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Correction of satellite tracking data for
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A procedure is given for deriving elevation-error and range-error correction equations in a
form svitable for use in the rapid processing of satellite tracking data. The refractivity of the
troposphere is assumed to have spherical symmetry, but may have any given profile that does
not depart greatly from standard, When the procedure was tested for numerical accuracy by
application to an exponential profile, the corrections calculated apgreed with those obtained by
ray tracing to 0.3% or better over a range of surface refractivity from 200 to 450 and a range
of radiowave arrival angles from horizontal to vertical.

1. INTRODUCTION

Range and elevation-angle errors caused in satel-
lite tracking data by tropospheric refractivity (and
the refractivity of the remainder of the lower non-
ionized atmosphere) can be calculated by ray-tracing
methods [Thayer, 19671, or by numerical integration
[Blake, 1968]; but the compution time required is
excessive for the routine processing of large quanti-
ties of data. Formulas simple enough to be used for
such processing have been published, but the neces-
sary simplification has been obtained either by as-
suming an exponential profile [Thayer, 1961; Row-
landson and Moldr, 1969, or by neglecting path
Curvature [Hopfield, 1969], or both [Freeman,
1962). Neglecting path curvature is mathematically
quivalent to retaining the first term of a series
€Xpansion in powers of the surface refractivity of the
assumed profile, a procedure that is not accurate at
low elevation angles.

The derivation of formulas specifically intended
for the correction of satellite tracking data, however,
can be accomplished without making either of these
simplifying assumptions if advantage is taken of the
Dature of the data collected.

2. SATELLITE TRACKING DATA
The satellites tracked are ordinarily above the
Tegion, which extends from the ground to about 70
I in altitude, where almost all the radio-ray bend-
Mg caused by the nonionized atmosphere of the
tarth takes place. Most integrals occurring in the
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formulation of the corrections therefore may be ex-
tended to infinity with negligible error.

In a typical pass of a satellite over a ground sta-
tion, the satellite might be under observation for
several minutes. During this period, tracking mea-
surements are taken periodically at a rate, perhaps,
of one set of data per second. To simplify the
formulas used to correct the large volume of data
generated, it is possible to take advantage of the
circumstance that the corrections are exercised re-
peatedly, using varying values of elevation angle and
range, but with a fixed atmospheric profile. Initial or
‘pre-pass’ calculations that involve only the atmo-
spheric conditions at the time of the satellite pass
and that are independent of satellite position may be
lengthy without causing a significant percentage in-
crease in the total computer time per satellite pass.
For efficiency in calculation, therefore, the mathe-
matical formulation of the corrections should be such
that quantities functionally dependent on the param-
eters of the atmospheric profile are separated from
those dependent on elevation and range.

Such a separation can be effected by expansions
in rational functions of the sine of the elevation
angle and negative powers of the range. The coef-
ficients in these expansions will depend on the at-
mospheric profile alone, and can be calculated in
advance of the satellite pass.

3. GEOMETRY AND NOTATION

The geometry involved is shown in Figure 1. The
earth is considered spherical with a radius ¢ nomi-
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Lea+h,

Fig. 1. Satellite and tracking station geometry.

nally equal to 6373 km. The tracking station is lo-
cated at a distance r, from the center of the earth and
at a height Ak, above sea level. The satellite is at a
distance r; from the center of the earth and at a
height k. The radio-ray path between the satellite
and the station is shown as a dotted line. The dis-
tance between the center of the earth and a given
point on the ray path is r, the height of the point
above sea level is A, and the elevation of the ray
path at the point is 6.

The angle of arrival is the angle 8 above the
local horizontal at the ground station. The angle
AE is the elevation error, or difference between the
angle of arrival and the true elevation angle E of the
satellite with respect to the ground station

AE = 6, — E n

and r is the total bending of the radio path. The
refractive index n is assumed to depend only on the
height & above the surface of the earth. The radio
refractivity

N(h) = 10°[n(h) — 1} )

will be used in normalized form, and a normalized
height above the tracking station will be employed.
Taking the refractive index and the refractivity at
the tracking station to be

no = n(ho) 3

and

No = N(ho) @

respectively, and taking the effective height of the
troposphere above the tracking station to be

" gr(’:-!\{i {—\/\; ) -
LTt K _— ——
] H == | NG dn )
the normalized height above the tracking station
¢ o
x = (h — h)/H. oLx %)

is defined. In terms of this variable, the refractivity
may be written as

N(h) = Nof(x) )

where the normalized profile f{x}, which will be ab-
breviated as §, is

f = N(h, + Hx)/ Ny {8)
which is equal to unity at x = 0

@ = 1. )
and integrates to unity

j; fdx =1 (10)

from the tracking station upward. In the particular
case of an exponential profile, f is equal to exp
(—x).

The radio range, or electrical distance along the
ray path is designated as R,,

R,=——f: o dr (1)

sin 4

the -geometrical distance along the ray path is

L 1
R, = _/: o adr (12)

and the straight-line distance or slant range is R.
The range error is then the difference

AR =R, — R (13)
The parameters
p = QH/r)" a4
g = 107 Noro/H = 2 X 107°N,/p" (15)
0 = gcos’ & 16)

the normalized sine of the angle of arrival

a = (1/p)sin 6, )
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the normalized sine of the elevation angle

g =(/p)sin E (18)

and the normalized inverse range

p = pro/R {19)

will be used. Typical values are p = 0.05 and
g = 0.25. The value of o ranges from 0 on the
horizon to about 20 for a wave arriving vertically
downward.

4. INPUTS TO THE CORRECTION FORMULAS

The desired form of the correction formulas for the
elevation error AE and the range error AR depend
on the intended use. In the first case, which applies,
for example, to a tracking radar, it is assumed that
measured values of the angle of arrival 6, and the
radio range R, are available. The quantities AE
and AR should then be given as functions of the
variables 6, and R..

In the second case the satellite ephemeris is as-
sumed to be known from previous tracking and orbit
determination. In this case the true slant range R
and the true elevation angle E will be known quite
accurately as functions of time, and one or both of
the corrections AE and AR may be needed to pro-
vide accurate predictions of the angle of arrival and
radio range either for acquisition or for comparison
with values to be measured. The latter comparisons
are used to improve the satellite ephemeris by an
iterative process that minimizes some weighted func-
tion of the differences observed. Here AE and AR
need to be expressed as functions of E and R.

In both cases above, the percentage difference
between R and R, is small. R, is at worst about 200
meters larger than R, while R has been taken to
be at least 70 km. Consequently the distinction be-
tween these quantities may be neglected in their use
as inputs to the error formulas. The distinction be-
tween E and §,, however, must be retained at lower
elevation angles.

S. ELEVATION ERROR WITH ANGLE OF
ARRIVAL KNOWN

A procedure for determining the elevation error
has been given by Bean and Thayer [1959]. The
bending r is first calculated by integration, and the
angle § is next calculated from the geometry of Fig-
ure | using the known value of r. The elevation
etror is then given by

AE=7— 13 (20)

The usual approximation for the bending is [Thayer,
1961}

r = 107N, cos 6o 1(@)/p (21)
where the bending integral is defined as

- —y
o [x+ o — 00 = hHl
in which it has been assumed that the satellite height
hy is great enough to permit the upper limit to be
extended to infinity.

An approximate equation giving 8 (and therefore
AE) in terms of 7 has been given by Rowlandson
and Moldt [1969]

fa) =

7z dx Q2)

AE 22 107> No(1/p) cos 6o{Ha) — pL(a)] mrad (23)
with

L) = 1 — al@) + }al (@) 24)

This equation is simpler than the exact expression,
and the approximations used to obtain it are consist-
ent with those employed elsewhere in this paper.

6. A DIGRESSION ON THE
APPROXIMATIONS USED

The quantities 10 Ny ~ 300 x 10~ and p* ~
0.0025 are neglected compared with unity. However,
the quantity g ~ 0.25 cannot be so neglected, even
though it contains the surface refractivity as a factor.

The quantity Q that appears in the radical in (22)
is not independent of satellite position because of its
dependence on 8o; this would jead to complication
of the formulas to be derived. Fortunately Q may be
replaced by g with negligible error, since the term
neglected thereby is small compared to the square
of o

gsin® (1 — ) K o® = (1/p")sin” 8 (25)

It will also be found that the same approximation
can be made elsewhere in the formulas to be derived;
for example, in the asymptotic expansions that fol-
low, in which the quantity neglected by replacing @
by g in one term of the expansion is small compared
with the preceding term.

Because the approximation is used in (22), it has
also been used in (24) and in similar polynomial
expressions to preserve accuracy when o is large, 1.e.,
to obtain the correct asymptotic expansion of the
polynomial expression.

e
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7. EXPANSIONS OF THE BENDING INTEGRAL

To use the formula (23) for the elevation error,
a rapid method for calculating the bending integral
(22) is needed. Since « is as large as 20 at high ele-
vation angles, it is natural to expand (22) in powers
of 1/a. This can be accomplished by a formal bi-
nomial expansion of the radical in (22) after the
square of « has been factored out (followed by an
integration by parts of the factors composed of f* and
powers of f). The expansion obtained is

Iy ~ (1/a) — L(1/a) + L /aY — --- (26)
where
I, = (HH — (Hql 27
and
3 - 17", )
1 =;[f0 xf dx —q(l _E»/; J'dx)+%q']
(28)

This expansion is asymptotic if ¢ = 0 and f = exp
(—x) [Abromowitz and Stegun, 1964]; and the de-
velopment proceeds formally under the assumption
that the expansion provides a valid approximation in
general when o is large, although this has not been
investigated.

Use of the first term of (26) in (21) results in the
familiar

r~ 107°N, cot 6, mrad (29)

which holds at high elevation angles.

Equation 26 suffers from the usual deficiency of
an asymptotic expansion; it is not useful at small
values of the argument «. There is, it happens, a pro-
cedure [Wail, 1948] for converting a divergent series
such as (26) into a continued fraction expansion that
converges, at least when ¢ = 0 and f = exp (—x),
for all « > 0. The expansion diverges at « = 0, how-
ever, and converges only slowly when « is near zero.
Rather than apply the procedure directly, therefore,
the integral I{a) is expanded, with « smali, as

o) = iy — ha + - - (30)

where

. _ [ —f
Iy = o) = j; x — q(l — f)]“z dx (31)

and, differentiating (22), substituting z = x/o", and
letting « approach zero

i = —PO) = =2{(0O)/[1 + af' (O] (32)

Noting that (26) approximates [{«) when « is
large, and that (30) approximates /(«) when « is
small, the approximation of I(a) over the entire
range of « is accomplished by means of a ratio of
polynomials in «. The coefficients of the polynomiais
are chosen in such a way that the expansion of the
ratio in inverse powers of o agrees with the leading
terms of (26) on the one hand, and its expansion in
ascending powers of « agrees with the leading terms
of (30) on the other hand. This method of approxi-
mation insures accuracy if « is either large or small,
Accuracy with intermediate values is obtained by the
inclusion of a sufficient number of terms from each
series expansion, The number of terms used here—
three from (26) and two from (30)—is not neces-
sarily optimum, but worked out well when the method
was applied to an exponential profile. It is evident
that the method requires a certain degree of smooth-
ness in the profile if an accurate approximation is to
be obtained with this number of terms.

8. FORM OF THE APPROXIMATION
Consider a rational function of «, F(«; Fy, Fs, f,,
f1), that depends on four parameters F,, Fa, fy and
f1 and is expressed in the form of a continued fraction

1
Fla; Fi, Fp; fo, fi} =

a-{——*-————“-fl

o+ f:

@ + jﬂ
a+f (Y

where the intermediate constants f,, J,, f,, and j, are
calcuiated from the set of parameters F,, F,, f,, and
{1 using in sequence

fi = F 34
fo=(Fa:fy— fu (35)
fi = fz/[ffﬂ(l + %) -1+ nf,)] (36)
Fr = Ll s/ T (37

On clearing the denominator of equation 33 of frac-
tions, and expanding the resulting fractional form by
long division in descending powers of «

Fla; F\, F3; fo. L) = (I/a) — Fl(l.'jﬂ)3 + F2(1/a)5
— const (1/a) --- (38)
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If the long division is carried out using ascending
powers of a

Fla; Fy, Fai fo, i) = fo — h @ + consta’ - - - (39)

Thus the function F(a; Fi1, Fa, fo, f;) is well suited
to approximate I{«) provided that the parameters
F., Fa, f,, and f, are chosen as I, I, i, and i, re-
spectively; i.e., I{a) is approximately equal to F(a;
Iy, I»; iy, iy). Note that these latter parameters, equa-
tions 27, 28, 31, and 32, depend only on the refrac-
tivity through the parameter ¢ and the profile f(x).
Their calculation is independent of satellite position,
and numerical evaluation prior to each satellite pass
need not be ruled out. ¥ f is a given model profile,
moreover, the integrals can be evaluated analytically
if the functional form of f{x) permits; or, otherwise,
the integrals may be evaluated numerically and curve
or surface fitted empirically.

9. FORMULA FOR RANGE ERROR

The range error (13) may be written as the sum
of the difference between the electrical and geometric
distances along the ray path and the difference be-
tween the geometric distance along the ray path and
the slant range

AR = (R, — R)+ (R, — B) (40)

The first term in (40), the difference along the ray
path, is, after division by r,

(R, — R,)/r, = (1/r5) f [107° N(h)/sin 8] dr
1]

(40
& (110" Nop J(a)
where
_ [ f .
sy = [T e @

Although the geometrical difference (R, — R) be-
tween the ray and straight-line paths is considerably
smaller than the clectrical difference (R. — R,)
along the ray path, it is not always negligible. In Ap-
Pendix A an expression for this difference is derived.
Substituting (A5) and (41) into (40). the expres-
Ston for the range error is

AR/ry = MO °Nop[M(a) — 3p0L%@)]  (43)
where

M) = Jo) + gll@) — K@)

— lale) + Trgl{a)) (44)

with

_r —24f
ko= [ a9

The calculation of J(») and K{(a) can be carried
out in the same manner as that of I(«), but it is
more efficient to calculate M (e) directly. Thus, ex-
panding the integrals on the right-hand side of (44)
asymptotically

M) ~ (1/a) — M,(1/e)’ + Me_(l/a)5 — - (46)
where

M,=%[£mxfdx—q(l—;£:fdx)] 47
ji[%j:xzfdx
—q(é+£mxfdx—12j;wxf2dx)

of1 1 [7 1" )

+q(2 2_’;J’dx+6f;fdx] (48)
Expanding the right-hand side of (44) for small val-
ves of «

Mz‘:

M) = my — ma-+ - (49)
with
my = jy + gie + (f)gic’ — (Glgke  (50)
m, = ji + (i’ [1 + (el (51)
where
) - f
= J = =
Jo 0) j; x — g(l — f)]l/- dx (32)
Ho=2/11 + ¢f'(0)] (53)
- =24y
ko = K(0) = N
° = KO f k=l -2 OY

M(a) is now calculated using (33)—(37); i.e, it is
given by F(a; M1, Ma; mg, my).

10. NUMERICAL EXAMPLE USING AN
EXPONENTIAL PROFILE

If an exponential refractivity profile is assumed,
the normalized profile f becomes

flx) = 7 (53)

The effective height H is equal to the reciprocal of
the decay constant of the profile and, for convenience,
was estimated from the refractivity at the ground sta-

e =

il

ik, AR
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tion using the empirical formula [Bean and Thayer,
1959]

No
Ny — 7.32 exp (0.005577 Ny)
although this would not be the best choice in satellite
tracking at high elevation angles. Equation 5 should
be used instead, the value of the integral being esti-
mated, for example, from pressure and water vapor
measurements [Hopfield, 19711,

Most of the required integration, that in (28),
(47), and (48), was performed directly. The inte-
grals in (31) and (54), however, had to be handled
numerically. The integral {31) was evaluated at 20
different values of g spread over the expected range
0.1 < g < 0.7 using associated Gauss-Laguerre
quadrature [Concus et al., 1963] with x'/* factored
out of the radical. The values obtained were then ap-
proximated by an exponential expression {a poly-
nomial couid have been used) using a least-squares
fit:

1/H = In (56)

ip = (x)7*(1 — 0.9206 ¢) """ + 0.04%,

0< 4507 (57

The integral k, was also closely approximated by a
similar exponential expression. The equations for the
corrections, some of which have been changed to un-
normalized form, are collected in Appendix B.

The refractivity at the tracking station was taken
to be N, = 313, with the tracking station at sea level,
ro = 6373 km. The pre-pass calculations of Appen-
dix B were performed, giving H = 6.9513 km, p =
0.046706, ¢ = 0.28696, and the equation for the
elevation error

AE = 0.313 cos 8,[i — (6373/R)L] mrad (58)
with
R 1
’ =
sin 8 + 0.00093424
sin 8, + 0.0021163
sin 8, -+ 0.0060511
sin 6, + 0.11626
61
L =1 — isin 6, 4+ 0.0001565 i (60)

The equation for the range correction became

AR=0.0021757[m—(914.40/R)L° cos’ 6] km  (61)

1

m =

sin 8, + 0.00085599

sin 8, + 0.0021722

ain 0, + 0.0060788
sin 6, + 0.11571
(62)

The corrections (58) and (61) were calculated
using twelve values of 8, from O to 900 mrad and
two different values of the range R (in kilometers)
at each value of §,. (These ranges are for satellites
at heights with respect to the tracking station of 70
km and 475 km.) The computer output, in exponen-
tial form, is shown in Table 1. The corrections calcu-
lated using a double-precision ray-ttace program are
also listed for comparison.

The largest difference is about 0.3%. If desired,
a final empirical adjustment of the coefficients can
easily be made to reduce this error to less than 0.1%
[Marini, 1971]. Similar checks were made at Ny, =
200 and N, = 450 with equivalent results.

The computer time required to perform the pre-
pass calculations for Table 1, i.e. to obtain (58)-
(62), was 2/60 sec (IBM 360,/95). About the same
amount of time was needed to compute the twenty-
four pairs of corrections in Table 1; this represents
a rate of about 700/sec. Programs designed for op-
erational use should show improvements over these
times.

11. CORRECTIONS USING KNOWN
ELEVATION ANGLE

The formutlas for the corrections AE and AR as
explicit functions of E and R rather than 4, and R
are more difficult to obtain. Reichley [1967] used a
perturbation method to obtain the first two terms of
the expansion of these corrections in powers of the
surface refractivity. This, in the notation and with the
approximations used here, is equivalent to an expan-
sion in powers of the parameter g which may be as
large as 0.64 at N, = 450, Such an expansion is ac-
curate at large values of the elevation angles as may
be determined by an examination of the asymptotic
expansions, in which the higher powers of g appear
only in the higher order terms, but more terms are
needed if formulas pumerically accurate at small

~
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TABLE 1, Corrections calculated from arrival angle and range

AE, mrad AR, km
&, mrad R, km Equation 58 Ray-trace Percent error  Equation 61 Ray-trace Percent error

1] 1020.5 1.109E01 1.108E01 0.00 1.013E01 1.019E-01 —0.06
0 2587.7 1.262E01 1.262E01 0.00 1.038E-01 1.039E-01 —0.06
1 1011.6 1.079E01 1.079E01 0.00 9.856E02 9.863E-02 —0.06
1 2578.9 1.227E0 1.227E01 0.00 1.004E-01 1.005E-01 —0.06
2 1002.9 1.050E01 1.051E0¢ -0.01 9.548E-02 9.555E02 —0.07
2 2570.1 1.194E01 1.194E01 —0.01 9.717E0O2 9.7T4E02 ~0.07
4 986.0 9.971E00 9.975E00 ~0.04 8.980E02 8.980E-02 —0.10

4 2553.1 1.131E01 1.132E01 —0.04 9_125E-02 9.134E-02 —0.10-
8 953.8 9.033E00 9.043E00 —0.11 8.006E-02 8.018E-02 -0.16
8 2520.2 1.022E01 1.023E01 -0.10 8.113E-02 8. 126E-02 —0.16
15 902.0 7.721E00 7.7138E00 0.22 6.691E02 6.707E-02 0.24
15 2466.2 8.693E00 &8.710E00 —0.19 6.758E02 6.774E02 ~0.24
30 805.6 5.817E00 5.834E00 -0.28 4_880E-02 4.893E-02 0.27
30 2360.8 6.499E00 6.514E00 —0.22 4.903E02 4.921E-02 -0.27
65 633.6 3.589E00 3.594E00 —0.13 2.900E02 2.904E-02 0,15
65 2147.2 3.965E00 3.989E00 ~0.09 2.906E-02 2.911EQ2 —0.15
100 512.0 2.547E00 2. 548 E00 —0.04 2.027E-02 2.009E-02 -0.10
100 1962.7 2.799E00 2.799E00 -0.02 2.030E-02 2.032E-02 -0.10
200 316.8 1.350E0D 1.350E00 0.02 1.073E-02 1.073E02 .08
200 1546.6 1.477E00 1.477E00 0.02 1.073E02 1.074E-02 —0.08
400 174.9 6.616E01 6.615E-0N 0.03 5.556E-03 5.560E-03 -0.08
400 1046.4 7.234E01 7.233E01 0.02 §5.556E-03 5.561E-03 -0.08
900 89.1 2.234E01 2.233E01 0.03 2. TME3 2.T16E03 .08
900 593.8 2.443E-01 2.443E-01 0.02 2.774E-03 2.776E-03 ~0.09

values of the elevation angle are to be obtained by
this method. Accurate formulas can be obtained by
expanding instead in powers of p, 8, and 1/8, and
by using the method of the preceding paragraphs
[Marini, 1971]; but the derivation of these formulas
is complicated and is not given here. Instead, it is
noted that the corrections can be calculated without
the aid of these explicit formulas by using iteratively
the formulas already derived.

1 6, in (58), (59), and (60) is replaced by E +
AE, then these equations are in the correct form for
an iterative solution for AE when the value of E (and
R) is given. An iterative solution for AE has the dis-
advantage that the iterative process has to be re-
peated for each satellite position. The speed with
which (58)—(60) can be computed, however, makes
the use of iteration feasible, especially since the con-
vergence is rapid. Using Wegstein’s method [Lance,
19607 it was found that (58) needed to be exercised
0% more than five times in the worst case 1o repro-
duce the corrections in Table 1 using given values of
E instead of 8,. To begin the iteration, a starting
value of zero was used for AE except where the satel-
lite was below the geometric horizon, in which case
the starting value was taken to be |E'.

12. DISCUSSION

When ray-trace methods are used to calculate
range and elevation-angle errors, integrals for the
bending, electric distance along the ray path, and the
ground range (or the sums to which these integrals
are reduced by layering) must be calculated for each
of the many data points of a satellite pass. The in-
tegrals, moreover, must be calculated with great pre-
cision since the range error is calculated by taking
the difference between the clectrical range and the
slant range, two nearly equal numbers.

In the method given by Thayer [1967] the num-
ber of calculations required over a satellite pass is
considerably reduced since the coefficients of the
terms in the sums used to evaluate the integrals are
independent of the elevation angle of the ray. The
clevation angle at each layer must be calculated for
each new ray, however, and the need for great pre-
cision remains.

The formulas derived here require, instead, the
once-per-pass evaluation of the nine integrals oc-
curring in (5), (28), (31), (48), (52}, and (54).
The relative accuracy in each integration need be
only slightly greater than that expected in the final

v
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corrections; and, in the case of integrals occurring
only in higher order terms, the relative accuracy can
probably be further reduced without effecting the
final accuracy. The final accuracy is, however, limited
by the number of terms sclected from the series used
to form the corrections,

If a standard refractivity profile involving one or
two parameters is used, the numerical integrations re-
quired can be reduced in number or eliminated alto-
gether by direct integration or appropriate curve or
surface fitting, as in the exponential example given.

Acknowledgment. The author wishes to acknowledge the
cooperation of Dr. 8. Rangaswamy, National Academy of
Science Research Associate, Goddard Space Flight Center,
who supplied the ray-trace calculations in TFable 1.

APPENDIX A
APPROXIMATION FOR THE
GEOMETRICAL DIFFERENCE

Using Snell’s law in polar coordinates [Bean and
Dutton, 1966)], R, from (12) may be writfen as

APPENDIX B
CORRECTION EQUATIONS FOR AN
EXPONENTIAL PROFILE,
ARRIVAL ANGLE KNOWN

Integrating the first term, setting n(r;)} = 1, making
use of the geometrical relationship

H = 1/In{N/(Ny — 7.32¢"°*°"")]  km

P = QH/r)""

g = 107 °Nyro/ H

in = '%(1 — 0.9206g)"% "%

h=2/(1 —¢q)

L= GX! — i1g)

I, = 0.75[1 — 0.75¢ + (})4°]

ke = (2x)'°(1 — 0.9408q) " *"°°

my = iofl + ¢ + (T)a’i’] — (Blake

m, = 201 + (gic’y/(1 — q)

M, = D1 — (]

M, = 0.75[1 — (25/24)¢ + (11/36)¢°]

R R o

i = F(sin 8; p' 1y, p'Ls; io/p, 01/P%)

L =1 — isinf, + 1107°N,¢*

(A2)  AE = 0.001N, cos (i — roL/R)  mrad

r,sin®, = Rcos 8 4 rosin (8, — 7)
which follows from Figure 1, and using the cxact
integral for -

nont’
n’(* — no're’ cos® Oy/n°)

T = —ry cos B f iz dr
1]

(A3)
there results
Ry — R)/ro
= —(R/re}(1 — cos 8) — {1 — cos 7)sin 6,
+ (r —~ sin 1) cos 6, + cos® 8,
= _ ’
.j; ¢’ _”:(D’;roz c':s)fﬁo/ n'y'® dr (Ad)

On approximating cos 8, sin r, and cos 7, by the
first two terms of their power serics expansions and
making the usual approximations in the integrals,
there results

(Ra - R)/fo
= L0 °NopQ[( — 3K — 2al* + qI'/12)

— (rop/2RX1 — af + 1qI'Y'] (A5)

o b o ow

i

m = F(sin 6y, p°M,, p* My, mo/p, m, /D)

AR = 107 °NoH[m—110" Norg® cos® ,L°/(RH)] km

The function i is equal to I'{a)/p, and the intermedi-
ate constants in (34)—{37) associated with / can be
obtained from those of I(a) by multiplying the first
three by p* and the last by p.
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