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Physics 215B QFT Winter 2022
Assignment 4 —  Solutions

Due 11:59pm Monday, January 31, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me
by email if you have any trouble.

L. Brain-warmer. Check that (Ar)) = d5 — q:# is a projector onto momenta

transverse to g”.

This requires showing both that Ag = 0 and that A? = A,

2. Tadpole diagrams.

(a) Why don’t we worry about the following diagram as a correction
to the electron self-energy in QED?

It has to vanish by Lorentz symmetry: the object Q would be a source j*
for the electromagnetic field in the vacuum. At one loop, we can check that
[d" ktry” kfm - — (0 by try# = 0 and Lorentz symmetry, fd 4kkH f(k*) = 0.

k2—m2

The one-point function for the photon also has to vanish by charge-conjugation

symmetry (in fact any odd-point function of the photon does for the same
reason; this is called Furry’s theorem).

More generally, a tadpole diagram — a diagram with a single field line coming
out of it — represents a source for the field. When we developed our Feynman
rules, we expanded around a minimum of the potential for the field, and
this is why there is no one-point vertex in the Feynman rules. A tadpole
diagram is saying that radiative effects are producing a shift in the minimum
of the potential. The (quadratic part of the) action wants to change to
J((0A)* — m2A? + Aj). The equations of motion for the zero-momentum
field tell us that the minimum is at A = j/ m%. In the case of a massless
field, the shift is arbitrarily large (in this linear approximation). This is the
source of the IR divergence in the tadpole diagram as m, — 0. In QED,
this is moot because j = 0.



For the remainder of the problem, we consider ¢? theory with a (small) mass:
1 1 g
_ D 2 Lt 2.2 9,3
S—/d x(§(8¢) 2m<;§ 3!¢>.

(b) Notice that unlike ¢* theory (or QED), there is no symmetry that forbids
a one-point function for the scalar. Why don’t we lose generality by not
adding a term linear in ¢ to the Lagrangian?

We can shift it away by a field redefinition, ¢ — ¢ — a. It is convenient
to choose a to make the linear term vanish, since then the solution to the
equations of motion has ¢y = 0.

(c) Now think about the following contribution to the scalar self-energy: -...a....

Show that in the limit m — 0 there is an IR divergence. By thinking about

)
the significance for the scalar potential of this part of the diagram 3~ explain

the meaning of this divergence.
D
The object 7 is a one-point function for the scalar. As explained in the

answer to the previous part of the problem, the presence of such a one-
point function (Veg > ve, with v « ¢) means we are doing perturbation
theory about a configuration which is not a solution to the equations of
motion at order g. The correct solution to the equations of motion is ¢
with 0 = m2¢y+v so ¢g = —v/m?, which diverges when m — 0. This is the
origin of the IR divergence — the field theory is trying to find its minimum
which, when m — 0, is arbitrarily far away in field space.

3. Symmetry is attractive. Consider a field theory in D = 3 4 1 with two scalar
fields with the same mass which interact via the interaction

2\
V== (61 +0) - otk

(a) Show that when A\ = g the model possesses an O(2) symmetry.
At this special point, the potential is (¢F + ¢3)?, which depends only on the
distance from the origin of the field space.

(b) Will you need a counterterm of the form ¢¢, or ¢10¢, (for general g, \)?
If not, why not?



A very important point: such terms can’t be generated because they violate
the Zy symmetry which takes (¢1,¢2) — (—¢1,¢2). In general, radiative
effects (i.e. loops) will not violate symmetries of the bare action. Exceptions
to this statement are called anomalies; this only happens when no regulator
preserves the symmetry in question.

Renormalize the theory to one loop order by regularizing (for example with a
euclidean momentum cutoff or Pauli Villars), adding the necessary countert-
erms, and imposing a renormalization condition on the propagators (con-
sider the case where the scalars are both massless) and 2 — 2 scattering
amplitudes at some values of the kinematical variables sq, tg, ug. Feel free
to re-use our results from ¢* theory where appropriate.

I'll use a hard euclidean momentum cutoff since then we can reuse our results
from ¢* theory. To save typing let me define L(z) = 5= logz. Every loop
integral we will encounter is the same as in the pure massless ¢* theory that
we did in lecture.

The symmetry that interchanges ¢; <> ¢9 guarantees that their self-couplings
g (and the masses) stay equal (using the same principle as above). This
means we have only three counterterms to determine altogether: 4,,2 and
two four-point counterterms (d,, d,). That is, we have to impose two renor-
malization conditions on the four-point functions.

First an annoying point: with the given normalization, the 1122 vertex is
actually —i\/3.
The self-energy for ¢, is

-iS(p*) = _(WRT

where c is a numerical constant that I can’t remember right now and which
we don’t need. To put the pole at p*> = m?% = 0, we need the bare mass to
be

m?(A) = —3(p? = 0) = (g + \/4)cA>.

As in ¢* theory, there is no wavefunction renormalization at one loop because
¥ is independent of p?.

There are three different 2 — 2 scattering processes to consider: 11 —
11,11 — 22,12 — 12. (The corrections to 22 — 22 are the same as those
for 11 — 11, and similiarly 22 — 11 is the same as 11 — 22, by the exchange

O -+ O +.. = —i(g+)N/3)cA*+O(g, \)?
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symmetry.) Then using the notation we have

M= —g+ (8 + (g) J(L(s/A%) + Lt/A%) + L(w/A%) +3, (1)
s At =

&= X "X 2)
/\Q: /\I

The A\? term involves ¢, running in the loop. (Note that I am writing
iM = —ig + (—ig)?... and dividing the BHS by i.) Beware the symmetry
factor of % in each loop diagram.

3 3

/:@/=X+>o<+>o<+;i+/\< (4)

where the 2 in the s-channel term is from the fact that either ¢; or ¢, can

M22<_11 == —é + égfL(S/AQ) + (%) (2L<t/A2) -+ 2L(u/A2)) + 5)\ (3)

run in the loop. The last two diagrams have a different symmetry factor
from the others, since we can’t exchange the two propagators in the loop —
so they get an extra factor of 2.

Mg = 2 + (3)2 (2L(s/A?) + 2L(u/A?)) + 2%gL(t/A2) +6 (5)

3 3
B Kok el
/
Using the renormalization conditions Mi1. 11(sg = to = ug) = —gp and
M22<_11(80 = t() = UO) = —ATP we find
)\2
MA) =X +6) = Ap + Ap2gpL + 4?PL + O(Ap, gp)? (7)
2 Ap ’ 2
gA) =g+, =gp+ |gp+ 3 3L+ O(Ap, gp) (8)

where L = L(so/A?). We've solved for the couplings perturbatively, to
second order in both, which means we ignored the difference between e.g. g
and gp in the quadratic term, as we must. From now on I will drop the P
subscripts on the physical coupling.
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Notice that we would get the same answer if we defined A\p by fixing a value
of M5 15 instead. This is because of crossing symmetry.

(d) Consider the limit of low energies, i.e. when s, to, uy < A? where A is the
cutoff scale. Tune the location of the poles in both propagators to p? = 0.
Show that the coupling goes to the O(2)-symmetric value if it starts nearby
(nearby means \/g < 3).

A nice trick for doing this is to compute the beta functions.

2 2
B, = 3212 A*0p2g9(A) = 3 <g2 + (%) ) By = 3217 A%0pe A (A) = (2)\g - 4%)

where I've pulled out a factor of 3272 in the definition of 3 for convenience
— it only affects how fast the flow happens. A useful check is that if we
set A = 0, we reproduce the beta function for ¢* theory, 8, = +3¢* (the 3
comes from the 3 different channels).

To look at the relative flow of g and A let’s compute

3

A 1 A 5 1
Brjg = 87"2A26A2§ =2 (9B — ABy) o (—3 — gg/\2 + 292)\> = g)\(/\—Q)O\ﬂLGQ)‘

This looks like this:

Bug

with the convention I'm using, positive § means that as we increase A, the
coupling decreases. This means that the couplings approach the point g = A
as A — oo fixing gp, Ap. This is the case as long as we start with \/g < 3.

4. Bremsstrahlung. Show that the number of photons per decade of wavenumber
produced by the sudden acceleration of a charge is (in the relativistic limit —¢* >

fIR(QQ) = 2% In (1> )

m2

m?)

where ¢, = pit — py is the change of momentum and m is the mass of the charge.
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This is explained well on pages 177-182 of Peskin. The energy comes out to

_ /d%%o‘m (%’;) . 2/d‘°’kka

where N is the number density of photons of momentum k of each polarization,
and the RHS used the fact that each photon of momentum £ carries energy k.
(The 2 comes from two polarizations for each momentum) Then the number of

photons is
_ _ 2
N = /%91n< ) :/dlogkgln (—q2>
™ m

and hence 22 In (;—‘f) is the total number of photons per decade of wavenumber.

(Note that the integral over k here actually diverges; this is an artifact of the
approximation that the momentum change is instantaneous.)

. Scale invariance in QFT in D = 0+ 0, part 3. [I got this problem from
Frederik Denef and it is optional but strongly encouraged.]

We continue our study of QFT in D = 0+ 0 with two fields:
7 = / dPxdPydXdYe /T,

Let’s start by considering again

1
H:§P)2(+

1
5133 +V(X,Y), V(X,Y)=aX*+bY" (9)

for some nonzero constants a, b.

A generic relevant deformation of (9) will flow to a Gaussian fixed point V(X,Y) ~
X2 +Y?in the IR. Some other, more fine-tuned deformations will flow to other
fixed points. For example, §V (X,Y) = eY* will flow to V(X,Y) = X*+Y*. But
something more interesting happens for §V (X,Y) = eX?Y2. This deformation is
a relevant perturbation of (9) in the sense that 5V (AY4X, \/8Y) = \*V(X,Y)
with K = 3/4 < 1. But it is not true that the model simply flows to a fixed point
with V' oc X2Y?2 in the IR. That’s because the model with such a potential has

a divergent partition function: [*° dX [ dY e XY2T \/éf fl))f‘ = oo. We
cannot throw away the higher-order terms because they regulate the large-X and
large-Y behavior of the integral. Thus, in this model, the UV does not completely
decouple from the IR. As a consequence, naive scaling arguments break down,
and the partition function develops “anomalous” logarithmic dependence on T

for small T'.



(a) Compute the partition function for the model (9) deformed by dV(X,Y) =
eX?Y? analytically using Mathematica or some other symbolic software.
This will give a horrible mess of hypergeometric functions. Expand it at
small 7" and you should find something of the form

A
7 = ZyT log — (10)
T
up to corrections suppressed by positive powers of /7T /A. Find the con-
stants Zy, ¢, A. The over all normalization Z; does not mean anything in
classical statistical mechanics.

Mathematica will tell you that the integral

9]

Zy = / dX dY e~ (X H0YS4+eX2Y2)/T
—00

is

Clear[a]; al = 4Integrate[ e [axTebYes

4

- 192 a%/2 pt/E T7/8 Gamma[g] Gamma[;] Hypergeometr'icPFQH%, %, g}, {%, %, ;}, 64672“] -
a

48a”/* \b* T

c|6ab’® Ts/sGamma[g] Gamma[z] Hypergeometr'icPFQHg, Z, %} {%, Z ;} 64a€2bT]
e|-3-/abBT® Gamma[g]Gamma[Z] Hypergeometr'icPFQHg, g, Z}, {Z, Z, ;}, G4€:bT] +
a
(bST)l/SeGamma[g]Gamma[;] Hypergeometr'icPFQH%, %, %}, {;, ;, Z} 64;4[”_] ]

This function looks like:
Zy(T)| a=1, b=1, €=.05
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The series expansion has a bit that goes like v/T'logT plus corrections of
4

order VT, and a bit that goes like Tesia%z. The latter is a very weird

T with a negative coefficient in the exponent, it

function. If it were e
would be easy to say that this is non-perturbatively small. With a positive
but small coefficient (i.e. for small €) it is essentially indistinguishable from
T, as long as T' > 0. Therefore it is subleading. If you plot each of these

bits individually, you can see that the former is the part that matters.

7
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(b) Using (10), compute the dimensionless quantities U/T" and C. (Without
the logarithmic dependence on T', these would be equal.) Check that in
the strict limit 7" — 0, you get the values for U/T and C' that you would
have guessed based on naive scaling arguments for V o< X2Y2. Note that a
logarithm varies more slowly than the T%/2 corrections that we threw away.
So Z = ZyT**2 log T/A (don’t forget the contribution from the two momen-
tum integrals) and therefore

1
logT/A (11)

3
U/T =Torlog Z = 5T

while
3 1 1
C=0U=-+ - .
T2 TlogT/A  1og? T/A

(12)

The naive answer is Z ~ T1+1/2 using 7y — [dXdY e XY T =\ /T]e [ dudye"""
by scaling; this would work if the integral were actually well-defined without
introducing some other scale. This gives U/T = C = %, and indeed both of

the above functions do approach % as T' — 0. The correct curves look like

U
-, C
T

154
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-05f

(¢) To what extent does the IR physics depend on the UV completion of the V' o
X?2Y?2 model? We could have started with V = a X%+ bY® 4+ eX?Y? instead.
This model would have different high-temperature physics. Redo part for
this potential. You'll find an equally-horrendous, but different combination
of hypergeometric functions. Which of the parameters Z;, ¢, A are the same?

Only c is universal.

(d) The result of the previous part remains true for any other UV completion of
the V o< X2Y?2 model, as long as 6V = eX?Y? remains a relevant deforma-
tion. In fact, we could equally well just take V = eX?Y? and impose a hard
cutoff on the X and Y integrals at some fixed values | X| < X, Y| < Y



(this is like V' = X™ + Y™ with n — o0). Check that this again reduces to
(10).

The answer is simpler:

L L 2y2 11 3 3
7t = / dX/ dY e= XV = 4L*HypergeometricPFQ [ =, = ¢, < =, = ¢,
L L 272 272

This has the simpler low-temperature expansion:

L s T 3/2 —L4/T 2
ZVN—\/TlogELAW—FO(T/)—I—e To(T?)

where v is some irrelevant constant, and now the other term really is non-
perturbatively small.

In view of this apparent universality of (10) at low 7T, it is desirable to
have a way of deriving it without having to take the detour involving the
horrendous hypergeometric functions. Here is one way. We use the hard
cutoff | X| < L, |Y| < L, so that the position-space factor is

L L
Zy(T, L) = / dXx / dy e YT (13)
—L L

where we’ve set ¢ = 1 by a choice of temperature units. A rescaling of
the integration variables (X,Y) — (7YX, TY*Y) shows that Zy (T, L) =
VTF(T~Y*L) for some function F of one variable. To find F, compute
Lo Zy directly from (13). By another suitable rescaling, show that LJ;Z is
finite and easily computable for L*/T — oo. Infer from this the dependence
on the cutoff L in the regime 7' < L* and thus the function F in this regime.
This reproduces (10).

L L
Zy(T,L) = 4/ dX/ dY e X V3T — JTp(T=1AL),
0 0

By the fundamental theorem of calculus,

L
LOpZy = 4L / dY e E*Y?/T 9
0

where the last factor of two comes from the place where the L derivative
hits the upper limit of the Y integral. By scaling y = L*Y?/T (so dY =
dy\/T/L) this is

T L2T71/2 , \
LopZy = 8L\/T—/ dye " = 8VT (\/§+ Oe /T)> .
0

9
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Using x0,|r = L0Jy, we have
20zF(z) = T~ Y2LOL 2y = 47 + O(e /7).

The solution of this ODE is F(x) = ¢ + 4y/m log z, and therefore

Zy(T, L) = \/?(c—i- V/mlog #)

At the last step, I restored the e by dimensional analysis. Since we don’t
care about the overall factor, we can get rid of the /7, and this is what we
had above.

We conclude that even when some kind of UV completion is required to
give finite answers, the observable low-energy physics remains essentially
independent of the UV completion. The infinite number of possible UV
completions all flow in the IR to a partition function of the same form
(10), with the details of the UV completion all lumped into a single scale
parameter A. In fact, in the absence of other reference scales that can be
used to fix a unit of temperature, the parameter A does not really label
physically distinct models, since we can always choose units with A = 1.
Equivalently, only dimensionless quantities (and relations between them)
are physically meaningful. Examples of such dimensionless quantities are C'
and v = U/T. Show that C' and u obey a universal relation C' = f(u) with
f(u) independent of 7" and A, and thus independent of the UV completion
of the X?Y?2 model. In the same spirit, show that the function g(u) in the
flow equation TOru = g(u) is independent of the UV completion.

A brute force way to do this is just to compute them both from Z =

ZoTlogT/A and find the answers in (11) and (12). Letting L = m,
h

we have 5 5 )

soL:u—gand

Similarly,

Toru——— 12— (0=3) = g
= logT/A N “ = 9\

Show that on the other hand f(u) and g(u) do depend on the IR part of the
potential, for example by comparing the IR potential V' = X?Y? considered
above to another IR potential such as V = XY,

10



If instead we used 6V = eX°%Y%, we would find in part 5e instead
Zy(T,L) = TYSF(T-Y/*2L)

and
) L27% ) )
10, F(x) =T 5 Lo Zy = 8/ dye " = 8['(7/6) + O(e P’'/IVT),
0

Therefore, in the limit 7' < L'2, the solution is
Zy = TYS(c + 8T(7/6) log(T 2 L))

and therefore
7 = ZyT" 5 1log T/ A

and 7 1 5
=U/T =T0rlog Z = = =—-+1L 14
u=U/ Orlog 6+10gT/A 5+ (14)

while C_aU_Z+ 1 1 7
T T log T'/A log2T/A_6

These satisfy L = u — %, SO

+L— L% (15)
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