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1. Too many numbers.

Find the number of qbits the dimension of whose Hilbert space is the number

of atoms in the Earth. (It’s not very many.) Now imagining diagonalizing a

Hamiltonian acting on this space.

N♁ ∼ 5 · 1024kg · (1027nucleons per kg) (∼ 50 nucleons per atom)−1 = 1050

1GeV/c2 = 109eV/c2 ∼ 10−27kg.

2N = 1050 =⇒ N ∼ 165.

2. Warmup for the next problem.

Parametrize the general pure state of a qbit in terms of two real angles. A good

way to do this is to find the eigenstates of

σn ≡ ň · ~σ ≡ nxX + nyY + nzZ

where ň is a unit vector.

Compute the expectation values of X and Z in this state, as a function of the

angles θ, ϕ.

ň · ~σ squares to one so has eigenvalues ±1. It is related by a rotation to any one

of the Pauli matrices, say σx. So we can find its eigenvectors by acting with a

rotation on the eigenvectors of σx:

|+, ň〉 = R(θ, ϕ) |→〉 , σx |→〉 = |→〉 ,

and R(θ, ϕ) = eiϕ
σx

2 eiθ
σz

2 . Alternatively, we can just diagonalize the matrix

ň · ~σ =

(
nz nx − iny

nx + iny −nz

)
=

(
cos θ sin θeiϕ

sin θe−iϕ − cos θ

)
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(where I’ve chosen the polar axis to be ž, so that ň = cos θ cosϕx̌+ cos θ sinϕy̌+

sin θž), which has eigenvectors (in the z-basis)

|+ň〉 =

(
cos θ/2

sin θ/2e−iϕ

)
, |−ň〉 =

(
sin θ/2

− cos θ/2e−iϕ

)
.

That is,

|+ň〉 = cos θ/2 |↑〉+ e−iϕ sin θ/2 |↓〉 .

The expectations are 〈
±, ň|σi|±, ň

〉
= ±ni

so 〈Z〉 = sin θ, 〈X〉 = cos θ cosϕ.

3. Mean field theory is product states.

Consider a spin system on a lattice. More specifically, consider the transverse

field Ising model:

H = −J

∑
〈x,y〉

ZxZy + g
∑
x

Xx

 .

Consider the mean field state:

|ψMF〉 = ⊗x |ψ〉x = ⊗x

(∑
sx=±

ψsx |sx〉x

)
, (1)

i.e., restrict to a product state where the state ψ of each spin is the same.

Write the variational energy for the mean field state, i.e. compute the expectation

value of H in the state |ψMF〉, E(θ, ϕ) ≡ 〈ψMF|H |ψMF〉.

Assuming sx is independent of x, minimize E(θ, ϕ) for each value of the di-

mensionless parameter g. Find the groundstate magnetization 〈ψ|Zx |ψ〉 in this

approximation, as a function of g.

The idea of mean field theory is that we completely ignore entanglement between

different sites, and suppose that the state is a product state

|MFT 〉 = |ψ1〉 ⊗ |ψ2〉 · · · |ψj〉 · · · ...

If we further assume translational invariance then the state at every site is the

same and we have one bloch sphere to minimize over for each g:

|ň〉 = ⊗j |↑ň〉j = ⊗j
(

cos
θ

2
eiϕ/2 |→〉+ sin

θ

2
e−iϕ/2 |←〉

)
j

.

2



Here θ is the angle ň makes with the x axis, and ϕ is the azimuthal angle in

the yz plane, from the z-axis. Perhaps you might have instead chosen the z axis

to be the polar axis, as I did in the previous problem. We should get the same

answer for the physics. The solution is a little prettier in this basis.

To evaluate the energy expectation in this state, we only need to know single-qbit

expectations:

〈↑ň|X |↑ň〉 = cos θ, 〈↑ň|Z |↑ň〉 = sin θ cosϕ.

So the energy expectation is

E(θ, ϕ) ≡ 〈MFT |H |MFT 〉

= −J

∑
〈ij〉

〈Z〉2 + g
∑
i

〈X〉


= −NJ

(
k sin2 θ cos2 ϕ+ g cos θ

)
where N is the total number of sites and k is the

number of links incident on each site of the lattice.

In d = 1, we have k = 1, while for the square lattice

we have k = 2. I’ve set k = 1 in the figures at right.

This is extremized when ϕ = 0, π and when

0 = ∂θE = NJ sin θ (2 cos θ − g) .

Notice that when θ = 0, the two solutions of ϕ are the same, since the ϕ co-

ordinate degenerates at the pole. The solutions at cos θ = g/2 only exist when

g/2 < 1. In that case they are minima (see the figure) since ∂2
θE|cos θ=g/2 > 0,

while ∂2
θE|θ=0 = NJ(g − 2) is negative for g < 2. (Notice that ϕ = π can be

included by allowing θ ∈ (−π, π], as in the figure.)

So in d = 1, mean field theory predicts a phase transition at g = 2, from two states

where 〈Zj〉 = sin θ = ±
√

1− g2

.4
to one where 〈Z〉 = 0. The actual transition is

at g = 1, as we know from the solution using Jordan-Wigner (see e.g. my Whence

QFT? notes); MFT overestimates the range of the ordered phase because it leaves

out fluctuations which tend to destroy the order.
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Let’s study the behavior near the transition, where θ is small. Then the energy

can be approximated by its Taylor expansion

E(θ) ' NJ

(
−2 +

g − 2

2
θ2 +

1

4
θ4

)
(where I have set g = gc = 2 except in the crucial quadratic term). This has

minima at

〈Zj〉 = sin θ ' θ = ±
√
gc − g . (2)

The energy behaves like

EMFT (g) =


3
4
(gc − g)2 , g < gc

0 , g ≥ gc

Notice that ∂gE is continuous at the transition. (Recall that the groundstate

energy of the quantum system is equal to the free energy of the corresponding

stat mech system, so ∂gE ∝ ∂TF continuous is the same criterion for a continuous

transition.) So mean field theory (correctly) predicts a continuous quantum phase

transition between the ordered phase and the disordered phase. The location of

the transition is wrong (mean field theory overestimates the size of the ordered

region because it leaves out lots of order-destroying fluctuations), and so are other

properties, such as the exponent in (??), which should be 1/8 instead of 1/2.

4. Classical versus quantum circuit sampling. [This is an optional open-ended

problem intended as food for thought.]

We showed in lecture that the set of states reachable from a given state by

polynomial-depth quantum circuits is a small fraction of the whole Hilbert space.

This followed by close analogy with the statement that most boolean functions

aren’t computable using a polynomial number of gates. The closeness of this

analogy leads to the following question:

Let PC(s, t) be the probability of obtaining bit string s when starting with N

uniform iid bits and feeding them through a classical circuit C made of t layers

of 2-bit gates.

Let

PU(s, t) =
∣∣〈sz = s|U ⊗Ni=1 |sx = 1〉

∣∣2
where U is a quantum circuit made from t layers of neighboring 2-qbit gates.

This is the probability distribution for measurements of σzi on the state resulting

from acting a quantum circuit U on a product of σx eigenstates.
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Show that when t = 0 the distributions are the same.

Under some assumptions about the scaling of t with N , can we find a PU(s, t)

that can never be a PC(s, t)?

If we were allowed to measure in the X-basis as well as the Z-basis then it would

be easy, because we could for example just design the circuit to produce at time

t Bell pairs between spins 2n − 1 and 2n, and do exactly the Bell protocol on

them.

Warning: I don’t know the answer.

I still don’t know the answer, but here are some references I know that discuss

attempts to distinguish between classical and quantum by sampling problems:

Rather than thinking about qbits realized by spins, we could think about a Hilbert

space spanned by states of photons moving through optical fibers. Then gates are

made out of beamsplitters and mirrors. This paper by Aaronson and Arkhipov

shows that sampling the output of such circuits of linear optical elements should

be difficult for a classical computer, based on the known hardness of computing

permanents of matrices.

This paper by Bravyi, Gosset and Koenig gives an example of a problem that no

classical finite-depth circuit can solve (basically because of Bell inequalities), but

which can be solved by a local quantum circuit of the same size. The answer to

the computation arises by sampling PU as defined above. Further recent progress

in this direction appears here.

This paper (from around the same time as the boson sampling paper) by Bremner,

Jozsa and Shepherd studies circuits where all the gates are diagonal in some

basis (say x). The initial state and the measurements are done in the z basis.

They show (somehow I haven’t managed to extract) that being able to simulate

the output of such a thing with a classical circuit would imply Bad Things for

complexity theory.

Finally, the recent breakthrough by Google is just such a sampling problem. They

create a random quantum circuit and sample from it in the z basis. Some of the

theory about this is here.
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