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Abstract Eukaryotic cells are able to sense shallow chemical gradients by surface receptors and migrate
toward chemoattractant sources. The accuracy of this chemotactic response relies on the ability of cells to
infer gradients from the heterogeneous distribution of receptors bound by diffusing chemical molecules. Ulti-
mately, the precision of gradient sensing is limited by the fluctuations of signaling components, including the
stochastic receptor occupancy and noisy intracellular processing. Viewing the system as a Markovian com-
munication channel, we apply techniques from information theory to derive upper bounds on the amount of
information that can be reliably transmitted through a chemotactic cell. Specifically, we derive an expression
for the mutual information between the gradient direction and the spatial distribution of bound receptors. We
also compute the mutual information between the gradient direction and the motility direction using three
different models for cell motion. Our results can be used to quantify the information loss during the various
stages of directional sensing in eukaryotic chemotaxis.

Keywords Chemotaxis· Stochasticity· Mutual Information

1 Introduction

The directed movement of cells up or down a chemical gradientis known as chemotaxis. Although the un-
derlying mechanisms are fundamentally different, both prokaryotic and eukaryotic cells employ chemotaxis
as a way to direct cell motion. Bacteria direct their motion by measuring and comparing chemical concentra-
tions over time [1]. Eukaryotic cells, on the other hand, aremuch slower and larger and are able to measure
concentration differences in space. These eukaryotic cells, the focus of our study, plays an important role in
a variety of biological processes, including neuronal patterning, wound healing, embryogenesis, and cancer
metastasis [2–4].

The sensitivity of eukaryotic cells to gradients can be extremely high: both neutrophils and the social
amoebaDictyostelium discoideumcells can detect a 1-2% difference in concentration of the chemoattractant
between the front and the back of the cell [5–7] and experiments with growth cones have claimed to exhibit
axonal guidance in concentration differences as little as 0.1% [8]. Naturally, the question of how cells achieve
such a high degree of sensitivity has attracted considerable attention. Clearly, chemotaxing cells are able
to translate a shallow external gradient into a much larger internal asymmetry and this directional sensing
capability has been the subject of numerous theoretical studies [9–15].

In eukaryotic cells, the first step in the chemotactic process consists of the binding of the chemoattrac-
tant to specific G-protein coupled receptors on the cell membrane. In the case of a chemoattractant gradient,
this binding results in an asymmetric distribution of ligand-occupied receptors. These receptors then activate
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multiple second-messenger pathways inside the cell, leading to asymmetric internal distributions of a multi-
tude of signaling molecules. Eventually, these pathways drive the formation of actin-filled protrusions called
pseudopodia. These pseudopodia are formed preferentiallyat the front, the side of highest chemoattractant
concentration, and, together with a myosin-based trailingedge which pulls in the rear, results in directed cell
movement. Many of the components responsible for translating the external chemoattractant gradient into cell
motility are known and are conserved across species (for recent reviews, see [16–18]). The precise physical
mechanism of this translation, however, remains poorly understood.

The binding of ligand molecules to chemoreceptors is an inherently noisy process and the question how
noise influences cell motility has generated significant interest [7,19–28]. One way to study the effect of
noise on the chemotactic process is to use information theoretic approaches [7,29]. We recently performed
a theoretical investigation of the mutual information, a measure of the amount of information that two noisy
variables share, between the input gradient direction and the resulting spatial distribution of ligand-bound
receptors [7]. For shallow gradients, we were able to obtainapproximate analytical expressions. Using a large
experimental data set, we were also able to compute numerically the mutual information between the input
gradient direction and the motility direction in the experiments. Comparing these two quantities allowed us to
determine how much information was lost during intercellular processing.

Here, we extend our previous analysis and use information theoretic approaches to derive an explicit
formula for the mutual information between the input gradient direction and the resulting distribution of
ligand-bound receptors. Thisexternalmutual information reflects how the external receptor noiselimits the
gradient information acquisition at the cell membrane and provides an upper bound on the amount of infor-
mation that can be reliably transmitted during gradient sensing at the receptor level. Furthermore, we propose
and study several stochastic models that connect the external receptor signal to the output of chemotactic di-
rection. These models allow us to calculate, analytically and/or numerically, the mutual information between
the input source direction and the output chemotactic response angle. We will call this thechemotacticmutual
information to distinguish it from the external mutual information. It quantifies the total information obtained
by a chemotactic cell and will be at most equal to the externalmutual information. In fact, by comparing
this quantity to the external mutual information, we can determine how much information is dissipated due to
intracellular fluctuations and nonlinear signal processing.

2 Results

2.1 Spatial distribution of stochastic ligand-receptor binding

Our model is shown in Fig. 1, along with the relevant notationand the various steps in the chemotactic process.
We assume a circular cell with diameterL that is placed in a chemoattractant gradient with directionφ . A large
number of receptors (typically,N≈ 80,000) is uniformly distributed on the cell surface, acting asthe antennae
for gradient sensing. Each receptor switches independently between two states, either empty (0) or occupied
(1), with transition rates determined by the local concentration and the relevant chemical kinetics. Therefore,
these receptors in a snapshot constitute a series of independent Bernoulli random variables, represented by

sn =

{
1, with probability Pn,

0, with probability 1−Pn,
for n = 1, ...,N. (1)

If the local concentration near thenth receptor isCn, then the probability of occupancy isPn =Cn/(Cn+Kd) for
simple ligand-receptor kinetics with dissociation constant Kd. We divide the cell intoM small sensory sectors
such that each sector contains several hundreds of receptors exposing to almost the same local concentration.
The gradient field at which the cell is situated can be fully described by the average local concentrationClocal,
the gradient steepnessp ≡ L

Clocal

δC
δ r and the gradient directionφ . The steepnessp reflects the percentage

concentration change across the cell lengthL.
The local concentration at themth sector with angular positionϕm is given byCm = Clocal[1+ p

2 cos(ϕm−
φ)]. Neglecting any temporal correlation of receptors, we find that the number of occupied receptors in the
mth sector isYm = E[Ym]+ηm = NsCm/(Cm+Kd)+ηm for m= 1, ...,M, with 〈ηm(t)ηn(s)〉 ≈ NsCmKdδ (t −
s)δmn/(Cm + Kd)

2 [22] and whereNs = N/M. In this way, the receptor signal is decomposed intoM inde-
pendent but non-identical Gaussian random variables, denoted byY = {Y1,Y2, ...,YM}T . Hereafter, boldface
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Fig. 1 Illustration of the information flow in eukaryotic chemotaxis. A chemical gradient with directionφ is first detected by
receptors on the cell membrane, resulting in a spatially heterogeneous distribution of receptor occupancy, represented byY or the
sufficient statisticZ. The noisy receptor signal is further transmitted through intracellular pathways, which convert the external
asymmetry into an internal one. Ultimately, this leads to directed cell motion toward the chemical source, representedby the
moving angleθ . We consider a two-dimensional circular cell with a large number of independent receptors uniformly located
on the cell perimeter.

symbols denote vectors, and the superscript symbolT denotes the transpose. For small gradients (p < 0.1),
we can expandYm in p, resulting in

Ym =
NsClocal[1+ p

2 cos(ϕm−φ)]

Kd +Clocal +
p
2Clocal cos(ϕm−φ)

+ηm ≈ NsClocal

Kd +Clocal
+

NsKdClocal

2(Clocal +Kd)2 pcos(ϕm−φ)+O(p2)+ηm,

(2)
To leading order inp, the covariance is written as〈ηm(t)ηn(s)〉 ≈ NsKdClocalδ (t −s)δmn/(Clocal +Kd)

2 ≡ σ2
s

and is the same for all sectors. Thus, the receptor signalY = {Y1,Y2, ...,YM}T is a vector of independent Gaus-
sian random variables with different means but approximately identical varianceσ2

s . Note that our approach
uses the assumption that we can subdivide the membrane into independent sectors. This assumption is rea-
sonable since there is no direct experimental evidence thatindividual receptors in chemotaxing eukaryotic
cells are coupled. Also, as we will see below, our small gradient expansion is valid up to at least a gradient
steepness of 20%.

2.2 The external mutual information

Receptors close to the gradient source are more likely to be occupied by ligands than those away from the
source. This results in a heterogeneous distribution of thereceptor occupancy on the cell surface, as reflected
by Eq. 2. If all the intracellular processes are ignored thenthe best chemotactic decision the cell can make will
be based on the spatially asymmetric distribution of this receptor occupancy. A natural question concerns how
much information can be reliably transmitted in gradient sensing at the cell surface. This can be quantified
by the mutual information between the spatial distributionof bound receptorsY and the gradient directionφ ,
which is chosen randomly from a preassigned distributionP(φ). By the Bayesian interpretation of probability,
the prior distributionP(φ) expresses the cell’s uncertainty about the gradient direction before taking any
measurements into account.
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Mutual information is one of the core concepts in information theory [30]. In the continuous case, the
definition of mutual information between input (X) and output(Y), expressed in nats, is

I(X;Y) =

∫

Y

∫

X
P(x,y) ln

P(x,y)
P(x)P(y)

dxdy, (3)

whereP(x,y) is the joint probability density function ofX andY, andP(x) andP(y) are the marginal proba-
bility density functions. By definition, we haveI(X;Y) = I(Y;X). Mutual information quantifies the mutual
dependence of two random variables and is more general than the correlation coefficient which only measures
the linear dependence of two variables.

Since in our modelY is a high-dimensional random vector, calculating the mutual information I(Y;φ)
involves a difficult multidimensional integration which hampers direct analytical studies. This was shown in
our recent study, where we also presented an expansion for shallow gradients [7]. A more tractable analytical
expression can be found using a statisticZ ≡ ∑M

m=1Ymeiϕm = Z1 + iZ2 which is sufficientfor the gradient
parameterφ (for more details, see the Appendix). In other words, the complex random variableZ contains
the full information about the gradient direction andZ is just as informative as the full observationsY. Thus,
I(Z;φ) = I(Y;φ) regardless of the input statisticsP(φ). In the Appendix, we show thatZ, to first order
of p, has a complex Gaussian distribution and that its real and imaginary parts are independently normal
with identical varianceσ2 ≡ 1

2NKdClocal/(Clocal +Kd)
2 but different means:Z1 ∼ N (ν cosφ ,σ2) andZ2 ∼

N (ν sinφ ,σ2), whereν = pσ2/2. In polar coordinates we can writeZ = ρeiψ where the magnitude variable

ρ ≡
√

Z2
1 +Z2

2 measures the degree of asymmetry in the receptor occupancy and where the phase variable

ψ ≡ arctan(Z2/Z1) is found to be the optimal estimator of the gradient direction φ [31,32]. As shown in the
Appendix, the magnitudeρ follows the Rice distribution, denoted byP(ρ). Assuming thatφ is chosen from
a uniform distribution, i.e.,P(φ) = 1/(2π), we can find an analytical expression of the mutual information
I(Z;φ) between the gradient direction andZ (see Appendix). This expression is a monotone function of the
signal-to-noise ratio(SNR),κ ≡ ν2/σ2 = Np2ClocalKd/(8(Clocal +Kd)

2), and one can derive expressions in
both the small and largeκ limit:

I(Z;φ) =
ν2

σ2 −
〈

ln
[
I0
(ρν

σ2

)]〉

P(ρ)
≈
{

κ/2 κ ≪ 1,

ln
√

2πκ/e κ ≫ 1,
(4)

whereI0(·) is the modified Bessel function of the first kind and order zero. Note that in the small SNR regime,
the asymptotic expression ofI(Z;φ) in Eq. 4 is identical to the approximate result forI(Y;φ) derived in our
earlier study [7]. A more technical discussion of the various limits can be found in the appendix. In Fig. 2A,
we plotI(Z;φ) as a function of the gradient steepness (blue dashed line), along with the numerically obtained
values forI(Y;φ), using a Monte Carlo method detailed in Ref. [7]. As expected, the numerical values of
I(Y;φ) lie exactly on the theoretical curve ofI(Z;φ) given in Eq. 4. Note that the Monte Carlo method does
not employ a small gradient expansion. Thus, the results of Fig. 2A demonstrate that the expansion we used
in deriving our theoretical results is valid up to at least a gradient steepness of 20%. A plot ofI(Z;φ) as a
function ofClocal (Fig. 2B) demonstrates that the mutual information is maximal whenClocal = Kd.

By definition, the mutual information of two random variables measures their mutual dependence, or how
much knowing one of these variables reduces the uncertaintyabout the other. Hence, the larger the mutual
informationI(Y;φ), the less uncertain the cell is about the gradient directionφ given the receptor signalY. In
fact, for a Gaussian channel, one can prove that theminimum mean-square error(MMSE) in estimating the
input given the output is related to the mutual information.It is given by twice the first-order derivative of the
mutual information with respect to the SNR [33]. In our case,the channel is asymptotically Gaussian at large
values of the SNR, and this elegant relationship suggests that the MMSE in estimatingφ given the observation
Y is equal to 1/κ or σ2/ν2. This is exactly the asymptotic variance of the optimal estimatorψ for the gradient
parameterφ , i.e.,ψ ∼ N (φ ,1/κ); see Appendix for more details. As an information measure, the external
mutual informationI(Z;φ) also sets an upper bound on the amount of information that could be achieved at
the cell surface in a single snapshot. We can use it as a benchmark to compare with the information ultimately
gained by the chemotactic cell, as to be examined in the next section.
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Fig. 2 The external and chemotactic mutual information for a cell with diameterL = 10µm, disassociation constantKd = 50nM,
number of receptorsN = 80000, average local concentrationClocal = 50nM, and added random motility noiseσ 2

0 = 1. (A) The
external mutual informationI(Z;φ) as a function of the gradient steepnessp calculated using the analytically derived formula
in Eq. 4 is plotted as a dashed line while the external mutual information obtained using a Monte Carlo algorithm is plotted
using symbols. The chemotactic mutual informationI(θ ;φ) for motility model I is shown as a solid black line and for motility
and model II as a dashed line (B) Chemotactic mutual information I(θ ;φ) as a function of the average local concentrationClocal
for model I and model II using a fixed gradient steepnessp = 0.1. Also plotted, as a solid blue line, is the external mutual
informationI(Z;φ). (C) Chemotactic mutual informationI(θ ;φ) as a function of the gradient steepnessp for the BI model. The
model parameter values areka = 10s−1, kb = 3µm/s, k−a = 0.2s−1, k−b = 0.2s−1, ki = 1000µm(s·molecule)−1, D = 10µm2/s,
andDm = 0.1µm2/s. As a comparison, the external mutual informationI(Z;φ) is plotted as a solid blue line. (D) External
mutual information for biased input statistic,Ibiased(Z;φ), as a function of the prior knowledge about the gradient (represented
by κ ′/κ). The dashed line showsIbiased(θ ;φ) for model II usingp = 0.1. Note that the parameterκ is determined by the other
given parameters.

2.3 The chemotactic mutual information

The asymmetry of the receptor signal is amplified through a series of intracellular signaling events which even-
tually give rise to the chemotactic response (see Fig. 1). The receptor noise will propagate through the internal
signaling networks which themselves are intrinsically noisy and may further interfere with the chemotactic
decision-making. This noise is independent of the gradientsensing mechanism, but intrinsic to the cellular
motility machinery and we will refer to it as therandom motility noise. Due to this additional interference
and due to possible non-linear signal processing, the amount of the gradient information that a chemotactic
cell ultimately acquires could be much lower than that received at the cell surface. In our earlier study, we
computed the information transmission during the entire chemotactic process using experimentally obtained
cell tracks [7]. Here, we will investigate the mutual information I(θ ;φ) between the gradient directionφ
and the response directionθ using three theoretical motility models. These models use the above computed
spatial distribution of bound receptors as input and compute the resulting motility direction. In the first two
models, the random motility noise is put in ”by hand” while inthe third model we explicitly model a proposed
signaling pathway.

Model I. Since the complex random variableZ contains all the gradient information underlying the re-
ceptor signalY, we can use it as the input for a motility model. This leads to amodel in which the cell
is assumed to linearly transform the receptor signalZ to determine its direction. The effect of intracellular
stochasticity can then be modeled by simply adding a noise term to Z. For convenience, we writeZ in the
vector form:Z = (Z1,Z2)

T . The model is defined asθ = arctan(Z̃2/Z̃1) whereZ̃ ≡ (Z̃1, Z̃2)
T = βZ + Σ0.

Here,β is a constant scalar representing the signal amplification and Σ0 is a two-dimensional white ran-
dom vector with zero mean and autocorrelation matrix

〈
Σ0Σ

T
0

〉
= σ2

0 I, representing random motility noise.
Then, we havẽZ1 ∼N (βν cosφ ,β2σ2+σ2

0) andZ̃2 ∼N (βν sinφ ,β2σ2+σ2
0), which implies a new SNR,
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κ̃ ≡ β2ν2/(β2σ2 + σ2
0 ). Thus, for large SNR, similar to the phase variableψ in Z, the response angle is

asymptotically Gaussian,θ ∼ N (φ ,1/κ̃). Again, using polar coordinates, we can writeZ̃ = ρ̃eiθ and we
find the mutual information between gradient direction and motility direction is given by (see Appendix)

I(θ ;φ) = I(Z̃;φ) = κ̃ −
〈

ln

[
I0

(
ρ̃κ̃
βν

)]〉

P(ρ̃)

≈
{

κ̃/2 κ̃ ≪ 1,

ln
√

2πκ̃/e κ̃ ≫ 1.
(5)

For finite and positiveβ , κ̃ < κ and henceI(θ ;φ) = I(Z̃;φ) < I(Z;φ) = I(Y;φ). As expected, the differ-
ence betweenI(θ ;φ) andI(Y;φ) in this linear model is enlarged when the intrinsic motilitynoiseσ2

0 increases
or when the amplification parameterβ decreases. If the intrinsic noise is negligible compared tothe amplified
receptor noise (σ2

0 ≪ β2σ2), we haveκ̃ → κ andI(θ ;φ) → I(Y;φ). Thus, in this limit no additional infor-
mation is lost in the internal steps. In Fig. 2A we have plotted I(θ ;φ) as a function of the gradient steepness
(solid black line). For the particular value of the random motility noise chosen here,I(θ ;φ) is clearly reduced
compared toI(Z;φ), reflecting the information loss due to noise. In addition, one can easily check that̃κ ,
just asκ, has a maximum atClocal = Kd as is shown in Fig. 2B. This can be understood by realizing that the
applied intracellular linear transformation does not introduce an internal response threshold. Note that this
simple model can be generalized easily. For example, we can replace the scalarβ by a matrix (not necessarily
symmetric) which provides a way to model any internal asymmetry of the cell.

Model II. Going beyond linear models, we can implement a more complicated transformation ofZ to
model the chemotactic response. Ideally, a chemotactic cell will try to align its movement with the estimated
gradient directionψ. The efficiency to adjust its direction may depend on the strength of the receptor signal
(characterized byρ) as well as on how responsive the cell is to that signal (parametrized byβ ). Based on sym-
metry requirements, we introduce a Langevin equation for the chemotactic response,dθ/dt = −βρ sin(θ −
ψ)+η0, whereη0 represents the random motility noise with〈η0(t)〉= 0 and〈η0(t)η0(s)〉 = σ2

0 δ (t −s) [25,
34].

In the small noise limit, we can expand this Langevin equation, resulting in

dθ
dt

≈ −βν sin(θ −φ)+βν cos(θ −φ)ηψ +β sin(θ −φ)ηρ +η0,

= −βν sin(θ −φ)+ηtot, (6)

with the total noise given by

〈η2
tot〉 = β2ν2(σ/ν)2cos2(θ −φ)+β2σ2sin2(θ −φ)+σ2

0 = β2σ2 +σ2
0 ≡ σ2

tot . (7)

Equivalently, this can be rewritten as a stochastic differential equation:

dθ ≈−βν sin(θ −φ)dt+σtotdWt , (8)

whereWt is the standard Wiener process or Brownian motion. The deterministic termβν in Eq. 8 can be
interpreted as the mean restoring force that aligns the celltoward the true gradient directionφ . Solving the
associated Fokker-Planck equation yields the stationary distribution ofθ(t) given by

P(θ |φ) =
exp(κ̂ cos(θ −φ))

2πI0(κ̂)
, (9)

which is known as thecircular normal (CN) distribution with modal directionφ and shape parameterκ̂ =
2βν/(β2σ2+σ2

0). In the limit of smallκ̂ , the CN density becomes the uniform distribution, while in the large
κ̂ limit it approaches a Gaussian with variance 1/κ̂ . We have performed explicit Monte-Carlo simulations of
the original Langevin equation (dθ/dt =−βρ sin(θ −ψ)+η0) and have verified that the resulting directional
distribution ofθ agrees well with the CN distribution obtained from our approximate model (Eq. 8). We can
compute (see Appendix) the mutual informationI(θ ;φ) for this model as

I(θ ;φ) = κ̂
I1(κ̂)

I0(κ̂)
− ln I0(κ̂) ≈

{
κ̂2/4−3κ̂4/64+O(κ̂6) κ̂ ≪ 1,

ln
√

2πκ̂/e κ̂ ≫ 1,
(10)

whereI1(·) is the first kind modified Bessel function of order one. In Fig.2 we plot this mutual information
as a function of the gradient steepness (dashed line, A) and of the background concentration (dashed line, B).
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The mutual information is an increasing function of the gradient steepness while it reaches a maximum for
Clocal = Kd.

Model III. The last class of models we examine here explicitly incorporates the intracellular dynamics
of second messenger pathways. Thus, instead of using ad-hocadditive noise terms as in Model I and II, we
now represent the intracellular dynamics by a set of partialdifferential equations. We will focus here on one
particular directional sensing model, the Balanced Inactivation (BI) model [10], although we have performed
a similar analysis for other models (data not shown). In thismodel, receptor occupancy triggers the production
of a membrane-bound activatorA (read-out component) and a cytosolic diffusing inhibitorB at equal rateska.
The diffusing speciesB can attach itself to the membrane at a ratekb and become a membrane-bound species
Bm. Near the membrane, it can irreversibly inactivate the read-out componentA with rateki . BothA andBm
have a spontaneous degradation rates (k−a andk−b, respectively) which are assumed to be small compared
with both the activation and the recombination rates. As theinput for the BI model we use the stochastic
receptor signal,Y(ϕ j) for j = 1...M as computed above. These reactions can be represented by thefollowing
mathematical equations:

∂A(ϕ j)

∂ t
= kaY(ϕ j)−k−aA−kiABm+Dm∇2

mA, at the membrane,

∂Bm(ϕ j )

∂ t
= kbB−k−bBm−kiABm+Dm∇2

mBm, at the membrane, (11)

∂B
∂ t

= D∇2B, in the cytosol,

with a boundary condition for the outward pointing normal derivative of the cytosolic component:

D
∂B
∂n

= kaY(ϕ j)−kbB. (12)

Note that we have taken into account possible membrane diffusion of Bm, characterized by the membrane
diffusion constantDm.

We numerically solve this model for a 2D circular cell subdivided intoM equal sized sectors and obtain
the steady-statespatial distribution of the read-out componentA(ϕ j) for each sectorj = 1, ...,M. Specifi-
cally, we generated 1000 independent realizations of the Gaussian random vectorY and used these as input
to Eqns. 12. Importantly, to compute the chemotactic mutualinformation of the BI model we still need to
relate the read-out component to motility. For this, we choose a spatial filter similar to the one we used be-
fore: Ẑ ≡ ∑M

j=1A(ϕ j)eiϕ j = Ẑ1 + iẐ2 andθ ≡ arctan(Ẑ2/Ẑ1). In this way, we are able to compute the output
directionθ using the steady-state solution ofA for each realization ofY. The resulting distribution ofθ al-
lows us to evaluate the mutual informationI(θ ;φ) for the BI model, using either histogram estimation or
kernel estimation [35,36]. The numerical result ofI(θ ;φ) is plotted in Fig. 2C as a function of the gradient
steepness. Again, as is the case for models I and II, the mutual information of the entire chemotactic process
is reduced compared to the external mutual informationI(Z;φ). Note, however, that receptor noise is the only
stochasticity we have introduced into the BI model whereas models I and II have included extra fluctuations
to account for noisy intracellular biochemical reactions.Since the BI model is nonlinear, the information re-
duction relative toI(Z;φ) can be attributed solely to the nonlinear signal processingby downstream second
messengers. We should point out that a direct comparison between experimental values of the mutual infor-
mation (as obtained in Ref. [7]) and values obtained from ourmodels is difficult since our models do not
contain an detailed motility module. For example, the mutual information in the experiments saturates as the
gradient steepness is increased (see Fig. 3 in Ref. [7]). In contrast, the mutual information in our models is
an increasing function of gradient steepness. This suggests that the our models do not contain one or more
(unknown) mechanisms that limit the achievable mutual information.

We have also tested how the specific choice of biochemical parameters can affect the mutual information.
For example, we found that the mutual informationI(θ ;φ) only shows a slight tendency to increase within
the rangeDm= 0 - 100µm2/s, as shown in Fig. 3A. This range of membrane diffusion constants encompasses
the physiologically relevant range for membrane bound proteins. We should note however, that the mutual
information is a monotonic increasing function ofDm. The reason for this is that for larger and larger values
of Dm, the noise gets more and more suppressed. This comes at the expense of the amplitude in the signal
(i.e., the difference between the maximum and minimum values of A), which becomes smaller and smaller.
The mutual information, however, is strictly a function of the direction of the output and does not take this
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Fig. 3 (A) Mutual informationI(θ ;φ) for the BI model as a function of the membrane diffusion coefficientDm. The error bars
represent the standard deviation of the Monte Carlo simulations. (B)I(θ ;φ) as a function ofkb for the BI model. In both plots,
we have chosen the following parameter values:L = 10µm, Clocal = 20nM, Kd = 30nM, N = 80000,p = 0.075,ka = 10s−1,
kb = 3µm/s (left plot), k−a = 0.2s−1, k−b = 0.2s−1, ki = 1000µm(s·molecule)−1, D = 10µm2/s, andDm = 0.1µm2/s (right
plot).

amplitude into account. A motility module that is downstream from the BI model will be dependent on this
amplitude but is not part of our calculation. Other numerical tests demonstrated that the mutual information
I(θ ;φ) is only sensitive to the parameterkb, which denotes the rate that the diffusible speciesB can attach
itself to the membrane and irreversibly become a membrane-bound speciesBm. Larger values of this parameter
correspond to higher levels ofBm and stronger inactivation of the read-out componentA. Therefore, the shape
of I(θ ;φ) as a function of the gradient steepnessp can be most effectively tuned by choosing different values
of kb in the BI model.

2.4 The effect of a priori knowledge about the gradient

In the previous calculations, the prior distributionP(φ) has been assumed to be uniform, which can describe
an unbiased cell that has no a priori knowledge about the gradient directionφ [29,37]. This may be the
case when a cell is newly introduced into a gradient. However, long exposure to a gradient may bias the
cell such that it expects the gradient to come predominantlyfrom some directionφ ′. To model this a priori
knowledge we can use the circular normal distribution, i.e., P(φ) = exp[κ ′ cos(φ − φ ′)]/(2πI0(κ ′)) where
the parameterκ ′ controls the magnitude of the bias. In the limitκ ′ → 0, the prior distribution is uniform
(P(φ) = 1/(2π)), whereas in the limitκ ′ → ∞, it tends to be a Gaussian distribution with variance 1/κ ′.
Without loss of generality, we will setφ ′ = 0. Then the external mutual information is found to be (see
Appendix)

Ibiased(Z;φ) = κ −〈ln[I0(ρκ/ν)]〉P(ρ) −
〈
h(κρ )

〉
P(ρ)

= I(Z;φ)−
〈
h(κρ )

〉
P(ρ)

≈
{

κ (1− [I1(κ ′)/I0(κ ′)]2)/2 κ ≪ 1,

ln
√

2πκ/e−h(κ ′′) κ ≫ 1,
(13)

whereh(x) ≡ xI1(x)/I0(x)− ln I0(x), κρ ≃ κ ′νρ/(κ ′σ2+νρ) andκ ′′ ≃ κ ′κ/(κ ′ +κ). The functionh(x) is a
monotone increasing function and is positive for allx > 0. Thus, the biased mutual informationIbiased(Z;φ)
is smaller than the mutual informationI(Z;φ) for the unbiased case in Eq. 4 by the amount〈h(κρ)〉 which
vanishes in the limitκ ′ → 0. This is intuitively reasonable because a priori knowledge can help reduce the
uncertainty (or entropy) of the input. The reduction in the mutual information can be seen in Fig. 2D where
we plot Ibias(Z;φ) as a function ofκ ′/κ. A similar calculation for model II results in (see Appendix)

Ibiased(θ ;φ) = κ̂
I1(κ̂)

I0(κ̂)
− ln

I0(κ̂)

I0(κ̂ ′)
− κ̂ ′ I1(κ̂ ′)

I0(κ̂ ′)
= I(θ ;φ)−h(κ̂ ′), (14)

whereκ̂ ′ ≃ κ̂κ ′/(κ̂ + κ ′) andκ̂ has been defined inModel II. Again, the biased mutual information above
is less than the unbiased resultI(θ ;φ) in Eq. 10 and the differenceh(κ̂ ′) is an increasing function of the bias
parameterκ ′ (Fig. 2D). This implies thatI(θ ;φ) is maximal whenP(φ) is uniform (i.e.κ ′ = 0). We have
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verified this prediction using the Blahut-Arimoto algorithm (see Appendix). Therefore, the mutual informa-
tion in Eq. 10 under the assumption of the uniform prior distribution gives, by definition thechannel capacity
which represents an upper bound on the amount of informationthat can be reliably transmitted through the
chemotactic information system. Similarly, the analytical result in Eq. 4 defines the channel capacity at the
external, cell surface level.

3 Discussion

In this paper, we used the concept of mutual information to study the role of fluctuations in eukaryotic chemo-
taxis. There are several advantages to using the mutual information as a quantitative measure for chemotactic
efficiency. In contrast to the commonly used chemotaxis index [6], it is possible to compute the mutual infor-
mation at different stages of the chemotactic process. Also, it can tell us the minimum mean-squared error in
estimating the input after observing the output, regardless of the input statistics. Finally, the channel capacity,
defined as the mutual information maximized over all input distributions, gives the tightest upper bound on
the amount of information that can be reliably transmitted over a communication channel.

We first computed the external mutual information for gradient sensing at the cell surface which is the first
step in the overall chemotactic information processing. Therefore, this quantity represents the upper bound
of information that can be transmitted to the intracellulardecision-making system. We then proposed and
analyzed three models that incorporate both the external receptor noise and random motility noise and com-
puted their chemotactic mutual information. A comparison between the external and the chemotactic mutual
information enabled us to determine how the internal signaling processes affect the chemotactic performance.
For all three models, we find that the chemotactic mutual information is significantly reduced relative to the
external mutual information. The information reduction inthe linear model I is purely due to the addition of
random motility noise. The third model (BI model with noisy receptor input) specifically models a second
messenger pathway but does not incorporate any motility noise. Thus, the information reduction in the third
model is caused by the nonlinear processing of the noisy receptor signal. Finally, the noisy receptor signal in
model II is processed nonlinearly while this model containsadditional random motility noise. These results
together demonstrate that a significant amount of gradient information can be lost as a result of either intra-
cellular motility noise or complex signal processing. It remains a challenge to further determine which factor
matters more for specific experimental systems.

Our results are restricted to a snapshot of the receptor states, ignoring any auto-correlation of receptors.
In reality, the receptors are correlated in time and this temporal correlation of signals changes the rate of
information transmission at the receptor level. For observation timesT that are comparable to or larger than
the correlation timeτ, the external mutual information Eq. 4 needs to be multiplied by a factorT/τ. For the
external receptor binding process, this correlation time is determined by the diffusion and binding/unbinding
of ligand molecules, i.e.,τ = τrec+ τdiff , whereτrec is the time-scale of receptor-ligand reaction andτdiff
describes the average time to refresh the configuration by diffusion. ForDictyosteliumcells, it is estimated
thatτrec≫ τdiff andτrec∼ 1s, such thatτ ∼ 1s. For the entire chemotactic process, the correlation time is most
likely dominated by the lifetime of a pseudopod. This lifetime has been estimated to be approximately 10-20
seconds inDictyosteliumcells [38,39].

In summary, we have used various tools from statistics and information theory to gain insights about the
physical limits of gradient sensing and chemotactic efficiency. Our results may help derive a better under-
standing of the design principles of biological decision-making systems in general.

A Appendix

A.1 The Sufficient StatisticZ for Gradient Sensing

We first consider how to estimate the gradient directionφ from the receptor signal. Eq. 2 suggests that one can viewY =
{Y1,Y2, ...,YM}T as observations of a sinusoidal signal embedded in white Gaussian noise. It then becomes a problem that is
solvable using the Maximum Likelihood Estimation (MLE). ByEq. 2, the probability density function (PDF) ofY conditional
on the gradient directionφ reads (for small gradientsp < 0.1),

P(Y|φ) ≈ 1

(2πσ 2
s )M/2

exp

[
− 1

2σ 2
s

M

∑
m=1

(
Ym−Y− σ 2

s

2
pcos(ϕm−φ)

)2
]

, (15)
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with Y ≡ NsClocal/(Clocal +Kd). This PDF can be factored as

P(Y|φ) ≈ 1

(2πσ 2
s )M/2

exp

[
− 1

2σ 2
s

M

∑
m=1

(
σ 4

s p2

4
cos2(ϕm−φ)−σ 2

s pZ1(Y)cosφ +σ 2
s pZ2(Y)sinφ

)]
·exp

[
− 1

2σ 2
s

M

∑
m=1

(Ym−Y)2

]
,(16)

whereZ1(Y) ≡ ∑M
m=1(Ym−Y)cosϕm = ∑M

m=1Ymcosϕm andZ2(Y) ≡ ∑M
m=1(Ym−Y)sinϕm = ∑M

m=1Ymsinϕm. According to the
general Neyman-Fisher Theorem [40],Z1(Y) andZ2(Y) are jointly sufficient statistics for the estimation ofφ . Therefore, we
can introduce the spatial filterZ = ∑M

m=1Ymeiϕm = ∑M
m=1Ymcosϕm+ i ∑M

m=1Ymsinϕm ≡ Z1 + iZ2. This complex random variable
itself is the sufficient statistic for the parameterφ .

We can evaluateZ by replacing the summation by integral whenM is large, and expand the integrand aroundp for small
gradients. Specifically, we obtain

E[Z] ≈ Meiφ
∫ 2π

0
E[Y(ω)]eiω dω

2π
=
∫ 2π

0

Neiφ [1+ p
2 cosω

]
eiω

1+Kd/Clocal +
p
2 cosω

dω
2π

=
pNClocalKd

4(Clocal +Kd)2 eiφ +O(p3), (17)

Var[Z1] =
M

∑
m=1

M

∑
n=1

〈ηmηn〉cosϕmcosϕn ≈
M
2π

∫ 2π

0

NCmKd cos2 ϕ
M(Cm+Kd)2 dϕ =

NClocalKd

2(Clocal +Kd)2 +O(p2), (18)

Var[Z2] =
M

∑
m=1

M

∑
n=1

〈ηmηn〉sinϕmsinϕn ≈ Var[Z1], Cov[Z1,Z2] =
M

∑
m=1

M

∑
n=1

〈ηmηn〉cosϕmsinϕn = 0. (19)

Therefore,Z1 andZ2 are independent Gaussian random variables with different means but approximately identical variance. Let

ν =
pNKdClocal

4(Clocal +Kd)2 and σ 2 =
NClocalKd

2(Clocal +Kd)2 . (20)

ThenZ = Z1 + iZ2 follows a complex Gaussian distribution to the first order ofp,

P(Z1,Z2|X) =
1

2πσ 2 exp

[
− (Z1−ν cosφ)2 +(Z2−ν sinφ)2

2σ 2

]
, (21)

In polar coordinates, we writeZ = ρeiψ . The amplitudeρ measures the degree of asymmetry in the occupied receptor distribu-
tion, and the phaseψ is the MLE of the true gradient directionφ . Under the complex Gaussian density in Eq. 21, the amplitude
ρ follows the Rice distribution:

P(ρ) =
ρ
σ 2 exp

[
−ρ2 +ν2

2σ 2

]
I0
(ρν

σ 2

)
, (22)

whereI0 is the modified Bessel function of the first kind and zeroth order. The raw moments for the Rice distribution are

µk =

∫
ρkP(ρ)dρ = σ k2k/2Γ (1+k/2)Lk/2

(
− ν2

2σ 2

)
, (23)

whereΓ (·) is the Gamma function andLk/2(·) is the Laguerre polynomial. So, we have

E[ρ ] = µ1 = σ
√

π
2

L1/2

(
− ν2

2σ 2

)
, (24)

Var[ρ ] = µ2−µ2
1 = 2σ 2 +ν2− πσ 2

2
L2

1/2

(
− ν2

2σ 2

)
. (25)

For the phase variable, let̃ψ = ψ −φ andξ = ν2

2σ2 . Then, as in [41],

P(ψ̃) =
e−ξ

2π

[
1+
√

πξ cosψ̃eξ cos2 ψ̃ (1+erf(ξ
1
2 cosψ̃))

]
, (26)

lim
ξ→0

P(ψ̃) =
1

2π
and lim

ξ→∞
P(ψ̃) =

√
ξ
π

exp(−ξ ψ̃2). (27)

Note that the probabilityP(ψ̃) is symmetric about̃ψ = 0, so the expectation is〈ψ̃〉 = 0. This means that the MLEψ is an

unbiased estimator of the gradient directionφ , i.e.〈ψ〉 = φ = arctan〈Z2〉
〈Z1〉 . Define thesignal to noise ratio(SNR) as

κ ≡ ν2

σ 2 =
Np2ClocalKd

8(Clocal +Kd)2 . (28)
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Numerically, it is found that whenν/σ > 3, bothρ andψ are approximately Gaussian [41]. In the white noise limit (τ → 0),
one gets

ρ ≈ ν +ηρ with 〈ηρ (t)ηρ(s)〉 = σ 2δ (t −s) =
NClocalKd

2(Clocal +Kd)2 δ (t−s), (29)

ψ ≈ φ +ηψ with 〈ηψ(t)ηψ(s)〉 =
σ 2

ν2 δ (t −s) =
8(Clocal +Kd)2

NKdClocal p2 δ (t −s) =
1
κ

δ (t −s). (30)

As an orthogonal transformation from the Cartesian coordinates,ηρ is independent ofηψ . For parameter values that represent
Dictyosteliumcells and for typical experimental conditions, we have verified that the above Gaussian approximation is excellent.

A.2 Calculation of the mutual information

Here, we derive expression for the various mutual information quantities in the main text. As mentioned above, we fixClocal and
p for simplicity. For the distribution of the gradient direction φ , we consider two cases:

Case 1; unbiased cell: For a cell with no a priori knowledge ofφ , we use the uniform distributionP(φ) = 1
2π . The mutual

information ofZ andφ is calculated as

I(Z;φ) = H(Z)−H(Z|φ)

= −
∫

Z
P(Z) lnP(Z)dZ+

∫

Z
P(Z|φ) lnP(Z|φ)dZ

= −
∫

Z

∫

φ
P(φ)P(Z|φ)dφ ln

[∫

φ
P(φ)P(Z|φ)dφ

]
dZ− ln(2πeσ 2)

= − 1
2π

∫

Z

∫

φ
P(Z|φ)dφ ln

[∫

φ
P(Z|φ)dφ

]
dZ− ln(eσ 2)

= − 1
2π

∫

ρ

∫

ψ

P(ρ)

ρ
ln

[
P(ρ)

ρ

]
ρdρdψ − ln(eσ 2)

=
∫

ρ
P(ρ) lnρdρ −

∫

ρ
P(ρ) lnP(ρ)dρ − ln(eσ 2)

= 〈lnρ〉+H(ρ)− ln(eσ 2)

=
ν2

σ 2 −
〈

ln
[
I0
(ρν

σ 2

)]〉

P(ρ)
. (31)

In the above derivation, we have used the following results

dZ = ρdρdψ ,
∫

φ
P(Z|φ)dφ =

1
σ 2 exp

[
−ρ2 +ν2

2σ 2

]
I0
(ρν

σ 2

)
=

P(ρ)

ρ
,

〈lnρ〉 =

∫

ρ
P(ρ) lnρdρ =

1
2

Γ
(

0,
ν2

2σ 2

)
+ lnν ,

H(ρ) = lnσ 2−〈lnρ〉+
∫

ρ
P(ρ)

ρ2 +ν2

2σ 2 dρ −
∫

ρ
P(ρ) ln

[
I0
(ρν

σ 2

)]
dρ ,

= lnσ 2−〈lnρ〉+1+
ν2

σ 2 −
〈

ln
[
I0
(ρν

σ 2

)]〉

P(ρ)
.

In the small SNR limit (i.e.,κ = ν2/σ 2 ≪ 1), we have lnI0(ρν/σ 2) ≈ ρ2ν2/(4σ 4). By Eq. 23,〈ln I0(ρν/σ 2)〉P(ρ) ≈
〈ρ2ν2/(4σ 4)〉P(ρ) = ν2(2σ 2 + ν2)/(4σ 4). Thus, the approximate expression of the external mutual information forκ ≪ 1 is
I(Z;φ) ≈ ν2/σ 2 − ν2(2σ 2 + ν2)/(4σ 4) = κ/2− κ2/4 ≈ κ/2+ O(κ2). Similarly, in the large SNR limitκ ≫ 1, we found
I(Z;φ) ≈ ν2/σ 2− ln[I0(ν2/σ 2)]−1/2 = κ − ln[I0(κ)]−1/2. SinceI0(κ) ≈ eκ/

√
2πκ asκ → ∞, we can further simplify the

expression:I(Z;φ) ≈ ln
√

2πκ/e. In summary, the external mutual information is given by:

I(Z;φ) =
ν2

σ 2 −
〈

ln
[
I0
(ρν

σ 2

)]〉

P(ρ)
≈
{

κ/2 κ ≪ 1,

ln
√

2πκ/e κ ≫ 1.
(32)

The above equation indicates thatI(Z;φ) is solely dependent on the SNR= ν2/σ 2 ≡ κ .
Note that the asymptotic result for small values of the signal-to-noise ratio coincides with the asymptotic result for aGaussian

channel with a normally distributed input [30]. In this case, the mutual information can be written as1
2 log(1+κ) which is, in the

limit of small kappa, simply κ/2−κ2/4+O(κ3). This similarity, however, is coincidental since our channel for small values
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of κ is not Gaussian nor has a normally distributed input. For large values ofκ , the channel becomes Gaussian (see Eq. 30) but
the input remains uniformly distributed between 0 and 2π .

Next, we compute the chemotactic mutual informationI(θ ;φ). For Model I, the chemotactic response angle is given
by θ = arctan(Z̃2/Z̃1) where Z̃1 ∼ N (β ν cosφ ,β 2σ 2 + σ 2

0) and Z̃2 ∼ N (β ν sinφ ,β 2σ 2 + σ 2
0). This implies a new SNR:

κ̃ ≡ β 2ν2/(β 2σ 2 + σ 2
0 ). Thus, similar to the phase variableψ in Z, the response angle is asymptotically Gaussian, i.e.,

θ ∼ N (φ ,1/κ̃). In polar coordinates, we can writẽZ = Z̃1 + iZ̃2 = ρ̃eiθ where agaiñρ follows the Rice distribution. Due
to independence, the magnitude variableρ̃ does not tell us anything about the gradient directionφ . This means that, for the
complex random variablẽZ, all the information aboutφ is contained in the phase variableθ . In other words,I(Z̃;φ) = I(θ ;φ).
Similar to the calculation ofI(Z;φ), we can easily derive the following

I(Z̃;φ) =
β 2ν2

β 2σ 2 +σ 2
0

−
〈

ln

[
I0

(
ρ̃β ν

β 2σ 2 +σ 2
0

)]〉

P(ρ̃)

≈
{

κ̃/2 κ̃ ≪ 1,

ln
√

2πκ̃/e κ̃ ≫ 1.
(33)

This proves Eq. 5.
For Model II, the response angleθ follows thecircular normal(CN) distribution. Thus, we can directly find the chemotactic

mutual information:

I(θ ;φ) =
∫

θ

∫

φ
P(φ)P(θ |φ) ln

P(θ |φ)

P(θ)
dθdφ = ln2π −H(θ |φ) = κ̂

I1(κ̂)

I0(κ̂)
− ln I0(κ̂). (34)

whereP(θ) =
∫

P(θ |φ)P(φ)dφ = 1
2π andκ̂ ≡ 2β ν/(β 2σ 2 +σ 2

0 ). In fact, I(θ ;φ) = h(κ̂) is an increasing function of̂κ and its
limit behaviors are as follows:

I(θ ;φ) ≈
{ 1

2 ln(2πκ̂/e) κ̂ ≫ 1,

κ̂2/4−3κ̂4/64+O(κ̂6) κ̂ ≪ 1.
(35)

Case 2; biased cell: We assume thatP(φ) = CN(φ ′,κ ′) = exp[κ ′ cos(φ −φ ′)]/(2π I0(κ ′)), where the parameterκ ′ controls
the degree of directional bias. Without loss of generality,we will setφ ′ = 0. Then the external mutual information is,

Ibiased(Z;φ) = −
∫

Z

∫

φ
P(Z|φ)P(φ)dφ ln

[∫

φ
P(Z|φ)P(φ)dφ

]
dZ− ln(2πeσ 2)

= −
∫

Z

[∫

φ
P(Z|φ)

exp(κ ′ cosφ)

2π I0(κ ′)
dφ
]

ln

[∫

φ
P(Z|φ)

exp(κ ′ cosφ)

2π I0(κ ′)
dφ
]

dZ− ln(2πeσ 2)

≈ −
∫

ρ

∫

ψ

P(ρ)

ρ
exp(κρ cosψ)

2π I0(κρ)
ln

[
P(ρ)

ρ
exp(κρ cosψ)

2π I0(κρ )

]
ρdρdψ − ln(2πeσ 2)

=
∫

ρ
P(ρ) lnρdρ −

∫

ρ
P(ρ) lnP(ρ)dρ −

∫

ρ
P(ρ)

[
κρ

I1(κρ )

I0(κρ )
− ln I0(κρ )

]
dρ − ln(eσ 2)

= 〈lnρ〉+H(ρ)− ln(eσ 2)−
〈

κρ
I1(κρ )

I0(κρ )
− ln I0(κρ )

〉

P(ρ)

=
ν2

σ 2 −
〈

ln
[
I0
(ρν

σ 2

)]〉

P(ρ)
−〈h(κρ )〉P(ρ), (36)

whereκρ (ρ) is defined by
I1(κρ )

I0(κρ ) = I1(κ ′)
I0(κ ′)

I1(νρ/σ2)
I0(νρ/σ2)

, or more convenientlyκρ ≃ κ ′νρ/(κ ′σ 2 +νρ). The key result we have used

is

P(Z) =

∫

φ
P(Z|φ)P(φ)dφ

=

∫

φ

1
2πσ 2 exp

[
− (Z1−ν cosφ)2 +(Z2−ν sinφ)2

2σ 2

]
exp(κ ′ cosφ)

2π I0(κ ′)
dφ

=
1

4π2σ 2I0(κ ′)
exp

[
−Z2

1 +Z2
2 +ν2

2σ 2

]∫

φ
exp

[
κ ′ cosφ +

νZ1

σ 2 cosφ +
νZ1

σ 2 sinφ
]

dφ

=
1

2πσ 2I0(κ ′)
exp

(
−ρ2 +ν2

2σ 2

)
I0

(√
κ ′2 +

ν2ρ2

σ 4 +
2κ ′νZ1

σ 2

)

=
P(ρ)

ρ
1

2π I0(κ ′)I0(νρ/σ 2)
I0

(√
κ ′2 +

ν2ρ2

σ 4 +
2κ ′νρ cosψ

σ 2

)

≈ P(ρ)

ρ
exp(κρ cosψ)

2π I0(κρ)
, (37)



13

where the last line is inspired by the convolution property of two CN distributions: Letϕ1 andϕ2 be independently distributed
as CN(φ1,κ1) and CN(φ2,κ2), respectively. Then the probability density function ofϕ = ϕ1 +ϕ2(mod2π) is

P(ϕ = ϕ1 +ϕ2) =
1

4π2I0(κ1)I0(κ2)

∫
exp[κ1cos(ϑ −φ1)+κ2 cos(ϕ −ϑ −φ2)]dϑ

=
1

2π I0(κ1)I0(κ2)
I0

(√
κ2

1 +κ2
2 +2κ1κ2 cos(ϕ −φ1−φ2)

)
. (38)

The convolution of two CN distributions is approximately a CN distribution [42], i.e.,P(ϕ) ≈ CN(φ1 + φ2,κ3) whereκ3 is the

solution of I1(κ3)
I0(κ3) = I1(κ1)

I0(κ1)
I1(κ2)
I0(κ2) . Through numerical testing, we find a more convenient expressionκ3 = κ1κ2/(κ1 +κ2). In sum,

the following approximation is excellent and useful:

1
2π I0(κ1)I0(κ2)

I0

(√
κ2

1 +κ2
2 +2κ1κ2 cos(ϕ −φ1−φ2)

)
≈ exp[κ3cos(ϕ −φ1−φ2)]

2π I0(κ3)
. (39)

Now considering the small SNR limit (κ ≪ 1), we obtain

I1(νρ/σ 2)

I0(νρ/σ 2)
≈ 1

2
νρ
σ 2 and therefore,

κρ

2
≈ I1(κρ)

I0(κρ)
=

I1(κ ′)
I0(κ ′)

I1(νρ/σ 2)

I0(νρ/σ 2)
≈ I1(κ ′)

I0(κ ′)
νρ
2σ 2 . (40)

Thus, we have the following approximation atκ ≪ 1,

〈h(κρ )〉P(ρ) =

〈
κρ

I1(κρ )

I0(κρ )
− ln I0(κρ )

〉

P(ρ)

≈
〈

ν2ρ2

2σ 4

[
I1(κ ′)
I0(κ ′)

]2

− ln

[
I0

(
I1(κ ′)
I0(κ ′)

νρ
σ 2

)]〉

P(ρ)

≈
(

ν2

σ 2 +
ν4

2σ 4

)[
I1(κ ′)
I0(κ ′)

]2

− ν2

2σ 2

[
I1(κ ′)
I0(κ ′)

]2

≈ κ
2

[
I1(κ ′)
I0(κ ′)

]2

+O(κ2). (41)

In the large SNR limitκ ≫ 1, the expectation and variance ofρ are asymptotically equal toν andσ 2. So we can replaceρ by ν
when evaluating〈h(κρ )〉. Defineκ ′′ = κρ(ρ = ν) = κ ′ν2/(κ ′σ 2 +ν2) = κ ′κ/(κ ′ +κ). Then,

〈h(κρ)〉P(ρ) =

〈
κρ

I1(κρ)

I0(κρ)
− ln I0(κρ)

〉

P(ρ)

≈ κ ′′ I1(κ ′′)
I0(κ ′′)

− ln I0(κ ′′) = h(κ ′′). (42)

and thus

Ibiased(Z;φ) ≈
{

κ
(
1− [I1(κ ′)/I0(κ ′)]2

)
/2 κ ≪ 1,

κ − ln[I0(κ)]−1/2−κ ′′I1(κ ′′)/I0(κ ′′)+ ln I0(κ ′′) κ ≫ 1.
(43)

We can check the above approximation by considering the limit κ ′ → ∞, under which we should haveIbiased(Z;φ) = 0.
Obviously, the approximate expression ofIbiased(Z;φ) at κ ≪ 1 satisfies this limit property. Further, we notice that

lim
κ ′→∞

I1(κρ )

I0(κρ )
= lim

κ ′→∞

I1(κ ′)
I0(κ ′)

I1(νρ/σ 2)

I0(νρ/σ 2)
=

I1(νρ/σ 2)

I0(νρ/σ 2)
,

which means thatκρ → νρ/σ 2 and thusκ ′′ → ν2/σ 2 = κ . Then, at the large SNR limit (κ ≫ 1) and forκ ′ → ∞, we have

Ibiased(Z;φ) ≈ κ − ln[I0(κ)]−1/2−κ ′′I1(κ ′′)/I0(κ ′′)+ ln I0(κ ′′)

→ κ − ln[I0(κ)]−1/2−κ I1(κ)/I0(κ)+ ln[I0(κ)]

≈ κ −1/2−κ(1−κ/2)

= 0, (44)

where we used thatI1(x)/I0(x) ≈ 1− 1
2x +O( 1

x2 ) for largex. In fact, one can directly check thatI(Z;φ) vanishes at the limit

κ ′ → ∞ (such thatκρ → νρ/σ 2) since

Ibiased(Z;φ) → ν2

σ 2 −
〈

ln
[
I0
(ρν

σ 2

)]〉

P(ρ)
−
〈

νρ
σ 2

I1(νρ/σ 2)

I0(νρ/σ 2)
− ln

[
I0
(ρν

σ 2

)]〉

P(ρ)

=
ν2

σ 2 −
∫ νρ

σ 2

I1(νρ/σ 2)

I0(νρ/σ 2)

ρ
σ 2 exp

[
−ρ2 +ν2

2σ 2

]
I0
(ρν

σ 2

)
dρ

=
ν2

σ 2 −
∫ νρ2

σ 4 exp

[
−ρ2 +ν2

2σ 2

]
I1
(ρν

σ 2

)
dρ

=
ν2

σ 2 − ν2

σ 2

= 0. (45)
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Under the directional bias, the chemotactic mutual information for Model II is given by

Ibiased(θ ;φ) =
∫

θ
P(θ |φ) lnP(θ |φ)dθ −

∫

θ
P(θ) lnP(θ)dθd

≈ κ̂
I1(κ̂)

I0(κ̂)
− ln[2π I0(κ̂)]− κ̂ ′ I1(κ̂ ′)

I0(κ̂ ′)
− ln[2π I0(κ̂ ′)]

= κ̂
I1(κ̂)

I0(κ̂)
− κ̂ ′ I1(κ̂ ′)

I0(κ̂ ′)
+ ln

I0(κ̂ ′)
I0(κ̂)

, (46)

with κ̂ ′ defined throughI1(κ̂ ′)
I0(κ̂ ′) = I1(κ̂)

I0(κ̂)
I1(κ ′)
I0(κ ′) , or more conveniently,̂κ ′ ≃ κ̂κ ′/(κ̂ +κ ′). The key calculation is

P(θ) =
∫

P(θ |φ)P(φ)dφ

=
∫

exp[κ̂ cos(θ −φ)]

2π I0(κ̂)

exp(κ ′ cosφ)

2π I0(κ ′)
dφ

=
1

2π I0(κ̂)I0(κ ′)
I0(
√

κ̂2 +κ ′2 +2κ̂κ ′ cosθ) ≈ exp(κ̂ ′ cosθ)

2π I0(κ̂ ′)
. (47)

A.3 Blahut-Arimoto Algorithm and Channel Capacity

Consider a simple communication channelX →Y, whereX andY represent the input and output random variables, respectively.
The maximum mutual information over all marginal input distribution P(x) defines the channel capacityC, i.e.,

C = max
P(x)

I(Y;X). (48)

Blahut-Arimoto algorithm provides an efficient iterative method of determining the channel capacity [43,44]. Starting with an
arbitrary marginal distributionP(x), the algorithm updatesP(x) at each time by:

Pnew(x) =
exp[

∫
Y P(y|x) lnP(x|y)dy]∫

X exp[
∫
Y P(y|x) lnP(x|y)dy]dx

, (49)

with P(x|y) = P(y|x)Pold(x)/P(y). Iteration of the above process will converge to the optimalmarginal distribution that maxi-
mizesI(Y;X) and thus achieves the channel capacity. In our paper, the updating rule of Eq. 49 becomes

Pnew(φ) =
exp[

∫
θ P(θ |φ) lnP(φ |θ)dθ ]∫

φ exp[
∫

θ P(θ |φ) lnP(φ |θ)dθ ]dφ
, (50)

with P(φ |θ) = P(θ |φ)Pold(φ)/P(θ). One can check that whenPold(φ) = 1
2π , the new marginal distributionPnew(φ) is also

uniform by Eq. 50. First of all,P(θ) =
∫

φ P(θ |φ)Pold(φ)dφ = 1
2π , thusP(φ |θ) = P(θ |φ)Pold(φ)/P(θ) = P(θ |φ). Next, we

notice that

∫

θ
P(θ |φ) lnP(φ |θ)dθ =

∫

θ
P(θ |φ) lnP(θ |φ)dθ = −H(θ |φ) = κ̂ I1(κ̂)/I0(κ̂)− ln[2π I0(κ̂)] = h(κ̂)− ln(2π), (51)

which is independent ofφ . Hence,

Pnew(φ) =
exp[h(κ̂)− ln(2π)]∫

φ exp[h(κ̂)− ln(2π)]dφ
=

1∫
φ dφ

=
1

2π
. (52)

Therefore, the uniform source distribution must maximizeI(θ ;φ) (and similarlyI(Z;φ)), implying that our mutual information
results under the unbiased case give the channel capacity atdifferent levels.
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