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Thanks in advance for following the submission guidelines on hw01. Please ask me
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1. Another consequence of the optical theorem.

A general statement of the optical theorem is:

−i (M(a→ b)−M(b→ a)) =
∑
f

∫
dΦfM?(b→ f)M(a→ f) .

Consider QED with electrons and muons.

(a) Consider scattering of an electron (e−) and a positron (e+) into e−e+ (so

a = b in the notation above). We wish to consider the contribution to the

imaginary part of the amplitude for this process which is proportional to

Q2
eQ

2
µ where Qe and Qµ are the electric charges of the electron and muon

(which are in fact numerically equal but never mind that). Draw the rele-

vant Feynman diagram, and compute the imaginary part of this amplitude

ImΠµ(q2) (just the Q2
eQ

2
µ bit) as a function of s ≡ (k1 + k2)2 where k1,2 are

the momenta of the incoming e+ and e−.

Check that the imaginary part is independent of the cutoff.

There are a number of diagrams at this order, but the only one that con-

tributes an imaginary part at finite s is the s-channel diagram with a muon

loop, that is, where we insert into the photon propagator in the tree level

s-channel diagram the contribution to the vacuum polarization from a muon

loop (in red):

The key ingredient we’ve calculated already:

δΠ2(q2) = Π2(q2)− Π2(0) =
e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

m2

)
.
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(Note that without the fermion-loop minus sign, the sign would be opposite.)

The imaginary part ImδΠ2(q2+iε) comes from the locus where the argument

of the log is negative (in which case the imaginary part is π), which happens

when m2 − x(1 − x)q2 < 0, which happens when x ∈ [x−, x+] ≡ [1
2
−√

1−m2/q2, 1
2

+
√

1−m2/q2]. So

ImδΠ2(q2) = − e2

2π2

∫ x+

x−

dxx(1− x)π = −α
3

√
1− 4m2/q2

(
1 +

2m2

q2

)
.

Note that there is also a t-channel diagram proportional to Q2
eQ

2
µ, but it

does not have an imaginary part.

(b) Use the optical theorem and the fact that the total cross section for e+e− →
µ+µ− must be positive

σ(e+e− → µ+µ−) ≥ 0

to show that a Feynman diagram with a fermion loop must come with a

minus sign. Check that with the correct sign, the optical theorem is verified.

Consider forward scattering of e+e−, and average over initial spins using

1

4

∑
spins

ū(k)γµv(k+)v̄(k+)γµu(k) = −k · k+ − 4m2
e ' −(k + k+)2 = −s.

(Notice that this is negative!) Recalling that Πµν
2 = q2ηµνiΠ2(q2)+ longitu-

dinal terms, gives

ImM = −s
2

s2
ImΠ2(q2) (1)

=
e4

12π

√
1− 4m2

q2
(1 +

2m2

q2
) = 2Ecmpcmσe+e−→L+L−

E�me' 2sσe+e−→L+L− .

(2)

If we left out the minus sign, we would get a negative cross section. In fact,

this is how Feynman first figured out this particular Feynman rule.

2. Bubble-chain approximation for bound states.

In discussing the form of the spectral density for an operator which creates a

massive particle, I mentioned that in addition to the single-particle delta function

at s = m2, and the continuum above s = (2m)2, there could be delta functions

associated with bound states at m2 < s < (2m)2. Here we’ll get an idea how we

might discover such a thing theoretically.
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For this problem, we’re going to work in D = 2 + 1 dimensions, so that we can

avoid the problem of UV divergences. Consider the theory of a single real scalar

with action

S[φ] =

∫
d3x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4

)
where m, g are real. In this problem we will consider both signs of g, without

worrying about questions of the stability of the vacuum.

I got this problem from Lawrence Hall.

(a) Consider the amplitude M(s) for elastic scattering φφ→ φφ, with s = E2
T ,

the square of the total center of mass energy. ComputeM(s) in the bubble-

chain approximation, defined as the following infinite sum of Feynman dia-

grams:

+ · · ·

Do not worry about justifying the validity of the approximation (it is not

justified in this theory, though it is in a large-n version of the theory), and

do not worry about convergence of the series. You can leave your answer as

a Feynman parameter integral.

iM = −ig + (−ig)2I(s) + (−ig)3I(s)2 + · · · (3)

= −ig
(
1 + (−ig)I(s) + (−ig)2I(s)2 + · · ·

)
(4)

=
−ig

1− igI(s)
(5)

where

I(s) ≡ 1

2

∫
d̄Dk

i

k2 −m2 + iε

i

(q − k)2 −m2 + iε
(6)

=
1

2

∫ 1

0

dx

∫
d̄D`

(`2 −∆)2
(7)

= −1

2

∫ 1

0

dx
i

(4π)D/2
Γ
(
2− D

2

)
Γ(2)

∆
D
2
−2 (8)

D=3
=

∫ 1

0

dx
−i

16π
√

∆
(9)

and ∆ = m2 − x(1− x)q2 − iε. The factor of 1
2

in (6) is a symmetry factor

from exchanging the two internal lines of the bubble. So

M(s) =
−g

1− igI
=

−g
1 + gX(s)

(10)
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with X(s) ≡
∫ 1

0
dx 1

16π
√

∆
.

(b) Show, by explicit calculation, that the bubble chain approximation to the

scattering amplitude obeys the optical theorem. [In elastic scattering in the

center of mass frame in 3d, the element of solid angle dΩ is just an element

of ordinary angle dθ, and dσ/dθ = |M|2
32πpE2

T
where p is the magnitude of the

spatial momentum of either particle.]

The cross section is
dσ

dθ
=
|M|2

32πpE2
T

independent of θ, so

σ = π · |M|
2

32πps

where we only integrate θ from 0 to π because the two particles are identical.

When s < 4m2, the optical theorem is verified because the BHS is zero. The

statement of the optical theorem for s > 4m2 is

ImM ?
= 2p

√
sσ =

|M|2

16
√
s
.

It is useful to rewrite this (using ImM−1 = −ImM
|M|2 ) as

ImM−1 = +ImX(s)
?
= − 1

16
√
s
. (11)

The imaginary part arises when the argument of the square root in X is neg-

ative. Actually, it’s possible to get a closed-form expression for X (e.g. from

Mathematica):

X =
1

16π

∫ 1

0

dx∆−1/2 =
1

16π|m|

∫ 1

0

dx
(
1− 4x(1− x)w2

)−1/2
(12)

=
1

16πm

{
1

2w
log
(

1+w
1−w

)
, 0 < w < 1

1
2w

(
log
(

1+w
1−w

)
+ iπ

)
, 1 < w

(13)

where we defined w ≡
√
s

2m
. So indeed (11) is verified.

(c) The interaction between the φ quanta could result in two of them forming a

bound state of mass MB. A signal of such a bound state is the appearance

of a pole in M(s) at s = M2
B on the real axis, but below threshold (0 <

M2
B < 4m2). Find the values of g for which the bubble-chain approximation

predicts bound states. [You are not asked to give an analytic expression for

MB.]
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The condition for a boundstate is a pole in M(s) at 0 < s < 4m2 (which

means 0 < w < 1). Using (12) with s < 4m2, this happens when the

denominator in (10) is zero:

0 = 1 + gX(s) = 1 +
g

32πmw
ln

(
1 + w

1− w

)
where w ≡

√
s

2m
∈ [0, 1). We can rewrite this condition as

32πmw

|g|
= ln

(
1 + w

1− w

)
which is a bit too transcendental to solve analytically. Here is what the

function 1 + g
32πmw

ln
(

1+w
1−w

)
looks like for g/m = −.2× 16π (recall that g/m

is dimensionless in D = 3):

For any g < 0, it is monotonically decreasing for w ∈ (0, 1). Looking closer

near w ∼ 1 we see that it crosses 0 at w = w?(g) slightly less than 1:

The boundstate mass is MB = w?(g)2m. It makes sense that we need

g < 0 – an attractive interaction – to have a boundstate. When we make

g too negative, the function starts out below the axis and stays there: for

g/m < −16π, the interaction is too attractive and the boundstate mass2

becomes negative, indicating that the boundstate would want to condense

in the groundstate.
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