last term encapsulates
all the non-tidal effects on the gravimeter such as loading from the ocean, atmosphere, and ground
water. This accomodates both the effect of the displacement, ζi, relative to the earth center of mass,
and the direct gravitational attraction, γi, which ought to be strongly tied to ζi through some sort of
“admittance”. Insofar as the tidal terms on the left can be well modeled, the total contribution from
the summation on the right is measured by the gravimeter. Other measurements, such as lunar range
and barometric pressure can help break the degeneracy of the summation, with some assumption about
the relation of γi and ζi.

The value of ∂g/∂r on the earth’s surface amounts to 307 µGal m−1, inverting to 3.25 mm µGal−1.
Thus sub-mm precision from gravimetry requires gravity measurements (and therefore tidal modeling)
to the precision of about 0.1 µGal (1 Gal is 1 cm s−2). Using the values of δn from Equation 36,
and employing the empirical values of h and k, the moon contributes a total amplitude signal in ∆g
of 191 µGal in W2, 5.5 µGal in W3, and 0.07 µGal in W4. The sun contributes 86 µGal in W2, and
0.006 µGal in W3. Therefore we only need consider those terms appearing explicitely in Equation 39.

Ken has a point in that without knowing the Love numbers to a fraction of a percent, one will not be
able to subtract the exact tidal contribution from the measured ∆g. We therefore need to think in terms
of a simultaneous solution involving the LLR and gravimeter measurements, relying on the frequency
domain to separate tidal responses from random, weather-related gravimeter responses.
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