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Abstract

In this paper, a general approach to performing perturbation analysis on a two-dimensional orbit is presented. The
specific examples of the solar tidal and the gravitomagnetic influences on the lunar orbit are developed here. In these
examples, only periodic behaviors are kept, as these are the signals readily measured by ranging techniques.

1 The Nominal Orbit

In polar coordinates, the Lagrangian for a point massmoving around a central (fixed) masd,, is developed as

follows: . ) oM
L=T—U=fm7"2+fmr2w2+7m,
2 2 r
wherew is the angular velocity of the orbiting body. From this Lagrangian, we derive the following equation of

motion, in which the mass of the orbiting body has been canceled:
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wherea(r) is the central acceleration, ahd- r2w is the (specific) angular momentum. In a circular orbit 0, so
r3w? = GM, which recovers Kepler’s third law.

2 Perturbation

If »(¢) is a solution that satisfies Eqg. 1, then we can explore the effect that an acceleration pertu«ﬁ_baﬁm, on

the solution. We let(t) — r(t) + dr(t). Meanwhile, the angular momentum must be allowed to change, so we let
I(t) — I(t) + 0l(t). The acceleration perturbation can be decomposed into a radial part and a tangential. parid

da., respectively. In addition to Eq. 1, we need to know that
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Placing the perturbed values«(f) andi(t) into Eq. 1, we have
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We have addeda,. directly to this relation, as the first term on the right-hand side of Eq. 3 is the radial acceleration,
a(r), which is perturbed by the amouft,.. We have not yet accounted féx., as this is still hidden ial. Expanding

Eg. 3, and keeping only the first order termsiryr anddi/l, we see that Eq. 1 is exactly replicated. Sin¢g is
already a valid solution to Eg. 1, this part subtracts away, leaving only
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We can replacél with

5l = / ldt = / r2odt =r / Sa dt’,

wheret’ is a dummy time variable over which to integrate the perturbation. Using Kepler’s relation, along with the
definition ofl, we can reduce Eq. 4 to

or = 2w2dr — 3wr + 2261 + da,
= —w?r+da, + 2w [ da,dt’

leaving us with the differential equation fér that looks like
or + wdr = da, + 2w / dadt’. (5)

This is a simple forced harmonic oscillator. In the absence of a perturbing accelefatidhis would result in a
general solution that oscillates at the resonant orbital frequendhus it describes simple elliptical oscillation about
the nominal orbit—our originat(t) that satisfied Eq. 1.

Given functional forms foba,. andda.-, one can solve Eq. 5 férr to understand the range variation one would see
under such an influence. This procedure is clarified through the following example of the gravitomagnetic perturbation.

3 Solar Tidal Perturbation

What influence does the sun have on the geocentric lunar orbit? The dominant influence is tidal, resulting from the
differential pull of the sun on the earth and moon as the moon ventures away from the nominal earth orbit. Specifically,
we can express the accelerations of the earth and moon toward the sun, the difference being the net tidal acceleration
on the moon, which becomes oir perturbation:
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is the acceleration on the earth, whéteis the solar mass is the earth-sun distance, and the coordinate system is
arbitrarily chosen to have the sun in thg direction. The acceleration on the moon is
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whereD is the synodic phase angle between the sun and the moon as seen from theisdhth,nominal (circular)
earth-moon distance, ands the distance between the moon and sun. The net acceleration is then
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We need the radial and tangential compqnentéﬁofor inclusion into Eq. 5, which we obtain by dottinﬁz with
r = sin Di — cos Dj and7 = cos Di + sin Dj. This works out to
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and GM GMd
da, = ——sinD —
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Now the moon-sun distance, can be obtained from the geometryds= d? + a® — 2ad cos D. Note that since
a is about 400 times smaller thah) we can approximate to first order in this quantity without sacrificing much

precision. Specifically, we care abaqut3:

sin D.

p 3= (d*+d* - 2adcosD)*% =d 31 +a2?— 2xcosD)*% ~d3(1 —1—3% cos D),



wherex = a/d is the small quantity for which second-order terms may be ignored. Now we have
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where we have ignored the smajld cosine term, and have expressed the squared cosine by its double angle equiva-

lent. Likewise,
3GM
Sa, ~ —TSQ sin 2D. @)
These acceleration perturbations in hand, we are ready to use Eq. 5 to solve the system. First, we intégyate the
term. Noting that the rate at whidh advances i = w — Q, the difference between the lunar orbital frequency and
the earth’s orbital frequency, we can construct an arbit2@hargument ag2(w — Q)t' + ¢], whereg is an arbitrary

phase depending on the choiceof= 0. The integral (without the numerical pre-factor) is then

hd q cos 2D + const. (8)

t
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We have buried any initial phase in the integration constant, effectively defirdnghatD = (w — Q)¢ without a

phase correction—setting= 0 to be coincident withD = 0. Thus the integration constant essentially represents the

integral fromt = tg tot = 0. Now placing Eq. 6 and Eq. 8 into Eq. 5 using the appropriate pre-factor from Eq. 7, we

have
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Notice on the right-hand-side of Eq. 9 there are both periodic and constant terms. The effect of the constant terms
is to rescale the orbit, such that a re-definitionsodnd the nominal radius can absorb this constant. In other words,
if r(¢) is a solution to Eq. 1, then the constant terms act to méke+ const. the new solution, withv modified
accordingly. So for our purposes, we will ignore these terms so that we may develop only the periodic response. The
remaining differential equation far is

Or + w2dr = d
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It is clear that the solution to this equation mustibe= « cos 2D, and all that remains is to solve for the amplitude,
a. Again setting2D = 2(w — Q)t, placing our expression fa@r into Eq. 10 results in
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so that
3GMa 2w — Q 1
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Using Kepler's relation for the Earth, namedfd® = G'M, and eliminating second-order terms(iw in the denom-
inator, we get the tidal range variation solution to be
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br— 3 () 221 cos 2D ~ —2842 cos 2D km, (11)
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wheren = Q/w = 0.075 is used for the sake of tidiness. The numerical result very closely matches thectsa

perturbation of the lunar orbit 6£2996 km. Note that the factors with would reduce to 0.667 if is assumed to be
small and therefore neglected, but computes to 0.86 when considered: 30% larger than the gross estimate.



4 Gravitomagnetic Perturbation

The gravitomagnetic acceleration of bodgue to bodieg is given by

(2+27)
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wherev; andv; are the velocities of bodiesand j in some arbitrary coordinate system. The veatgr when
combined with the fraction; /rfj constitutes the Newtonian gravitational acceleration of massvard mass;.

The factory is a PPN parameter quantifying the amount of spacetime curvature produced by unit mass. In General
Relativity,v = 1. For the purposes of this development, we will express Eq. 12 differently by using the vector identity:
@x (bx &) =b(@-é — &a-b), and taking only the influence of the earth on the moon so that we have
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wherer is the unit vector from the earth to the moon, and the earth-moon distance. We can represent the earth’s
velocity around the sun &8 and the moon’s velocity in the same coordinate systeM-asi, whereu is approximately

thirty times smaller tha¥” in magnitude. Eqg. 13 then becomes

53:%[f*(V2+V«u)7V(V«f~+u~f)]. (14)
Note thatu represents the geocentrically-viewed orbital velocity of the moon around the earth. Thus under the
assumption of a circular orbit (about which we examine the perturbationy, = 0. Likewise, if we definer to be
the tangential orbit vector at the moon that is perpendicular to- 7 = u. Under the assumption that the earth is in
a circular orbit about the sun, the relationship betw®e(perpendicular to earth-sun line) afénd7 picks out the
synodic phase angl&). Specifically,V -t = —V sin D andV - 7 = —V cos D. Similarly, V-u = —Vwucos D. Now
we can pick out the componentS(ﬁf in the radial and tangential directions by dotting withnd7, respectively. For
now, leaving off the pre-factor from 14 and dealing only with the vector math:
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Sa, x V2 —VucosD — (=Vsin D)? = V?cos? D — Vucos D = §V2 + §V2 cos2D — Vucos D,

and )
da, x —(=V cos D)(—Vsin D) = —§V2 sin 2D.

These two break into two categoridg? terms that hav@ D angular dependence, afd: terms that havé angular
dependence. We can treat each separately in solving Eq. 5. There is also a constant term in the exprésgsion for
Just as in the tidal perturbation example (discussion following Eqg. 9), we can ignore the constant term since it only
acts to rescale the orbit in a non-periodic way. We will deal first witretheterms, then look at th® terms.

The integration of théa, term follows a similar line to that seen in Eqg. 8, including arguments about the resulting
constant term, which we ignore. The differential equation becomes
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Following steps similar to those following Eq. 10, we arrive at the solution
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cos 2D ~ —6.54 cos 2D m,

where we have again made use of Kepler’s relatistu¢ = G'M) and have defineg = Q/w. We have also rejected
terms to second order in



The term proportional t&« has no tangential part, so we immediately write the differential equation as

(2+2v)GM
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The solution is of the forndr = «.cos D. Putting this into Eqg. 15 determines so that the solution becomes

(24 2y)GM Vu N Vuw N
or = — 22 (w02 cosD~7(1+’y)?ﬁacosD~ —3.44cos Dm.

But the resonance produced by the interaction of synodic perturbations and the solar tidal distortion results in an
amplification ofcos D terms by the factor

1
res = —— ~ 2.11
@ 1-72

w

so that the corrected range oscillation is

Vuw _a
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or~—(1+7) cos D ~ —7.29cos Dm.

These numbers slightly disagree with the analysis in Nordtvedt's publications. Part of this is a more thorough
accounting of thé& /w corrections. We see that such care gets us much closer to the “right” answer for the main solar
tidal perturbation (Eq. 11)—we would have been about 35% shy without this. The disagreementointheerm is
not attributable to this, but is perhaps the result of greater care in the numerical inputs. | have no way to confirm the
resonance amplification factor at this time, however. Therefore the results:

0rap = —6.54cos2Dm
orp = —=7.29cosDm

represent the perhaps the best approximations to the gravitomagnetic range signals.

5 General Solar-Directed Perturbation

If the perturbationé?z, is directed toward the sun, thén, = dacos D, andda, = —dasin D. The integral of the
tangent part—dropping the constant part in the now-familiar way—is
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The equation fobr is then
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so that the solution fofr is
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where we have again usegdto denotef2/w. Numerically, this works out t8.01 x 10'25a m, if da is in m s2.
Expressed as a fraction of the solar acceleratiogi(x 10~ m s2), this is1.79 x 10'°6a/a. Nordtvedt's published
work sets this numerical factor 219 x 101°, the difference attributable to the resonance factor (in this case, apparently
about 1.62).



