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Physics 213 Winter 2023
Assignment 9 —  Solutions

Due 11:00am Tuesday March 14, 2023

1. Brainwarmers.

(a)

[optional] Is it true that 0 < S(A|C) + S(B|C)? Prove or give a counterex-
ample.

A counterexample is:

) amc = 1004 ® < (100) + 1)
which has S(A) = S(BC) =0,5(B) = S(C) = S(AB) = S(AC) =1 and
hence S(A|C) = S(AC)-S(C) =0,9(B|C)=S(BC)-S(C)=0-1= -1

S(A|C) + S(B|C) = —1.
In contrast, SSA says e.g.

0 < S(C|A)+S(C|B) = S(AC) — S(A)+S(AB)—S(B) = 1—0+1—1 = 1.

Notice that SSA in this form is a manifestation of monogamy of entangle-
ment: S(C|A) and S(C|B) can each be negative, precisely when AC' or CB
are entangled, respectively. But SSA (in the form 0 < S(C|A) + S(C|B))
says that making AC more entangled constrains how entangled BC' can be.

Show that the von Neumann entropy is the special case S(p) = lir% Sa(p)
oa—
of the Renyi entropies:
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Alternatively, following Jin-Long Huang, we can subtract 0 = log)_ p,
from log >, p% and immediately recognize the expression for the derivative

log >, vy —log Y, pe

lim S, (p) = — lim

a—1 a—1 oa—1
= —0,108 > plla=t 8)
ap(a),é logpa
:—E:Z:—pa]aﬂ:—Zpalnga:S(P)- (9)

2. Work and the Holevo bound. [optional]

(a) Show that the Holevo quantity x(pa, pa) = S(pav) — Do PaS (Pa) (With pg, =
Y _aPapa) can be written as X(Pa, pa) = D_, PaD(pallpav)-
(b) Show that
> PaD(pallo) = X(pa: pa) + D(pasl|o).
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(c) Suppose A labors in contact with a heat bath at temperature T, and is
governed by hamiltonian H. Convince yourself that in order to create the
signal state p,, the required work A must do is

Wao > Frip.] — Frlpr] = (kgT'In2) D(pa||pr),

where Fr(p|] = trtpH — T'S,n[p] is the free energy functional.
(d) Show that the average work W =Y p,W, satisfies

W = (kpT'In.2) X(Pas pa)-
(hint: D(p||o) > 0).
(e) Apply the Holevo bound to conclude
W > (kgTIn2)I(A: B),
so that that every bit of information A can convey to B requires average

work at least kg7 In 2. Yay, Landauer.

(f) [optional] Estimate the amount of work done per bit sent to your cellular
telephone.

3. Holevo quantity and channel capacity. [optional] Consider a collection of
mutually-commuting density matrices {p,}. Show that in this case, the Holevo
quantity

X(Pas Pa) = S(pav) — Zpas(pa) = ZpaD(paHpav)a Pav = Zpapa

is the mutual information /(A : B), where the random variable B is the variable
b labelling the mutual eigenvectors of the p,: p, = >, A2|b)b].

So suppose that p, = >, péa)|b)<b| are all simultaneously diagonal. First, notice
that

p(bla) = (blpalb)

is the conditional probability for outcome b given signal a. Then

S(pav) - - Zpap((zb) log (Z pa/ﬁ?) (10)
ab a’

= — Y p(bla)p, log (Zp(bla)pa'> (11)
== p(b)logp(b) = S(B). (12)



Next, notice that under the assumption that the p, are all diagonal in the |b)
basis,

S(pa) = _Z<b’pa10gpa’b Z b!ZW b/‘pb, logpb,) ‘b Zpb Ing
b
And therefore

Y paS(pa) =Y paH(B|A = a) = H(B|A) = S(AB) — 5(4)

is the conditional entropy.

Putting these together, the Holevo quantity is
X(paapa - pav Zpa pa - (SAB_SA) :SA+SB_SAB:](A: B)7

the mutual information.

This suggests that a good definition of the capacity of a quantum channel for
sending classical information (let’s call it classical capacity) is determined by the
Holevo quantity as

C = X(Pa, pa)/T

(where T is how long the information takes to go down the channel). And indeed,
recall the Holevo bound, which says that I(A : B) < Xx(pa,p.) where B is the
outcomes of any measurement done on Za DaPa-

. Channel capacity of the radiation field. [optional but highly encouraged]
Suppose (crazy idea) we wanted to send signals using the electromagnetic field.

The radiation field is a collection of quantum harmonic oscillators labelled by
frequency, w. For simplicity, let’s consider a one-dimensional field with only one
polarization, so there is one oscillator for each value of w. In the first part of
the problem, we’ll put the system in a box, so that the allowed frequencies are
integer multiples of some fundamental frequency, and the energy of a state with
n; photons in mode j is E({n}) = >, jn;h = Nh for some constant h.

The signal information could be stored for example in the number of photons
n(w) with a given frequency. As in other examples, to send message a, A puts
the field in the state p,. And the message can be extracted by measurements on
the resulting radiation field, for example by counting photons.

For practical reasons, we will fix the power P of the signal. There are several
ways to implement this constraint; we’ll consider two below.

At first we ignore the presence of noise.
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(a)

Show that the Holevo quantity x (and hence the channel capacity, no matter
what measurement we do) is bounded by the entropy of the average signal
> PaPa-

S(pa) = 0,50 X < S(pav)-

What is the p,, that maximizes the entropy, subject to the constraint of
fixed energy E({n}) = PT (where T is the duration of the signal)?

It is the uniform state on the set of energy eigenstates with E({n}) = PT =
Ey, 1
En
Pmaz = Ny
where Ny is the dimension of this space. Ny is equal to the number of
partitions of N. This is like the microcanonical ensemble.
N is related to P by
PT = ENn = Nh.

As a useful intermediate step, show that the entropy for a single harmonic
oscillator in thermal equilibrium can be written in terms of the average
occupation number 7 as Sg(n) where

Sg(n) = (n+1)log(n + 1) — nlogn.

The partition function for a single SHO mode with frequency w is

ﬂw/2

Z =tre ? Ze Bu(nt3) — AT

The average occupation number is the Bose function n = eB‘*’;—l’ which
satisfies 5
e’ n+1
n41= e
n efe —1"  n ¢
Therefore
e
S=—0rF =—In(e™ —1) + Bw B 1 (13)
ery —
n+1 L _
—Inf+In’ n+1=-nlnn+ (n+1)In(n+1). (14)
n

Alternatively, we can write p(n) = e #“("+2) /Z in terms of 7 and 71 + 1 as

AT

n

p(n) = e (1 — e ) = (EGE



and use

Zp ) log p(n (15)

_ n _

= —nlnn+(n+1)ln(n+1). (17)

(d) Using the definition of classical capacity in the previous problem, determine
the classical capacity of the channel in part 4b at large 7.
You may use the Hardy-Ramanujan formula, which counts partitions of N
at large INV:

N(N) =

4\/’1\7 wﬁ+@<€2ﬁ>

We can use the H-R formula because N is large when PT is large.

The channel capacity is a rate:

o S log/\/ / \/2 PT 2
T T N 3hT

(e) Alternatively, we may impose the condition of fixed power as a condition

on the average energy. The state which maximizes entropy at fixed average
energy is a thermal state. The temperature is determined by the average
energy, which is in turn related to the power carried by the signal. Find
the relation between T" and P. Find a bound on the channel capacity at
fixed average energy. (In this part of the problem you may take the infinite-
volume limit.)

The energy density in the radiation field at temperature 7= 1/ (in one
infinite dimension) is

€)= [ty = [dwogt="0

If we wait a time T a chunk of radiation of length ¢7 will pass us; its energy
is £ = (&) ¢T. We must equate this with £ = PT giving

en'T?

P=c() = TR




Similarly, when counting the rate of communication, the signal is moving
at the speed of light, so in time 7T, a chunk of length ¢7 passes B. So the
bound on the rate is given by ¢S where S is the entropy density.

C = Spas = € / dwSp (7 (w)).

Here Sg(n) = (n+ 1)log(n + 1) — nlogn is the entropy of a bosonic mode
with average occupation number n. In thermal equilibrium at temperature
T, n(w) = —7— is the Bose distribution.

Inevitably there will be noise, represented by an additional number of photons

n(w) at each frequency which are out of our control. Assume the noise is thermal,

in equilibrium at temperature T. Suppose the power of the signal P (which is

some amount of extra photons on top of the noise) is still fixed.

(f)

Convince yourself that the upper bound on the channel capacity is now
reduced by the entropy of the noise:

cT < S(pTS+N) - S(pTN>

where pr is the thermal density matrix with temperature 7', Ty is the noise
temperature, and Ts,y is the temperature at an average energy which in-
cludes both the noise and the signal. Find T, 5 in terms of Ty and P.

If N is the power in the noise

T
(P"‘N)T:ETgﬂv

[12
TS+N = —PC + T]%[
m

Do the integral over frequency. Study the high- and low-temperature limits
of your answer. Confirm Landauer’s principle in the former case in the
following sense: compute the minimum power required to send a single bit.

/OO dwSp((n)y) = T/OO d0Sp (69 1_ 1) = T%z,

o0 — 00

as Mathematica can tell you.



Then

C < S(st+N) S(pTN) (18)
= % (Ts4n —Tn) (19)
:?( Zp +T12V—TN> (20)

[+

When P > T%, we can ignore the noise and we reproduce the answer from
the first part of the problem. In the high-temperature limit we find

Pc

cC< ———
~ kgTylog?2

which says that the condition to send a single bit is precisely: the power
must exceed the Landauer bound, kg7 log 2.

This problem is loosely based on the discussion in Vedral, quant-ph /0102094,
which I found incredibly confusing. For example: there is a 3 missing in
eqn 45, the expressions for the SHO thermal density matrices should read

plw) =3, 1;?;:“ |n)(n|, there is a minus sign missing in the expression for

Sg, and the factors of ¢ are missing, while all the factors of A, kg are present.
For more on this subject see this review by Caves and Drummond or this
beautiful PRL by Yuen and Ozawa.

5. Direct application of Lieb’s theorem.

We only used a very special case of Lieb’s theorem to prove monotonicity of the
relative entropy. Surely there is more to learn from it.

Consider an ensemble of states p = > .p;p;, and a unitary operator U (for
example, it may be closed-system time evolution).
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https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.66.481
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.70.363
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.70.363

Show that the relative entropy between p(t) = UpUT and p is convex in p:

Dllo) < 32 mD(pi(0) )

In the notation we used for Lieb’s theorem, f, x(p,0) = trXTp!=*X o,

D(p(t)||p) = —0s|s=otrUp' Ul p* = —0;|s—0 fs ui (P, p)-

Since Lieb’s theorem says fus(p, p) is jointly concave, this function is jointly
convex:

Hp Zpl a ‘S OfsUT pmpl sz pz sz

as requested.

Open ended bonus problem: see if you can find a better result by directly applying
Lieb’s joint concavity theorem to a problem in many body physics.

. Random singlets. [optional]

Consider gbits arranged on a chain. Suppose that the groundstate is made of
random singlets, in the following sense: for a given site i, with probability f(]i —
jla) (a is the lattice spacing), the spins at 4 and j are in the state (|11)—|[11))/v/2.
Every spin is paired with some other spin. Consider in turn the case of short-

range singlets where f(z) oc e=*/¢, and long-range singlets where f(x) o x2—_1H52.

(a) Consider a region A which is an interval [—£¢ £-<] (¢ < R) and B is what

we called A~ (nearly the complement), more precisely: B = [—oo, —%] U
(£, 0c]. Let I.(R) = I(A : B) = S(A) 4+ S(B) — S(AB) be their mutual
information.

Find <§z : §]> (where S = 2(c®,0Y,0%)) and I.(R). In both cases assume
the regions are big enough that you can average over regions and use a
continuum approximation (&, > lattice spacing).

Check that the answer is consistent with the mutual information bound on
correlations.

If two spins ¢j are paired, (singlet!ij S, - §j ]singlet}ij = —2. We assume
that otherwise <§Z : §]> = 0. Therefore <§z : §]> = —3f(li — ).

The mutual information is equal to 2log 2 times the number of singlet bonds
connecting the two regions. On average, this is

mZ2log2/de/Ada:f(x—y).
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In the case of short-range singlets this gives

R/2 R/2 N R
I(A: B) g = 4/ dyey/g/ dre/¢ = 8¢%¢ 2 sinh —,
—0o0 —R/2 25

which approaches 4£2 for R > €.

For long range singlets, Mathematica says

- 2
I(A: B)ypg = 2? (77 — 2tan~! <?>) +In (1 + %)

which is unbounded as R > 4.

Actually the bound we proved does not quite apply to the operator §Z . §j
because this is not of the form O, Op (rather it is a sum of three such
operators). Let’s instead check X;X;, for which

(singlet|,; X; X |singlet),; = =1, (X; X;) = —f(li — j]), [ X[ = 1.

Then )
<Xin> 1

SIXE = éf(yz — )%

In both cases, I is larger than f(e), where € is the maximum separation
between A and A~.

(b) Consider instead the case where B = [—o0o, —2 — L]U[£ + L, oc], so that A
and B are separated by a distance L. Show that: for short-range singlets,
(i) all (averaged) correlation functions decay exponentially in L (ii) I(A :
B) ~ e 1/¢ for large L (and hence the mutual information satisfies an area
law). For long-range singlets (i) (averaged) correlation functions have power

law decay (ii) I(A : B) ~log(2R — L) for large L, and there is no area law.
Clearly the averaged correlation functions are simply proportional to f(i—j),
which (since f is monotonically decreasing in both cases) is less than its value

at the minimum separation between A and B, namely f(L).

Now

- , R
I(A:B),,, =20 # sinh % 128 agre e,

exponential decay.

This problem is from this paper.
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