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Abstract

In this paper, a general approach to performing perturbation analysis on a two-dimensional orbit is presented. The
specific examples of the solar tidal and the gravitomagnetic influences on the lunar orbit are developed here. In these
examples, only periodic behaviors are kept, as these are the signals readily measured by ranging techniques.

1 The Nominal Orbit

In polar coordinates, the Lagrangian for a point mass,m, moving around a central (fixed) mass,M , is developed as
follows:

L = T − U =
1
2
mṙ2 +

1
2
mr2ω2 +

GMm

r
,

whereω is the angular velocity of the orbiting body. From this Lagrangian, we derive the following equation of
motion, in which the mass of the orbiting body has been canceled:

r̈ = −GM

r2
+ rω2 = a(r) +

l2

r3
, (1)

wherea(r) is the central acceleration, andl = r2ω is the (specific) angular momentum. In a circular orbit,r̈ = 0, so
r3ω2 = GM , which recovers Kepler’s third law.

2 Perturbation

If r(t) is a solution that satisfies Eq. 1, then we can explore the effect that an acceleration perturbation,~δa, has on
the solution. We letr(t) → r(t) + δr(t). Meanwhile, the angular momentum must be allowed to change, so we let
l(t) → l(t) + δl(t). The acceleration perturbation can be decomposed into a radial part and a tangential part,δar, and
δaτ , respectively. In addition to Eq. 1, we need to know that

l̇ = r2ω̇ = rδaτ . (2)

Placing the perturbed values ofr(t) andl(t) into Eq. 1, we have

r̈ + δ̈r = − GM

(r + δr)2
+

(l + δl)2

(r + δr)3
+ δar. (3)

We have addedδar directly to this relation, as the first term on the right-hand side of Eq. 3 is the radial acceleration,
a(r), which is perturbed by the amountδar. We have not yet accounted forδaτ , as this is still hidden inδl. Expanding
Eq. 3, and keeping only the first order terms inδr/r andδl/l, we see that Eq. 1 is exactly replicated. Sincer(t) is
already a valid solution to Eq. 1, this part subtracts away, leaving only

δ̈r = −2GM

r3
δr − 3l2

r4
δr +

2l

r3
δl + δar. (4)
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We can replaceδl with

δl =
∫

l̇dt′ =
∫

r2ω̇dt′ = r

∫
δaτdt′,

wheret′ is a dummy time variable over which to integrate the perturbation. Using Kepler’s relation, along with the
definition ofl, we can reduce Eq. 4 to

δ̈r = 2ω2δr − 3ω2δr + 2ω
r δl + δar

= −ω2δr + δar + 2ω
∫

δaτdt′

leaving us with the differential equation forδr that looks like

δ̈r + ω2δr = δar + 2ω

∫
δaτdt′. (5)

This is a simple forced harmonic oscillator. In the absence of a perturbing acceleration,~δa, this would result in a
general solution that oscillates at the resonant orbital frequency,ω. Thus it describes simple elliptical oscillation about
the nominal orbit—our originalr(t) that satisfied Eq. 1.

Given functional forms forδar andδaτ , one can solve Eq. 5 forδr to understand the range variation one would see
under such an influence. This procedure is clarified through the following example of the gravitomagnetic perturbation.

3 Solar Tidal Perturbation

What influence does the sun have on the geocentric lunar orbit? The dominant influence is tidal, resulting from the
differential pull of the sun on the earth and moon as the moon ventures away from the nominal earth orbit. Specifically,
we can express the accelerations of the earth and moon toward the sun, the difference being the net tidal acceleration
on the moon, which becomes our~δa perturbation:

ae = −GM

d2
ĵ

is the acceleration on the earth, whereM is the solar mass,d is the earth-sun distance, and the coordinate system is
arbitrarily chosen to have the sun in the−ĵ direction. The acceleration on the moon is

am = −GM

ρ2

(
a sinD

ρ
î +

d− a cos D

ρ
ĵ
)

,

whereD is the synodic phase angle between the sun and the moon as seen from the earth,a is the nominal (circular)
earth-moon distance, andρ is the distance between the moon and sun. The net acceleration is then

anet =am − ae = −GMa sinD

ρ3
î +

(
GM

d2
− GM

ρ2

d− a cos D

ρ

)
ĵ.

We need the radial and tangential components of~δa for inclusion into Eq. 5, which we obtain by dotting~δa with
r̂ = sinDî− cos Dĵ andτ̂ = cos Dî + sinDĵ. This works out to

δar =
GM

ρ3
(d cos D − a)− GM

d2
cos D,

and

δaτ =
GM

d2
sinD − GMd

ρ3
sinD.

Now the moon-sun distance,ρ, can be obtained from the geometry asρ2 = d2 + a2 − 2ad cos D. Note that since
a is about 400 times smaller thand, we can approximateρ to first order in this quantity without sacrificing much
precision. Specifically, we care aboutρ−3:

ρ−3 = (d2 + a2 − 2ad cos D)−
3
2 = d−3(1 + x2 − 2x cos D)−

3
2 ≈ d−3(1 + 3

a

d
cos D),
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wherex ≡ a/d is the small quantity for which second-order terms may be ignored. Now we have

δar ≈ −
GMa

d3
(1− 3 cos2 D + 3

a

d
cos D) ≈ GMa

2d3
(1 + 3 cos 2D), (6)

where we have ignored the smalla/d cosine term, and have expressed the squared cosine by its double angle equiva-
lent. Likewise,

δaτ ≈ −
3GMa

2d3
sin 2D. (7)

These acceleration perturbations in hand, we are ready to use Eq. 5 to solve the system. First, we integrate theδaτ

term. Noting that the rate at whichD advances isḊ = ω − Ω, the difference between the lunar orbital frequency and
the earth’s orbital frequency, we can construct an arbitrary2D argument as[2(ω − Ω)t′ + φ], whereφ is an arbitrary
phase depending on the choice oft′ = 0. The integral (without the numerical pre-factor) is then

2ω

∫ t

t0

sin[2(ω − Ω)t′ + φ]dt′ = − ω

ω − Ω
cos 2D + const. (8)

We have buried any initial phase in the integration constant, effectively definingt so thatD = (ω − Ω)t without a
phase correction—settingt = 0 to be coincident withD = 0. Thus the integration constant essentially represents the
integral fromt = t0 to t = 0. Now placing Eq. 6 and Eq. 8 into Eq. 5 using the appropriate pre-factor from Eq. 7, we
have

δ̈r + ω2δr =
GMa

2d3

[
1 + 3 cos 2D + 3

ω

ω − Ω
cos 2D + const.

]
. (9)

Notice on the right-hand-side of Eq. 9 there are both periodic and constant terms. The effect of the constant terms
is to rescale the orbit, such that a re-definition ofω and the nominal radius can absorb this constant. In other words,
if r(t) is a solution to Eq. 1, then the constant terms act to maker(t) + const. the new solution, withω modified
accordingly. So for our purposes, we will ignore these terms so that we may develop only the periodic response. The
remaining differential equation forδr is

δ̈r + ω2δr =
3GMa

2d3

2ω − Ω
ω − Ω

cos 2D. (10)

It is clear that the solution to this equation must beδr = α cos 2D, and all that remains is to solve for the amplitude,
α. Again setting2D = 2(ω − Ω)t, placing our expression forδr into Eq. 10 results in

−4(ω − Ω)2α cos 2D + ω2α cos 2D =
3GMa

2d3

2ω − Ω
ω − Ω

cos 2D,

so that

α =
3GMa

2d3

2ω − Ω
ω − Ω

1
ω2 − (ω − Ω)2

.

Using Kepler’s relation for the Earth, namelyΩ2d3 = GM , and eliminating second-order terms inΩ/ω in the denom-
inator, we get the tidal range variation solution to be

δr = −3
2
a

(
Ω
ω

)2 2− η

1− η

1
3− 8η

cos 2D ≈ −2842 cos 2D km, (11)

whereη ≡ Ω/ω ≈ 0.075 is used for the sake of tidiness. The numerical result very closely matches the “true”cos 2D
perturbation of the lunar orbit of−2996 km. Note that the factors withη would reduce to 0.667 ifη is assumed to be
small and therefore neglected, but computes to 0.86 when considered: 30% larger than the gross estimate.
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4 Gravitomagnetic Perturbation

The gravitomagnetic acceleration of bodyi due to bodiesj is given by

ai =
∑

j

µj(2 + 2γ)
c2r3

ij

vi × (vj × rij) (12)

wherevi andvj are the velocities of bodiesi and j in some arbitrary coordinate system. The vectorrij , when
combined with the fractionµj/r3

ij constitutes the Newtonian gravitational acceleration of massi toward massj.
The factorγ is a PPN parameter quantifying the amount of spacetime curvature produced by unit mass. In General
Relativity,γ = 1. For the purposes of this development, we will express Eq. 12 differently by using the vector identity:
~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b), and taking only the influence of the earth on the moon so that we have

am =
µe(2 + 2γ)

c2a2
[r̂(vm · ve)− ve(vm · r̂)] , (13)

wherer̂ is the unit vector from the earth to the moon, anda is the earth-moon distance. We can represent the earth’s
velocity around the sun asV and the moon’s velocity in the same coordinate system asV+u, whereu is approximately
thirty times smaller thanV in magnitude. Eq. 13 then becomes

~δa =
(2 + 2γ)GM

c2a2

[
r̂(V 2 + V · u)−V(V · r̂ + u · r̂)

]
. (14)

Note thatu represents the geocentrically-viewed orbital velocity of the moon around the earth. Thus under the
assumption of a circular orbit (about which we examine the perturbation),u · r̂ = 0. Likewise, if we definêτ to be
the tangential orbit vector at the moon that is perpendicular tor̂, u · τ̂ = u. Under the assumption that the earth is in
a circular orbit about the sun, the relationship betweenV (perpendicular to earth-sun line) andr̂ andτ̂ picks out the
synodic phase angle,D. Specifically,V · r̂ = −V sinD andV · τ̂ = −V cos D. Similarly,V ·u = −V u cos D. Now
we can pick out the components of~δa in the radial and tangential directions by dotting withr̂ andτ̂ , respectively. For
now, leaving off the pre-factor from 14 and dealing only with the vector math:

δar ∝ V 2 − V u cos D − (−V sinD)2 = V 2 cos2 D − V u cos D =
1
2
V 2 +

1
2
V 2 cos 2D − V u cos D,

and

δaτ ∝ −(−V cos D)(−V sinD) = −1
2
V 2 sin 2D.

These two break into two categories:V 2 terms that have2D angular dependence, andV u terms that haveD angular
dependence. We can treat each separately in solving Eq. 5. There is also a constant term in the expression forδar.
Just as in the tidal perturbation example (discussion following Eq. 9), we can ignore the constant term since it only
acts to rescale the orbit in a non-periodic way. We will deal first with the2D terms, then look at theD terms.

The integration of theδaτ term follows a similar line to that seen in Eq. 8, including arguments about the resulting
constant term, which we ignore. The differential equation becomes

δ̈r + ω2δr =
(1 + γ)GM

a2c2
V 2

[
cos 2D +

ω

ω − Ω
cos 2D

]
=

(1 + γ)GM

a2

V 2

c2

2ω − Ω
ω − Ω

cos 2D.

Following steps similar to those following Eq. 10, we arrive at the solution

δr ≈ −(1 + γ)
V 2

c2

2− η

1− η

a

3− 8η
cos 2D ≈ −6.54 cos 2D m,

where we have again made use of Kepler’s relation (ω2a3 = GM ) and have definedη ≡ Ω/ω. We have also rejected
terms to second order inη.
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The term proportional toV u has no tangential part, so we immediately write the differential equation as

δ̈r + ω2δr = − (2 + 2γ)GM

c2a2
V u cos D. (15)

The solution is of the formδr = α cos D. Putting this into Eq. 15 determinesα, so that the solution becomes

δr = − (2 + 2γ)GM

c2a2

V u

ω2 − (ω − Ω)2
cos D ≈ −(1 + γ)

V u

c2

ω

Ω
a cos D ≈ −3.44 cos D m.

But the resonance produced by the interaction of synodic perturbations and the solar tidal distortion results in an
amplification ofcos D terms by the factor

Qres =
1

1− 7Ω
ω

≈ 2.11

so that the corrected range oscillation is

δr ≈ −(1 + γ)
V u

c2

ω

Ω
a

1− 7η
cos D ≈ −7.29 cos D m.

These numbers slightly disagree with the analysis in Nordtvedt’s publications. Part of this is a more thorough
accounting of theΩ/ω corrections. We see that such care gets us much closer to the “right” answer for the main solar
tidal perturbation (Eq. 11)—we would have been about 35% shy without this. The disagreement in thecos D term is
not attributable to this, but is perhaps the result of greater care in the numerical inputs. I have no way to confirm the
resonance amplification factor at this time, however. Therefore the results:

δr2D = −6.54 cos 2D m
δrD = −7.29 cos D m

represent the perhaps the best approximations to the gravitomagnetic range signals.

5 General Solar-Directed Perturbation

If the perturbation,~δa, is directed toward the sun, thenδar = δa cos D, andδaτ = −δa sinD. The integral of the
tangent part—dropping the constant part in the now-familiar way—is

2ω

∫
δaτdt′ =

2ω

ω − Ω
δa cos D.

The equation forδr is then

δ̈r + ω2δr = δa

(
1 +

2ω

ω − Ω

)
cos D = δa

3ω − Ω
ω − Ω

cos D,

so that the solution forδr is

δr =
3ω − Ω
ω − Ω

δa

ω2 − (ω − Ω)2
cos D ≈ δa

ω2

ω

2Ω
3− η

1− η
cos D,

where we have again usedη to denoteΩ/ω. Numerically, this works out to3.01 × 1012δa m, if δa is in m s−2.
Expressed as a fraction of the solar acceleration (5.94× 10−3 m s−2), this is1.79× 1010δa/a. Nordtvedt’s published
work sets this numerical factor at2.9×1010, the difference attributable to the resonance factor (in this case, apparently
about 1.62).
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