
Physics 215B: Particles and Fields

Winter 2019

Lecturer: McGreevy

These lecture notes live here. Please email corrections to mcgreevy at physics dot

ucsd dot edu.

Last updated: 2019/03/18, 17:04:49

1

http://physics.ucsd.edu/~mcgreevy/w19/


Contents

0.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.2 Sources and acknowledgement . . . . . . . . . . . . . . . . . . . . . . . 5

0.3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 The path integral makes some things easy 7

1.1 From particles to fields to particles again . . . . . . . . . . . . . . . . . 7

1.2 Fields mediate forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Euclidean path integral and Wick rotation . . . . . . . . . . . . . . . . 17

1.4 Feynman diagrams from the path integral . . . . . . . . . . . . . . . . 21

1.5 Lagrangian field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 From correlation functions to the S matrix 35

3 QED 49

3.1 Quantum light: Photons . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 More on vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 On the non-perturbative proof of the Ward identity . . . . . . . . . . . 57

3.4 Feynman rules for QED . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 QED processes at leading order . . . . . . . . . . . . . . . . . . . . . . 63

4 To infinity and beyond 73

4.1 Casimir effect: vacuum energy is real . . . . . . . . . . . . . . . . . . . 74

4.2 A parable from quantum mechanics on the breaking of scale invariance 77

4.3 A simple example of perturbative renormalization in QFT . . . . . . . 85

4.4 Radiative corrections to the Mott formula . . . . . . . . . . . . . . . . 88

4.5 Electron self-energy in QED . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Big picture interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Vertex correction in QED . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 Vacuum polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Consequences of unitarity 126

5.1 Spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Cutting rules and optical theorem . . . . . . . . . . . . . . . . . . . . . 133

5.3 How to study hadrons with perturbative QCD . . . . . . . . . . . . . . 140

6 Gauge theory 143

6.1 Massive vector fields as gauge fields . . . . . . . . . . . . . . . . . . . . 143

6.2 Festival of gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Interlude on differential forms (and algebraic topology) . . . . . . . . . 147

2



6.4 Gauge fields as connections . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Actions for gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Fermion path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.7 Lattice gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Non-abelian gauge fields in perturbation theory 163

7.1 Gauge fixing and Feynman rules . . . . . . . . . . . . . . . . . . . . . . 163

7.2 QCD beta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Anomalies and fermion path integrals 175

8.1 Coherent state path integrals for fermions . . . . . . . . . . . . . . . . 175

8.2 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Effective field theory 192

9.1 A parable on integrating out degrees of freedom . . . . . . . . . . . . . 192

9.2 Introduction to effective field theory . . . . . . . . . . . . . . . . . . . . 197

9.3 Fermi theory of Weak Interactions . . . . . . . . . . . . . . . . . . . . . 201

9.4 Loops in EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.5 The Standard Model as an EFT. . . . . . . . . . . . . . . . . . . . . . 207

9.6 The color of the sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.7 Pions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.8 Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.9 Effective field theory of Fermi surfaces . . . . . . . . . . . . . . . . . . 227

3



0.1 Introductory remarks

Quantum field theory (QFT) is the quantum mechanics of extensive degrees of freedom.

What I mean by this is that at each point of space, there’s some stuff that can wiggle.

It’s not surprising that QFT is so useful, since this situation happens all over the

place. Some examples of ‘stuff’ are: the atoms in a solid, or the electrons in those

atoms, or the spins of those electrons. A less obvious, but more visible, example is the

electromagnetic field, even in vacuum. More examples are provided by other excitations

of the vacuum, and it will be our job here to understand those very electrons and atoms

that make up a solid in these terms. The vacuum has other less-long-lasting excitations

which are described by the Standard Model of particle physics.

Some examples of QFT are Lorentz invariant (‘relativistic’). That’s a nice simplifi-

cation when it happens. Indeed this seems to happen in particle physics. We’re going

to focus on this case for much of this quarter. Still I would like to emphasize: though

some of the most successful applications of QFT are in the domain of high energy

particle physics, this is not a class on that subject, and I will look for opportunities to

emphasize the universality of QFT.

A consequence of relativity is that the number of particles isn’t fixed. That is:

there are processes where the number of particles changes in time. This is a crucial

point of departure for QFT. It’s a necessary consequence of Lorentz symmetry, but the

converse is false: particle production can happen without relativity.

‘Divergences’. Another intrinsic and famous feature of QFT discernible from the

definition I gave above is its flirtation with infinity. I said that there is ‘stuff at each

point of space’; how much stuff is that? Well, there are two senses in which ‘the number

of points of space’ is infinite: (1) space can go on forever (the infrared (IR)), and (2)

in the continuum, in between any two points of space are more points (the ultraviolet

(UV)). The former may be familiar from statistical mechanics, where it is associated

with the thermodynamic limit, which is where interesting things happen. For our own

safety, we’ll begin our discussion in a padded room, protected on both sides from the

terrors of the infinite.

Prof. Jenkins tells me that 215A ended just as Feynman diagrams were being drawn

for the first time. I think therefore that it will be useful to retreat a bit and rederive the

diagrammatic expansion from another (in many ways simpler) point of view, namely

the path integral.
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0.2 Sources and acknowledgement

The material in these notes is collected from many places, among which I should

mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory (Wiley)

Zee, Quantum Field Theory (Princeton, 2d Edition)

Banks, Modern Quantum Field Theory: A Concise Introduction (Cambridge)

Schwartz, Quantum field theory and the standard model (Cambridge)

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT courses of Prof. L. Hall

and Prof. M. Halpern.
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0.3 Conventions

Following most QFT books, I am going to use the + − −− signature convention for

the Minkowski metric. I am used to the other convention, where time is the weird one,

so I’ll need your help checking my signs. More explicitly, denoting a small spacetime

displacement as dxµ ≡ (dt, d~x)µ, the Lorentz-invariant distance is:

ds2 = +dt2 − d~x · d~x = ηµνdx
µdxν with ηµν = ηµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


µν

.

(spacelike is negative). We will also write ∂µ ≡ ∂
∂xµ

=
(
∂t, ~∇x

)µ
, and ∂µ ≡ ηµν∂ν . I’ll

use µ, ν... for Lorentz indices, and i, k, ... for spatial indices.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

D is the number of spacetime dimensions, d is the number of space dimensions.

A consequence of the fact that english and math are written from left to right is

that time goes to the left.

A useful generalization of the shorthand ~ ≡ h
2π

is d̄k ≡ dk
2π
. I will also write

/δ
d
(q) ≡ (2π)dδ(d)(q). I will try to be consistent about writing Fourier transforms as∫

ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts. WLOG ≡ without loss of generality.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

+h.c. ≡ plus hermitian conjugate.

L 3 O means the object L contains the term O.

We work in units where ~ and the speed of light, c, are equal to one unless otherwise

noted. When I say ‘Peskin’ I usually mean ‘Peskin & Schroeder’.

Please tell me if you find typos or errors or violations of the rules above.
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1 The path integral makes some things easy

1.1 From particles to fields to particles again

Here is a way to discover QFT starting with some prosaic ingredients.

Consider a linear chain of particles of mass m, each connected to its neighbors

by springs with spring constant κ. This is a model of a (one-dimensional) crystalline

solid. When in equilibrium, the masses form a regular one-dimensional crystal lattice

(equally spaced mass points). Now let qn denote the displacement of the nth mass from

its equilibrium position xn and let pn be the corresponding momentum. Assume there

are N masses and (for simplicity) impose periodic boundary conditions: qn+N = qn.

The equilibrium positions themselves are

xn = na, n = 1, 2...N

where a is the lattice spacing. The Hamiltonian for the collection of particles is:

H =
N∑
n=1

(
p2
n

2m
+

1

2
κ (qn − qn−1)2

)
+ λq4. (1.1)

Notice that this system is an ordinary QM system, made of particles. In particular,

the whole story below will take place within the fixed Hilbert space of the positions of

the N particles.

I’ve included a token anharmonic term λq4 to remind us that we are leaving stuff

out; for example we might worry whether we could use this model to describe melting.

Set λ = 0 for a while. With λ = 0, the hamiltonian above describes a collection

of coupled harmonic oscillators, with a matrix of spring constants V = kabqaqb. If

we diagonalize the matrix of spring constants, we will have a description in terms of

decoupled oscillators, called normal modes. Because the chain is translation invariant,

the normal modes are labelled by a wavenumber k, and the eigenvalues are ω2
k =

2κ
m

sin2 ka
2

. Then we can use our knowledge of the spectrum of a single SHO H =

~ω
(
a†a+ 1

2

)
to construct the whole spectrum of excitations of the chain,

H =
∑
k

~ωk
(
a†kak +

1

2

)
+

p2
0

2m
.

(Here p0 is the center-of-mass momentum of the chain.) The groundstate is |0〉, the

state annihilated by all the annihilation operators ak |0〉 = 0, and excited states are

built like |k1, k2〉 = a†k1
a†k2
|0〉. In the context of an elastic solid, these excitations are

called phonons.
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Instead, let’s use the path integral.

Path integral reminder in a box.

Let’s remind ourselves how the path integral formulation of QM works for a particle

in one dimension with H = p2

2m
+V (q). The basic statement is the following formula for

the propagator – the amplitude to propagate from position eigenstate |q0〉 to position

eigenstate |q〉 during a time interval t is

〈q| e−iHt |q0〉 =

∫ q(t)=q

q(0)=q0

[dq]ei
∫ t
0 dt ( 1

2
q̇2−V (q)) .

Here [dq] ≡ N
∏Mt

l=1 dq(tl) – the path integral measure is defined by a limiting procedure

(Mt ≡ t
∆t
→ ∞,∆t → 0, t fixed), and N is a normalization factor that always drops

out of physical quantities so I don’t need to tell you what it is.

Recall that the key step in the derivation of this statement is the evaluation of the

propagator for an infinitesimal time step:

〈q2| e−iH∆t |q1〉 = 〈q2| e−i∆t p
2

2m e−i∆tV (q) |q2〉+O(∆t2) .

An integral expression for this can be obtained by inserting resolutions of the identity

1 = 12 =

(∫
dp |p〉 〈p|

)(∫
dq |q〉 〈q|

)
in between the two exponentials. For a more extensive reminder, please see §2.4 of this

document.

Scalar field theory in one dimension. [Zee §1.3] The path integral for our

collection of oscillators is

Z =

∫
[dq1 · · · dqN ]eiS[q]

with S[q] =
∫
dt
(∑

n
1
2
mnq̇

2
n − V ({q})

)
≡
∫
dtL(q, q̇). The potential is V ({q}) =∑

n
1
2
κ (qn+1 − qn)2 . Now suppose we have poor eyesight and can’t resolve the indi-

vidual atoms in the chain; rather we’re only interested in the long-wavelength (small-

wavenumber) physics. So let’s try to take the continuum limit a → 0, N → ∞.

Basically the only thing we need is to think of qn = q(x = na) as defining a smooth

function: [Note that the continuum field is often

called φ(x) instead of q(x) for some reason. At least the letters q(x) and φ(x) look

similar.]
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We’ll use

(qn − qn−1)2 ' a2 (∂xq)
2 |x=na, a

∑
n

f(qn) '
∫
dxf(q(x)).

The path integral becomes:

Z =

∫
[dq]eiS[q]

with [dq] now representing an integral over all configurations q(t, x) (defined by this

limit) and

S[q] =

∫
dt

∫
dx

1

2

(
µ (∂tq)

2 − µv2
s (∂xq)

2 − rq2 − uq4 − ...
)
≡
∫
dt

∫
dxL

where I’ve introduced some parameters µ, vs, r, u determined from m,κ, a... in some

ways that we needn’t worry about, except to say that they are finite in the continuum

limit. The · · · includes terms like a4 (∂xq)
4 which are small when k � 1

a
, so we

ignore them. L is the Lagrangian density whose integral over space is the Lagrangian

L =
∫
dxL.

The equation of motion is the stationary phase condition,

0 =
δS

δq(x, t)
= −µq̈ + µv2

s∂
2
xq − rq − 2uq3 − ...

In this expression I have written a functional derivative; with our lattice regulator, it is

simply a(n extremely useful) shorthand notation for the collection of partial derivatives
∂
∂qn

. 1

From the phonon problem, we automatically found r = u = 0, and the equation of

motion is just the wave equation (∂2
t − v2

s∂
2
x)q = 0, where we see that vs is the sound

speed. This happened because of the symmetry qn → qn + ε. This is the operation

1 Functional derivatives will be very useful to us. The definition is

δφ(x)

δφ(y)
= δ(x− y) (1.2)

plus the Liebniz properties (linearity, product rule). More prosaically, they are just partial derivatives,

if we define a collection of values of the independent variable {xn} to regard as grid points, and let

φn ≡ φ(xn)

so that (1.2) is just
∂φn
∂φm

= δnm.

If you are not yet comfortable with the machinery of functional derivatives, please work through pages

2-28 through 2-30 of this document now.
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that translates the whole crystal. It guarantees low-energy phonons near k = 0 because

it means q(x) can only appear in S via its derivatives. (This is a general property of

Goldstone modes; more on this later.)

We can construct a hamiltonian from this action by defining a canonical field-

momentum density π(x) = ∂L
∂tq

= µ∂tq and doing the Legendre transformation:

H =
∑
n

(pnq̇n − Ln) =

∫
dx (π(x)q̇(x)− L) =

∫
dx

(
π(x)2

2µ
+ µv2

s (∂xq(x))2 + rq2 + uq4 + ...

)
.

(1.3)

Note that I suppress the dependence of all the fields on t just so it doesn’t get ugly,

not because it isn’t there. Also, I emphasize that the position along the chain x here

is just a label on the fields, not a degree of freedom or a quantum operator.

The field q is called a scalar field because it doesn’t have any indices decorating

it. This is to be distinguished from e.g. the Maxwell field, which is a vector field, and

which we’ll discuss soon. (Note that vibrations of a crystal in three dimensions actually

do involve vector indices! We omit this complication.)

The lattice spacing a and the size of the box Na in the discussion above are playing

very specific roles in regularizing our 1-dimensional scalar field theory. The lattice

spacing a implies a maximum wavenumber or shortest wavelength and so is called an

“ultraviolet (UV) cutoff”, because the UV is the short-wavelength end of the visible

light spectrum. The size of the box Na implies a maximum wavelength mode which

fits in the box and so is called an “infrared (IR) cutoff”.

If (in addition to the continuum limit) we also take the infinite volume limit, then

the sums over k become integrals. In this limit we can make the replacement

1

Ld

∑
k

 
∫

d̄dk, Ldδkk′  (2π)dδ(d)(k − k′).

A check of the normalization factors comes from combining these two rules

1 =
∑
k

δk,k′ =

∫
d̄dk(2π)dδ(d)(k − k′).

Continuum (free) scalar field theory in d+ 1 dimensions. These continuum

expressions are easy to generalize to scalar field theory in any number of dimensions.

Let’s do this directly in infinite volume and set µ = 1 by rescaling fields. The action is

S[φ] =

∫
ddxdt

(
1

2
φ̇2 − 1

2
v2
s
~∇φ · ~∇φ− V (φ)

)
. (1.4)
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This is almost what we would have found for the long-wavelength (ka� 1) description

of a d-dimensional lattice of masses on springs, like a mattress (except that there would

have been one φ for each direction in which the atoms can wiggle). The equation of

motion is

0 =
δS[φ]

δφ(x)
= −∂2

t φ+ v2
s∇2φ− V ′(φ). (1.5)

For the harmonic case V (φ) = 1
2
m2φ2 we know what we’re doing, and (1.5) is called

the Klein-Gordon equation,

0 =
(
∂µ∂

µ +m2
)
φ. (1.6)

(Notice that I’ve set vs = c = 1 here, and this is where we have committed to a choice

of signature convention; take a look at the conventions page §0.3.). In relativistic

notation, the Lagrangian density is just L = 1
2

(∂µφ∂
µφ−m2φ2). This describes free

continuum real massive relativistic scalar quantum field theory. (Match the adjectives

to the associated features of the lagrangian; collect them all!)

The canonical momentum is π = ∂L
∂φ̇

= φ̇ and the Hamiltonian (which we can

instantly promote to a quantum operator by using boldface symbols) is then

H =

∫
ddx

(
π(x)2

2
+

1

2
v2
s

(
~∇φ · ~∇φ

)
+

1

2
m2φ2

)
.

Note that all these terms are positive.

A translation invariant linear problem is solved by Fourier transforms: φ(x) =∫
d̄dk e−i~k·~xφk, and π(x) =

∫
d̄dk e−i~k·~xπk, this is

H =

∫
d̄dk

(
1

2
πkπ−k +

1

2

(
v2
sk

2 +m2
)
φkφ−k

)
where k2 = (−i~k) · (i~k) = ~k · ~k. This is merely a sum of decoupled oscillators, except

for the coupling between wavenumbers k and −k. We can read off the normal mode

frequencies, aka the dispersion relation:

ω2
k = v2

sk
2 +m2.

Notice that this is also the condition for a Fourier mode ei~k·~x−iωt to solve the Klein-

Gordon equation (1.6).

We can decouple the modes with wavenumber k and −k by introducing the ladder

operators2

φk ≡
√

~
2ωk

(
ak + a†−k

)
, πk ≡

1

i

√
~ωk

2

(
ak − a†−k

)
, [ak, a

†
k′ ] = (2π)dδ(d)(k − k′).

2Beware that the mode operators ak defined here differ by powers of 2π/L from the finite-volume

objects in the previous discussion. These agree with Peskin’s conventions.
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Their commutator follows from [φ(x), π(y)] = iδ(d)(x − y). In terms of the ladder

operators,

H =

∫
d̄dk ~ωk

(
a†kak +

1

2

)
.

The field operators

φ(~x) =

∫
d̄dk

√
~

2ωk

(
ei~k·~xak + e−i~k·~xa†k

)
,

π(~x) =
1

i

∫
d̄dk

√
~ωk

2

(
ei~k·~xak − e−i~k·~xa†k

)
, (1.7)

satisfy the canonical commutation relation

[φ(~x),π(~x′)] = i~1δd(~x− ~x′).

I emphasize that this is really the same equation as our starting point for each ball on

springs:

[qn,pn′ ] = i~1δnn′ .

The mode expansions (1.7) contain a great deal of information. First notice that

φ is manifestly hermitian. Next, notice that from φ(~x) ≡ φ(~x, 0) by itself we can-

not disentangle ak and a†k, since only the combination ak + a†−k multiplies ei~k·~x. The

momentum π contains the other linear combination. However, if we evolve the field

operator in time using the Heisenberg equation we find

φ(~x, t) ≡ eiHtφ(~x)e−iHt =

∫
d̄dk

√
~

2ωk

(
ei~k·~x−iω~ktak + e−i~k·~x+iω~kta†k

)
. (1.8)

Indeed we can check that the relation π = φ̇ holds.

Notice that the dependence on spacetime is via a sum of terms of the form:

ei~k·~x−iω~kt = eikµxµ|k0=ω~k

and their complex conjugates. These are precisely all the solutions to the wave equation

(1.6). For each ~k, there are two solutions, one with positive frequency and one with

negative frequency. You might have worried that solutions with both signs of the

frequency mean that the world might explode or something (like it would if we tried to

replace the Schrödinger equation for the wavefunction with a Klein-Gordon equation).

This danger is evaded in a beautiful way: the coefficient of the positive frequency

solution with wavenumber ~k is the destruction operator for the mode; the associated

negative frequency term comes with the creation operator for the same mode, as a

consequence of reality of the field.
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1.2 Fields mediate forces

[Zee §1.3] Consider again our chain of balls on springs. Suppose a giant hand reaches

in and pushes the atom at position xn a little bit. This can be described by adding to

the hamiltonian a term

δV (q) = −Jn(t)qn(t)

which applies a force Jn(t) to the nth atom. We can ask, in the presence of such a

force, what is the amplitude to go from state I to state F in time T :

〈F | e−i
∫ T
0 dtH(t) |I〉 =

∫
[Dφ]ei

∫
dtddx( 1

2
(∂φ)2−V (φ)+J(x)φ(x)).

As you see, this is a quantity for which we have a path integral representation. Here’s

a reason we might care about this quantity: take the initial and final states to be the

groundstate:

〈0| e−i
∫ T
0 dtH(t) |0〉 ' e−i

∫ T
0 dtEgs(J).

If the time-dependence is slow enough, the answer is obtained by the adiabatic approx-

imation: just add up the instantaneous groundstate energy at each time step.

[End of Lecture 1]

Let’s retreat to the case where the action is quadratic in φ, so that we can actually

do the path integral:

L(φ) =
1

2

(
∂µφ∂

µφ−m2φ2
) IBP

= −1

2
φ
(
∂2 +m2

)
φ+ total derivative. (1.9)

Going back to the lattice to make the integrals slightly less scary, we have

eiW [J ] ≡
∫

[Dφ]ei
∫

(L+Jφ) =

∫ ∞
−∞

Mt,N∏
n,t

dqn,te
i
2
qxAxyqy+iJxqx =

√
(2πi)NMt

detA
e−

i
2
JxA

−1
xy Jy .

Here repeated indices are summed as usual: qxAxyqy =
∫
dxdyφ(x)Axyφ(y), etc... So

you can see that the matrix A multiplying the quadratic term in this gaussian integral

is Axy = −δd+1(x− y) (∂2
x +m2). It is an NMt×NMt matrix. Its inverse A−1 satisfies

by definition AxzA
−1
zy = δxy, which is the differential equation

− (∂2 +m2)D(x− y) = δ(x− y). (1.10)

This equation says that D is a Green’s function for the operator −(∂2 +m2). The fact

that there is no special point in spacetime says A−1
xy = D(x − y) only depends on the

difference of its arguments.

Does this integral actually converge? On the homework you saw an integral of the

form
∫
R dqe

− 1
2
qAq, which surely converges if A is a positive matrix. Actually, this is

13



overkill – it is enough to replace m2 → m2− iε to make all the integrals converge. Here

ε is an infinitesimal, which means ε2 = 0 and cε = ε for any positive c. Then each∫
dqnt will have a factor of e−ε

∫
q2
nt which suppresses the integrand in the dangerous

large-field region3.

The equation (1.10) is translation-invariant and linear so you should not be sur-

prised that it is solved by going to Fourier space (in space and time):

D(x) =

∫
d̄d+1k eikµxµDk, δd+1(x) =

∫
d̄d+1k eikµxµ .

in terms of which (1.10) becomes the algebraic equation 1 = (k2 −m2 + iε)Dk. Hence

D(x) =

∫
d̄d+1k

eikx

k2 −m2 + iε
.

Notice that the shift by ε saves the day here: it keeps the inte-

gration contour from running right over the pole at k2 = m2, by

moving slightly in the imaginary direction. More explicitly,

k2 −m2 + iε = ω2 − ~k2 −m2 + iε

is zero when

ω = ±
√
~k2 +m2 − iε

Taylor
= ± (ωk − iε) , ωk ≡

√
~k2 +m2.

In the second step I Taylor expanded
√
ω2
k − iε =

√
ω2
k − iε

ωk
+

O(ε)2 and used the facts that ωk > 0, and that anything positive

times an infinitesmal is an infinitesimal.

We can then do the ω integral by contours4: if t > 0 (t < 0), we can close the

contour in the UHP (LHP) since the integrand goes like e−Imωt, and the integral equals

the residue of the pole at ω = ωk ∓ iε (times 2πi):

D(x) = −i

∫
d̄dk

(
θ(t)

e−i(ωkt−~k·~x)

2ωk
+ θ(−t)e

i(ωkt−~k·~x)

2ωk

)
. (1.11)

We’ll learn to call this time-ordered in a moment.

3Here I have shown you one way to make the integral well-defined. You might worry that there

could be others (there are). Another thing you might be bothered by is the boundary conditions on

the fields and their relation to the initial and final states. These issues are closely related! In the next

subsection, we’ll say more.
4We are using the Cauchy residue theorem

∮
C
dzf(z) = 2πi

∑
zj

Resz=zjf where zj are the poles of

f . To remember the sign, consider a small circle C0 counterclockwise around the origin and f(z) = 1/z,

so
∮
C0

dz
z = i

∫ 2π

0
dθ = 2πi.
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The propagator. Who is D(x), besides some quantity in terms of which we did a

Gaussian integral? Recall from the homework that the inverse matrix can be extracted

via a two-point correlation function:

A−1 =

∫
dqq2e−

1
2
qAq/Z.

Putting back all the labels, the same manipulations show that

D(x− y)
?
= 〈0|φ(x)φ(y)|0〉 (1.12)

– the amplitude to propagate an excitation created from the vacuum by φ(x) to be

annihilated by φ(y). The propagator, for short.

(Notice that if the system is Lorentz invariant (which starting from (1.9) it is) then

since D(x) is a scalar quantity, it can only depend on x through Lorentz invariants

made from xµ, namely the proper distance x2 = t2 − ~x2, and the sign of t.)

Why the ‘?’ in (1.12)? For one thing, φ(x) and φ(y) are operators – the order

matters. How do I know which order in which to write them? To reproduce (1.11) the

thing to do is to time-order them:

〈0|T φ(x)φ(y)|0〉 ≡ θ(x0 − y0) 〈0|φ(x)φ(y)|0〉+ θ(y0 − x0) 〈0|φ(y)φ(x)|0〉 .

To see this, plug in the mode expansion (1.7) to see e.g.

〈0|φ(x)φ(y)|0〉 =

∫
d̄dk d̄dq

2
√
ωkωq

e−ikx+iqy 〈0| aka
†
q |0〉 =

∫
d̄dk

2ωk
e−ik(x−y)

(where k0 = ωk, q
0 = ωq to satisfy the KG equation), which reproduces the first term

in (1.11)56.

Now why should we care about the propagator? Look again at W [J ]. We’ve learned

that (up to terms independent of J),

W [J ] = −1

2

∫ ∫
dd+1xdd+1yJ(x)D(x− y)J(y) = −1

2

∫
d̄d+1kJ?k

1

k2 −m2 + iε
Jk

Here J(x) =
∫

d̄d+1keikxJk, J
?
k = J−k (since J(x) is real).

We get to pick J(x). Let’s choose J = J1 + J2 to describe (in Zee’s words)

two lumps sitting still on the mattress: Ja(x) = δ3(x − xa), a = 1, 2. Then Jk =

5The other ways of making the path integral well-defined correspond to other ways of ordering the

φs, and other initial and final states.
6In comparing to (1.11), it helps to notice that we can redefine the ~k integration variable to reverse

the sign of the exponent of the spatial part,
∫

d̄dkf(~k2)ei
~k·~x =

∫
d̄dkf(~k2)e−i

~k·~x. (Thanks to Hung-Hwa

Lin for help during lecture.)
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∫
dx0e−ik0x0

(
ei~k·~x1 + ei~k·~x2

)
. The interaction between the two lumps mediated by the

mattress field φ will then be described by the J1J2 cross-terms in W [J ]:

W [J ] = −2

2

∫
dx0

∫
dy0

∫
d̄k0eik0(x0−y0)

∫
d̄3k

ei~k·(~x1−~x2)

k2 −m2 + iε
+ ... (1.13)

= −
∫
dx0

(∫
d̄k02πδ(k0)

)
︸ ︷︷ ︸

=1

∫
d̄3k

ei~k·(~x1−~x2)

k2 −m2 + iε
+ ... (1.14)

= +

∫
dx0

∫
d̄3k

ei~k·(~x1−~x2)

~k2 +m2 − iε
+ ... (1.15)

(The ... indicate terms which don’t depend on x1, x2, so let’s ignore them.)

For this choice of J , the Hamiltonian is time-independent, and eiW = 〈0| e−iHT |0〉 =

e−iEgs(J)T , so W = −Egs(J)T . We learn that

Egs(J) = −
∫

d̄dk
ei~k·~x12

~k2 +m2
+ const.

Notice that we can drop the iε now, because this integrand is nonsingular for real ~k.

In d = 1, there are poles at k = ±im, and we can close the contour in the UHP for

free to get7

Egs(J) = −2πi

2π

e−mx

2im
= −e

−mx

2m
.

Since x is the separation between the lumps, this means that our field has produced

an attractive force between the lumps

F = −∂xEgs(J) = +
1

2
e−mx

which falls off exponentially with the separation between the lumps. The range of the

potential goes inversely with the mass of the ‘force carrier’ φ. The 3d version of this

potential e−mr

r
(see footnote 7) is called the Yukawa potential.

7For convenience, here’s the integral in 3d:∫
d̄3k

ei
~k·~x

~k2 +M2

y≡cos θ
=

1

(2π)2

∫ ∞
0

k2dk

k2 +M2

∫ 1

−1

dyeikyr︸ ︷︷ ︸
=2 sin kr

kr

=
1

(2π)2r

∫ ∞
−∞

dkk sin kr

k2 +M2

=
1

(2π)2r

(
1

2i

∫ ∞
−∞

dk
keikr

k2 +M2
+ h.c.

)
close contour in UHP for free

=
1

(2π)2r

1

2i
2πi

iMei(iM)r

2iM
· 2 =

e−Mr

4πr
.
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1.3 Euclidean path integral and Wick rotation

Here is a route to defining the path integral (actually the same as the replacement

m2 → m2 − iε) which makes clearer what is going on with the initial and final states.

The whole point here can be made for a single mode of the field – a single harmonic

oscillator – with action

S[q] =
1

2

∫
dt
(
(∂tq)

2 − Ω2q2
)
−
∫
Jq

(where Ω2 = ~k2 +m2 if you like). Consider the replacement τ = it in the action:

S[q] = −1

2
i

∫
dτ
(
−(∂τq)

2 − Ω2q2
)

+ i

∫
dτJq = i

∫
dτ

(
1

2

(
(∂τq)

2 + Ω2q2
)

+ Jq

)
.

With this replacement, the path integral becomes∫
[Dq]e−

∫
dτ( 1

2((∂τ q)2+Ω2q2)+Jq) ≡
∫

[Dq]e−SE [q].

This integrand suppresses configurations with large q, and large ∂τq, and the integral

is therefore totally well-defined. The euclidean action is8

SE[q] =

∫
dτ

(
1

2

(
(∂τq)

2 + Ω2q2
)

+ Jq

)
=

∫
dτ

(
1

2
q
(
−∂2

τ + Ω2
)
q + Jq

)
where (−∂2

τ + Ω2) is a positive operator (meaning all of its eigenvalues are positive).

Call its inverse G, which then, by definition, satisfies(
−∂2

σ + Ω2
)
G(σ, τ) = δ(σ − τ)

The fact that our system is time-translation invariant means G(σ, τ) = G(σ − τ). We

can solve this equation in fourier space: G(s) =
∫

d̄ωeiωσGω makes it algebraic:

Gω =
1

ω2 + Ω2

and we have

G(τ) =

∫
d̄ω

eiωτ

ω2 + Ω2
= e−Ω|τ | 1

2Ω
. (1.16)

(Do it by residues: the integrand has poles at ω = ±iΩ (see the figure 1 below). The

absolute value of |τ | is crucial, and comes from the fact that the contour at infinity

converges in the upper (lower) half plane for τ < 0 (τ > 0).)

8It is called euclidean because the (∂τq)
2 has the same sign as the spatial derivatives (∂xq)

2, so

this is the action we get in euclidean spacetime with metric δµν , rather than ηµν . Exercise: put back

the spatial derivative terms and check that this is the case.
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Figure 1: Poles of the integrand of the ω integral in (1.16).

I claim that the real-time calculation which keeps the oscillator in its groundstate

is the analytic continuation of the one we did above, where we replace

ωMink = e−i(π/2−ε)ωabove (1.17)

where ε is (a familiar) infinitesimal. In the picture of the euclidean frequency plane

in Fig. 1, this is a rotation by nearly 90 degrees. We don’t want to go all the way to

90 degrees, because then we would hit the poles at ±iΩ. The replacement (1.17) just

means that if we integrate over real ωMink, we rotate the contour in the integral over ω

as follows:

as a result we pick up the same poles at ωabove = ±iΩ as in the euclidean calculation.

Notice that we had better also rotate the argument of the function, τ , at the same time

to maintain convergence, that is:

ωeucl = −iωMink, ωeuclteucl = ωMinktMink, teucl = +itMink. (1.18)

So this is giving us a contour prescription – a prescription for negotiating the poles –

for the real-frequency integral. The result is the Feynman contour, and it is the same as

18



Figure 2: The Feynman contour in the ωMink complex plane.

what we got from m2 → m2− iε: depending on the sign of the (real) time separation of

the two operators (recall that t is the difference), we close the contour around one pole

or the other, giving the time-ordered propagator. For the case of a free scalar field, the

replacement m2 → m2 − iε had the same effect of rotating the real-frequency contour

away from the poles. It is also the same as shifting the frequency by Ω → Ω − iε, as

indicated in the right part of Fig. 2. This prescription works in a case where there is

no m2 term.

Notice for future reference that the euclidean action and real-time action are related

by

Seucl[Q] =

∫
dteucl

1

2

((
∂Q

∂teucl

)2

+ Ω2Q2

)
= −iSMink[Q] = −i

∫
dtMink

1

2

((
∂Q

∂tMink

)2

− Ω2Q2

)
.

because of (1.18). This means the path integrand is e−Seucl = eiSMink .

[End of Lecture 2]

Euclidean evolution. Now, why does the contour coming from the euclidean path

integral put the oscillator into its groundstate? The point in life of the euclidean time

evolution to prepare the groundstate from an arbitrary state:

e−βH |any〉 =
∑
n

e−βEn|n〉〈n|any〉 ∝ |gs〉+O
(
e−β(E1−Egs)

)
(1.19)

– the euclidean-time propagator e−βH beats down the amplitude of any excited state

relative to the groundstate, for large enough β.

And the euclidean path integral gives a formula for this euclidean propagation

amplitude. Recall that the path integral representation for the real-time propagation
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amplitude is

〈f | e−iHt |i〉 =

∫
f←i

[dq]ei
∫ t
0 dtL.

On the RHS here, we sum over all paths between i and f in time t (i.e. q(0) = qi, q(t) =

qf ), weighted by a phase ei
∫
dtL. But that means you also know a representation for∑

f

〈f | e−βH |f〉 ≡ tre−βH

– namely, you sum over all periodic paths qi = qf in imaginary time t = −iβ. So:

Z(β) = tre−βH =

∮
[dq]e−

∫ β
0 dτL =

∮
[dq]e−Seucl[q]

The LHS is the partition function in quantum statistical mechanics. The RHS is the

euclidean functional integral we’ve been using. [For more on this, see Zee §V.2]

The period of imaginary time, β ≡ 1/T , is the inverse temperature. We’ve been

studying the limit as β → ∞. Taking β → ∞ means T → 0, and you’ll agree that at

T = 0 we project onto the groundstate (if there’s more than one groundstate we have

to think more).

Time-ordering. To summarize the previous discussion: in real time, we must

choose a state, and this means that there are many Green’s functions, not just one:

〈ψ| q(t)q(s) |ψ〉 depends on |ψ〉, unsurprisingly.

But we found a special one which arises by analytic continuation from the euclidean

Green’s function, which is unique9. It is

G(s, t) = 〈T (q(s)q(t))〉 ,

the time-ordered, or Feynman, Green’s function, and I write the time-ordering symbol

T to emphasize this. I emphasize that from our starting point above, the time ordering

arose because we have to close the contour in the UHP (LHP) for t < 0 (t > 0).

9 Another important perspective on the uniqueness of the euclidean Green’s function and the non-

uniqueness in real time: in euclidean time, we are inverting an operator of the form −∂2
τ +Ω2 which is

positive (≡ all its eigenvalues are positive) – recall that −∂2
τ = p̂2 is the square of a hermitian operator.

If all the eigenvalues are positive, the operator has no kernel, so it is completely and unambiguously

invertible. This is why there are no poles on the axis of the (euclidean) ω integral in (1.16). In real

time, in contrast, we are inverting something like +∂2
t + Ω2 which annihilates modes with ∂t = iΩ

(if we were doing QFT in d > 0 + 1 this equation would be the familiar p2 − m2 = 0). These are

called ‘on-shell states’, they are actual states in the spectrum of the Hamiltonian of the system. So

the operator we are trying to invert has a kernel and this is the source of the ambiguity. In frequency

space, this is reflected in the presence of poles of the integrand on the contour of integration; the

choice of how to negotiate them encodes the choice of Green’s function.
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Let’s pursue this one more step. The same argument tells us that the generating

functional for real-time, time-ordered correlation functions of q is

Z[J ] =
〈
T ei

∫
dtq(t)J(t)

〉
= 〈0| T ei

∫
Jq |0〉 , (1.20)

in the sense that

〈T q(t1)q(t2)...〉 =
1

Z

δ

δJ(t1)

δ

δJ(t2)
...Z[J ]|J=0 .

In the second step of (1.20) I just emphasized that the real time expectation value here

is really a vacuum expectation value, as long as we use the iε prescription above to

define the integrals. This quantity has the picturesque interpretation as the vacuum

persistence amplitude, in the presence of the source J .10

So we see that in general, the correlation functions that are computed by this

“iε prescription” of Wick rotating from Euclidean spacetime are time-ordered vacuum

expectation values:

1

Z

∫
[Dφ]eiSm2→m2−iεf(φ) = 〈0|T f(φ)|0〉 .

Causality. In other treatments of this subject, you will see the Feynman contour

motivated by ideas about causality. This was not the logic of our discussion here but

it is reassuring that we end up in the same place. Note that even in 0+1 dimensions

there is a useful notion of causality: effects should come after their causes.

1.4 Feynman diagrams from the path integral

Subsection §1.3 was a sophisticated discussion of QFT in 0+1 dimensions (i.e.ordinary

quantum mechanics of a single particle), since we focussed on a single mode. To attempt

to demystify some more of the structure we’ll discover in QFT, let’s regress even further,

and consider the case of QFT in 0+0 dimensions. By the path-integral representation,

this means ordinary integrals. If everything is positive, this is probability theory.

Suppose we want to do the integral

Z(J) =

∫ ∞
−∞

dq e−
1
2
m2q2− g

4!
q4+Jq ≡

∫
dq e−S(q) . (1.21)

10Actually, more useful is the generating function of connected correlation functions:

〈T q(t1)q(t2)...〉c =
δ

δJ(t1)

δ

δJ(t2)
...logZ[J ]|J=0 .

where 〈q1q2〉c ≡ 〈q1q2〉 − 〈q1〉 〈q2〉. Higher-point connected correlation functions are defined by sub-

tracting the gaussian answer. Connected correlation functions are well-named because they are com-

puted by connected Feynman diagrams, as we’ll discuss more next.

21



It is the path integral for φ4 theory with fewer labels. For g = 0, this is a gaussian

integral which we know how to do. For g 6= 0 it’s not an elementary function of its

arguments. We can develop a (non-convergent!) series expansion in g by writing it as

Z(J) =

∫ ∞
−∞

dq e−
1
2
m2q2+Jq

(
1− g

4!
q4 +

1

2!

(
− g

4!
q4
)2

+ · · ·
)

and integrating term by term. And the term with q4n (that is, the coefficient of
1
n!

(−g
4!

)n
) is∫ ∞

−∞
dq e−

1
2
m2q2+Jqq4n =

(
∂

∂J

)4n ∫ ∞
−∞

dq e−
1
2
m2q2+Jq =

(
∂

∂J

)4n

e
1
2
J 1
m2 J

√
2π

m2
.

So:

Z(J) =

√
2π

m2
e−

g
4!(

∂
∂J )

4

e
1
2
J 1
m2 J .

This is a double expansion in powers of J and powers of g. The process of computing

the coefficient of Jngm can be described usefully in terms of diagrams. There is a factor

of 1/m2 for each line (the propagator), and a factor of (−g) for each 4-point vertex

(the coupling), and a factor of J for each external line (the source). For example, the

coefficient of gJ4 comes from:

∼
(

1

m2

)4

gJ4.

There is a symmetry factor which comes from expanding the exponential: if the

diagram has some symmetry preserving the external labels, the multiplicity of diagrams

does not completely cancel the 1/n!.

As another example, consider the analog of the two-point function:

G ≡
〈
q2
〉
|J=0 =

∫
dq q2 e−S(q)∫
dq e−S(q)

= −2
∂

∂m2
logZ(J = 0). (1.22)

In perturbation theory this is:

G ' +O(g3)

22



= m−2

(
1 − 1

2
gm−4 +

2

3
g2m−8 +O(g3)

)
(1.23)

To get the numerical coefficients note that Wick’s theorem for this simple case is

〈
qk
〉

0
=

{
0, k odd

(k − 1)!!, keven
(1.24)

– the number of ways of pairing k objects. Here (k−1)!! ≡ (k−1)(k−3)(k−5)... ·3 ·1.

This is because there are k − 1 choices of partner for the first q, after which there are

k − 3 choices of partner for the next one, etc.

Some important structural comments: A diagram contributing to G which has any

part not connected to the external legs is cancelled by the expansion of the denominator

Z =
∫
dqe−S(q). The contributions to Z are called ‘vacuum diagrams’ (since they have

no external lines, so they are like an amplitude for nothing to turn back into nothing).

Z is a sum over all diagrams with no external lines, including disconnected ones. As

you saw in 215A, this sum exponentiates: Z = e
∑

( connected diagrams ).

Some labels. Some of these points are clearer if we put back some of the labels.

So consider the slightly more complicated case

Z =

∫ N∏
i=1

dqie
−S(q), S(q) =

1

2
qiAijqj +

g

4!

∑
i

q4
i ≡ S0 +

g

4!

∑
i

q4
i .

(Think of i as like a position index, and A as a difference operator, so this is a dis-

cretization of φ4 theory.) Then we can develop a perturbative expansion by writing

〈q1 · · · qk〉 =

∫ ∏N
i=1 dqie

−S(q)q1 · · · qk
Z

(1.25)

=

∫ ∏N
i=1 dqie

−S0(q)e−
g
4!

∑
i q

4
i q1 · · · qk∫ ∏N

i=1 dqie
−S0(q)e−

g
4!

∑
i q

4
i

(1.26)

'
∑

n=0

(
− g

4!

)n
/n!
∫
dqe−S0

∑
i1,...,in

∏n
ia
q4
iaq1 · · · qk∑

n=0

(
− g

4!

)n
/n!
∫
dqe−S0

∑
i1,...,in

∏n
ia
q4
ia

. (1.27)

(Note the step with the ' is where we exchange the sum over n with the integral over

q.)

Now the general statement of Wick’s theorem is:

〈q1 · · · qk〉0 =

{
0, k odd∑

contractions A
−1
i1i2
· · ·A−1

ik/2−1ik/2
, keven

.
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Here the sum is over all ways of pairing up the k fields. (Note that this reduces to

(1.24) if we remove all the labels.)

Let’s think about a particular term, e.g. an O(g2) contribution to 〈qiqj〉:

=
1

6
g2
∑
k,l

A−1
ik A

−1
kj A

−3
kl

The factor of 1/6 is called a symmetry factor. Instead of by explicit combinatorics,

we could have gotten this number by dividing by the order of the automorphism group

of the diagram. An automorphism of the diagram is a map from the diagram to

itself which preserves the external lines and the connectivity. In this diagram, we

can permute the three internal lines amongst themselves, giving |S3| = 3! = 6 in the

denominator. Don’t get hung up on the symmetry factors.

As a final example for now, here is the expansion of the four-point function:

〈q1q2q3q4〉 ' =

A−1
14 A

−1
23 + A−1

12 A
−1
34 + A−1

13 A
−1
24

−g
∑

i

(
A−1

1i A
−1
2i A

−1
3i A

−1
4i

+(A−1
1i A

−1
i4 A

−1
23 + · · · )

)

+g2

2!

∑
ij

(
(1

2
A−1

1i A
−1
4i A

−2
ij A

−1
j2 A

−1
j3 + · · · )

+(1
2
A−1

1i A
−2
ij A

−1
jj A

−1
4i A

−1
32 + · · · )

)

+ · · ·

[End of Lecture 3]

All the labels. The Feynman diagrams we’re going to draw all the time are the

same but with more labels. Notice that each of the qs in our integral could come

with a label, q → qa. Then each line in our diagram would be associated with a

matrix (m−2)ab which is the inverse of the quadratic term qam
2
abqb in the action. If

our diagrams have loops we get free sums over the label. If that label is conserved by

the interactions, the vertices will have some delta functions. In the case of translation-

invariant field theories we can label lines by the conserved momentum k. Each comes

with a factor of the free propagator i
k2+m2+iε

, each vertex conserves momentum, so
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comes with igδD (
∑
k) (2π)D, and we must integrate over momenta on internal lines∫

d̄Dk.

Brief comments about large orders of perturbation theory.

• The perturbation series about g = 0 does not converge. How do I know? One

way to see this is to notice that if I made g even infinitesimally negative, the

integral itself would not converge (the potential would be unbounded below),

and Zg=−|ε| is not defined. Therefore Zg as a function of g cannot be analytic in

a neighborhood of g = 0. This argument is due to Dyson, and applies also in

most QFTs. This means there is more to QFT than perturbation theory: the

perturbation series does not define the field theory amplitudes.

• The expansion of the exponential in the integrand is clearly convergent for each

q. The place where we went wrong is exchanging the order of integration over q

and summation over n.

• In this case, the perturbation expansion can be given a closed form expression:

Z(0) '
√

2π

m2

∑
n

(−1)n

n!

22n+ 1
2

(4!)n
Γ

(
2n+

1

2

)( g

m4

)n
. (1.28)

• The expansion for G is of the form

G ' m−2

∞∑
n=0

cn

( g

m4

)n
.

When n is large, the coefficients satisfy cn+1
n�1' −2

3
ncn (you can see this by

looking at the coefficients in (1.28)) so that |cn| ∼ n!. This factorial growth of

the number of diagrams is general in QFT and is another way to see that the

series does not converge.

• The fact that the coefficients cn grow means that there is a best number of orders

to keep. The errors start getting bigger when cn+1

(
g
m4

)
∼ cn, that is, at order

n ∼ 3m4

2g
. So if you want to evaluate G at this value of the coupling, you should

stop at that order of n. An estimate of the error by the next term left out gives

something that goes like e−#/g.

• I said above that the fact that the perturbation series doesn’t converge means

that it doesn’t define the field theory amplitudes. What does it miss? To answer
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this, consider trying to do the integral (1.21) by saddle point (at J = 0 for

simplicity):

0 = S ′(q?) = m2q? +
g

3!
q3
?.

(Note the resemblance to the equations of motion.) This has three solutions:

q? = 0, q? = ±i

√
3!m2

g
.

The expansion about the ‘trivial’ saddle at q? (where the action is S(q? = 0) = 0)

reproduces the perturbation series. At the other saddles,

S

(
q? = ±i

√
3!m2

g

)
= −3m4

2g
, (1.29)

which means their contribution would go like e+ 3m4

2g , which actually would blow

up at weak coupling, g → 0. These saddles are not on the contour and don’t

contribute for small positive g, but more generally (as for example when m2 < 0),

there will be effects that go like e−
a
|g| . This is a function whose series expansion

in g at g = 0 is identically zero. You can never find it by doing perturbation

theory in g about g = 0.

• A technique called Borel resummation can sometimes produce a well-defined func-

tion of g from an asymptotic series whose coefficients diverge like n!. The idea is

to make a new series

B(z) ≡
∑
n=0

cn
n!
zn

whose coefficients are ensmallened by n!. Then to get back Z(g) we use the

identity

1 =
1

n!

∫ ∞
0

dze−zzn

and do the Laplace transform of B(z):∫ ∞
0

dzB(z)e−z/g =
∑
m=0

cm

∫∞
0
dze−z/gzm

m!
= g

∞∑
m=0

cmg
m = gZ(g).

This procedure requires both that the series in B(z) converges and that the

Laplace transform can be done. In fact this procedure works in this case.

The fact that the number of diagrams at large order grows like n! is correlated

with the existence of saddle-point contributions to Z(g) which go like e−a/g.
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This is because they are associated with singularities of B(z) at z = a; such a

singularity means the sum of cn
n!
zn must diverge at z = a. (More generally, non-

perturbative effects which go like e−a/g
1/p

(larger if p > 1) are associated with

(faster) growth like (pn)!. In string theory, p = 2. See this classic work.)

• In fact in this case, we know the whole function. The integral actually does have

a name – it’s a Bessel function:

Z(J = 0) =
2√
m2

√
ρeρK 1

4
(ρ), ρ ≡ 3m4

4g

(for Re
√
ρ > 0), as Mathematica will tell you. Because we know about Bessel

functions, in this case we can actually figure out what happens at strong coupling,

when g � m4, using the asymptotics of the Bessel function.

• The functions G(g) and Z(g) can be analytically continued in g away from the

real axis, and can in fact be defined on the whole complex g plane. It has a

branch cut on the negative real axis, across which its discontinuity is related to

its imaginary part. The imaginary part goes like e−
a
|g| near the origin and can be

computed by a tunneling calculation like (1.29).

How did we know Z has a branch cut? One way is from the asymptotics of the

Bessel function. But, better, why does Z satisfy the Bessel differential equation

as a function of the couplings? The answer, as you’ll check on the homework, is

that the Bessel equation is a Schwinger-Dyson equation,

0 =

∫ ∞
−∞

∂

∂q

(
something e−S(q)

)
(1.30)

which results from demanding that we can change integration variables in the

path integral.

For a bit more about this, you might look at sections 3 and 4 of this recent paper from

which I got some of the details here. See also the giant book by Zinn-Justin. There is a

deep connection between the large-order behavior of the perturbation series about the

trivial saddle point and the contributions of non-trivial saddle points. The keywords

for this connection are resurgence and trans-series and a starting reference is here.

The class of equations (1.30) is very important: it shows that the equations of

motion are true in Green’s functions, up to contact terms, the contributions where the
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∂
∂q

hits the ‘something’. For example, in scalar field theory

0 =

∫
[Dφ]

δ

δφ(y)

(
φ(x)eiS[φ]

)
=

〈
φ(x)i

δS

δφ(y)

〉
+ δd+1(x− y).

In the special case where S is quadratic, S =
∫
φAφ , this shows that the two-point

function is a Green’s function for the quadratic operator A.
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1.5 Lagrangian field theory

[Here we fill in the bits of Peskin §2.2 that we missed above.] Let’s consider a classical

field theory in the Lagrangian description. This means that the degrees of freedom

are a set of fields φr(x), where r is a discrete index (for maybe spin or polarization

or flavor), and we specify the dynamics by the classical action. If the world is kind

to us (in this class we assume this), the action is an integral over space and time of a

Lagrangian density

S[φ] ≡
∫
dd+1xL(φ, ∂µφ).

This important assumption is an implementation of locality.

This central object encodes the field equations, the canonical structure on the phase

space, the Hamiltonian, the symmetries of the theory.

I’ve sneakily implied that we are going to assume Lorentz invariance, so that L
depends on the 4-vector ∂µφ, and not its components separately. I am also going to

assume that the action S is real.

Two examples to keep in mind are the Klein-Gordon Lagrangian:

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2

and the Maxwell Lagrangian:

LEM = − 1

4e2
FµνF

µν =
1

4e2

(
E2 −B2

)
with Fµν ≡ ∂µAν − ∂νAµ and Aµ regarded as the independent degrees of freedom.

A word about units: in units with ~ = c = 1, everything has units of

mass to some power, called its mass dimension. Energy and momen-

tum pµ = ~kµ have mass dimension +1. The space and time coordi-

nates xµ have mass dimension −1. The action goes in the exponential

of the path integral measure
∫

[Dφ]e
iS
~ and so must be dimensionless.

So the Lagrangian density has mass dimension d+1. This means that

the KG field has mass dimension d−1
2

(and the mass m has mass di-

mension 1 (yay!)). In d+1 = 3+1 dimensions, E ∼ Ȧ, B ∼ ~∇A have

mass dimension 2 and A has mass dimension one (and e is dimension-

less). This is nice because then the covariant derivative ∂µ + Aµ has

mass dimension one. Notice that E2 + B2 has dimension 4 which is

good for an energy per unit volume.

object mass dim.

pµ 1

xµ -1

S 0

L d+ 1

φ d−1
2

Aµ 1
~E, ~B, Fµν 2

The equation of motion is

0 =
δS

δφr(x)
.
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Note the functional derivative. You can check that in the case when L depends only

on φ and ∂µφ, this is the same as the Lagrange EOM

0 =
∂L
∂φr
− ∂µ ∂L

∂(∂µφr)

(for each r) which I can’t remember. Note that since we are interested here in the bulk

equations of motion, we ignore boundary terms unless we are interested in field theory

on a space with boundary. That is a worthy subject but an unnecessary complication

for now.

By redefining the field by e.g. φ ≡ 1
D

(χ−B/C), we can make the KG theory uglier

L = A+Bχ+
1

2
Cχ2 +

1

2
D∂µχ∂µχ.

From the path integral point of view, the field is just an integration variable. Some-

times, its normalization is meaningful, like in the phonon example where it began its life

as the displacement of the atoms from their equilibrium. So you see that relative to the

most general possible Lagrange density for a scalar field, we are not losing generality

except in our neglect of interactions, and in our neglect of terms with more derivatives.

The former neglect we will repair little by little in this course, by doing perturbation

theory. The latter is justified well by the renormalization group philosophy, which is a

subject for later.

Canonical field momentum and Hamiltonian. The Hamiltonian viewpoint in

field theory has the great virtue of bringing out the physical degrees of freedom. It

has the great shortcoming that it picks out the time coordinate as special and obscures

Lorentz symmetry.

The canonical field momentum is defined to be

π(x) =
∂L

∂(∂tφ(x))
.

Notice that this expression assumes a local Lagrangian density. π is actually a ‘field

momentum density’ in the sense that the literal canonical momentum is ∂
∂φ̇(x)

L =

ddxπ(x) (as opposed to L). I will often forget to say ‘density’ here.

The hamiltonian is then

H =
∑
n

pnqn − L =

∫
ddx

(
π(x)φ̇(x)− L

)
≡
∫
ddx h.

Noether’s theorem and the Noether method. Yay, symmetries. Why do

physicists love symmetries so much? One reason is that they offer possible resting
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places along our never-ending chains of ‘why?’ questions. For example, one answer to

the question “Why QFT?” is (certainly this is the one given in Weinberg’s text, but

just as certainly it is not the only one): quantum mechanics plus Poincaré symmetry.

They are also helpful for solving physical systems: Continuous symmetries are as-

sociated with conserved currents. Suppose the action is invariant under a continuous

transformation of the fields φ, φ(x) 7→ φ′(x). (The invariance of the action is what

makes the transformation a symmetry.) ‘continuous’ here means we can do the trans-

formation just a little bit, so that φ(x) 7→ φ(x) + ε∆φ(x) where ε is an infinitesimal

parameter.

If the transformation with constant ε (independent of space and time) is a symmetry,

then the variation of the action with ε = ε(x, t) must be proportional to ∂µε (at least

assuming some smoothness properties of the action), and so that it vanishes ∀φ when

ε is constant:

S[φ+ ε(x)∆φ]− S[φ] =

∫
ddxdt∂µε(x)jµ

IBP
= −

∫
ddxdtε(x)∂µj

µ .

But if the equations of motion are obeyed, then the action is invariant under any

variation of φ, including this one, for arbitrary ε(x). But this means that ∂µj
µ = 0, the

current is conserved. These words are an accurate description of the equation because

they mean that the charge

QR ≡
∫
R

ddx j0

in some region of space R can only change by leaving the region (assume the definition

of R is independent of time):

∂tQR =

∫
R

ddx ∂tj
0 = −

∫
R

ddx ~∇ ·~j = −
∫
∂R

dd−1xn̂ ·~j

where in the last step we used Stokes’ theorem.

This trick with pretending the parameter depends on space is called the Noether

method. More prosaically, the condition that the action is invariant means that the

Lagrangian density changes by a total derivative (we assume boundary terms in the

action can be ignored):

L(φ′, ∂µφ
′)

symmetry
= L(φ, ∂µφ) + ε∂µJ µ

but on the other hand, by Taylor expansion,

L(φ′, ∂µφ
′)

calculus
= L(φ, ∂µφ) + ε

(
∂L
∂φ

∆φ+
∂L

∂ (∂µφ)
∂µ∆φ

)
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IBP
= L(φ, ∂µφ) + ε

∂L∂φ − ∂µ ∂L
∂ (∂µφ)︸ ︷︷ ︸

eom

∆φ+ ε∂µ

(
∂L

∂ (∂µφ)
∆φ

)
.

By combining the previous two equations for L(φ′), we see that on configurations which

satisfy the EOM, 0 = ∂µj
µ with

jµ =
∂L

∂ (∂µφr)
∆φr − J µ. (1.31)

Notice that I stuck the index back in at the last step.

There is a converse to the Noether theorem, which is easier to discuss directly in

quantum mechanics. Given a conserved charge Q, that is, a hermitian operator with

[H,Q] = 0, we can make a symmetry transformation of the fields φ by

δφ ≡ iε[Q, φ]. (1.32)

We’ll say that Q generates the symmetry, for the following reason. (1.32) is the in-

finitesimal version of the finite transformation

φ→ φ′ ≡ eiεQφe−iεQ.

The object U ≡ eiεQ is a unitary operator (since Q is hermitian) which represents the

action of the symmetry on the Hilbert space of the QFT. It is a symmetry in the sense

that it commutes with the time evolution operator e−iHt.

Some examples will be useful:

• For example, suppose S[φ] only depends on φ through its derivatives, for example,

S[φ] =
∫

1
2
∂µφ∂

µφ. Then there is a shift symmetry φ → φ′ ≡ φ + ε. Letting ε

depend on spacetime, the variation of the action is S[φ+ε(x)]−S[φ] = −
∫
ε∂µ∂

µφ,

so the current is jµ = ∂µφ. Let’s check the converse: Indeed, the charge Q =∫
space

j0 generates the symmetry in the sense that for small ε, the variation in the

field is

δφ ≡ φ′ − φ = ε = iε[Q, φ]

(if we were doing classical mechanics, we should replace i[Q, φ] with the Poisson

bracket). Using our expression for the current this is

δφ = iε
[ ∫

ddy φ̇(y)︸︷︷︸
=π(y)

, φ(x)
]

= ε

which is indeed true by the canonical commutation relations. In this case the

finite transformation is again φ→ φ+ ε.
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• Consider a complex scalar Φ, and suppose S[Φ,Φ?] is invariant under Φ→ eiεΦ =

Φ + iεΦ + O(ε2), such as S =
∫

(∂Φ?∂Φ− V (Φ?Φ)). This U(1) phase transfor-

mation can be rewritten in terms of the real and imaginary parts as an SO(2)

rotation. The charge can be written as

Q =

∫
ddxj0 =

∫
d̄dp

(
a†pap − b†pbp

)
where the two sets of creation and annihilation operators are associated with

excitations of Φ and Φ† respectively. (That is, quantize φ1,2 as we did for a

single real scalar field, in terms of mode operators a1,2 respectively. Then let

a ≡ a1 + ia2,b ≡ a1 − ia2, up to numerical prefactors.) So the particles created

by a and b have opposite charge (this follows given the mode expansion Φk ∼
ak + b†−k) and can be interpreted as each others’ antiparticles: there can be

symmetry-respecting processes where an a particle and b particle take each other

out.

[End of Lecture 4]

The previous two examples are related. Consider the case where V (Φ?Φ) =

λ(Φ?Φ − v2)2 Changing variables to polar coordinates in field space, Φ = ρeiφ,

the Lagrangian is

L = ρ2(∂φ)2 + (∂ρ)2 − λ(ρ2 − v2)2.

If λ is big, the potential forces ρ = v, and its fluctuations are heavy, and we are

left with L = v2(∂φ)2, where φ → φ + ε is a symmetry. Notice that φ ≡ φ + 2π

is periodic.

• Consider spacetime translations, xµ → xµ − aµ. We can think of this as a trans-

formation of the fields by

φ(x) 7→ φ(x+ a) = φ(x) + aν ∂νφ︸︷︷︸
≡∆νφ

+O(a2).

Our transformation parameter is now itself a four-vector, so we’ll get a four-

vector of currents T µν . This will be a symmetry as long as the lagrangian doesn’t

depend explicitly on space and time ( so ∂νL = 0) but rather depends on space

and time only via the fields (so 0 6= d
dxν
L chain rule

= ∂νφ
∂L
∂φ

+ ∂µ∂νφ
∂L

∂(∂µφ)
). Let’s use

the prosaic method for this one: the shift in the Lagrangian density also can be

found by Taylor expansion

L 7→ L+ aµ
d

dxµ
L = L+ aν∂µ (δµνL) .
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So the formula (1.31) gives

T µν =
∂L

∂ (∂µφ)
∂νφ︸︷︷︸
∆νφ

−Lδµν .

For the time translation, the conserved charge T 0
0 gives back the hamiltonian

density h = πφ̇−L obtained by Legendre transformation. The conserved quantity

from spatial translations is the momentum carried by the field, which for the KG

field is

Pi =

∫
ddx T 0

i = −
∫
ddx π∂iφ.

For the Maxwell field, this gives the Poynting vector.

There is some ambiguity in the definition of the stress tensor (associated with

the possibility of adding total derivatives to L).

Let’s check that the expression above for the conserved momentum agrees with

our expectations. In particular, in free field theory the total momentum of the

state
∣∣∣~k1, · · ·~kn

〉
should be just the sum of the momenta of the particles, ~P =∑n

`=1 ~~k` (with interactions the story can be more complicated). Indeed

Pi = −
∫
ddx π∂iφ =

∫
d̄dkkia

†
~k
a~k

agrees with this. (Notice that I used rotation invariance of the vacuum to not

worry about a possible constant term.)

• I have the impression that you learned all about the rest of the Poincaré group

already in 215A.
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2 From correlation functions to the S matrix

We’ve derived an expression for correlation functions, such as (1.22), in terms of a sum

of diagrams connected to the external lines, ordered by the number of powers of the

coupling constant. Our next goal is to organize this sum.

First let’s make contact with the way the diagrammatic expansion was (I think)

introduced in 215A. A time-ordered real-time Green’s function has path integral rep-

resentation (with iε prescription implicit, and φi ≡ φ(xi))

Gn ≡ 〈Ω|T φ1 · · ·φn|Ω〉 = Z−1

∫
[Dφ]φ1 · · ·φneiS[φ] (2.1)

=

∫
[Dφ]φ1 · · ·φne−i

∫
V (φ)eiS0[φ]∫

[Dφ]eiS0[φ]e−i
∫
V (φ)

(2.2)

=

〈
0|T φ1 · · ·φne−i

∫
V (φ)|0

〉〈
0|T e−i

∫
V (φ)|0

〉 . (2.3)

Here we’ve written S = S0 −
∫
V where S0 is gaussian. The last object here is a

time-ordered expectation value in the free theory, which we know how to compute by

Wick contraction.

Two comments about this formula: (1) It must be admitted that in (2.1) the

variable ‘φ’ is seriously overloaded: on the LHS it is used to represent a (Heisenberg-

picture) operator, while on the RHS it is used to represent a (functional) integration

variable. (2) This formula (or a related one) is sometimes called the Dyson formula for

interaction-picture time evolution.

Taylor expanding the exponential e−i
∫
V in (2.3) reproduces the diagrammatic ex-

pansion. (Notice that in real-time quantities, the interaction vertex comes with a factor

of −ig.) The denominator is the sum of bubble diagrams. In both numerator and de-

nominator, the disconnected diagrams exponentiate, and therefore cancel. Here is a

reminder of why this is true:

The exponentiation of the disconnected diagrams. [Peskin page 96] There

are some patterns in these sums of diagrams to which it behooves us to attend. (The
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following discussion transcends the φ4 example.) The general diagram has the form:

Only some of the components are attached to the external legs; for a given diagram

A, call the factor associated with these components Ac (note that Ac need not be

fully connected). The rest of the diagram is made of a pile of ‘bubbles’ of various

types Vi (each one internally connected, but disconnected from the external lines) and

multiplicities ni (e.g. V1 could be a figure eight, and there could be n1 = 2 of them.

These bubbles (or ‘vacuum bubbles’) would be there even if we didn’t have any external

lines, and they would have the same value; they are describing the fluctuations intrinsic

to the vacuum. The amplitude associated with the general diagram is then

MA =MAc ·
V n1

1

n1!
· V

n2
2

n2!
· · · V

nα
α

nα!

where the ni! factors are the most important appearance of symmetry factors: they

count the number of ways to permute the identical copies of Vi amongst themselves.

The numerator of G(n) is then

G
(n)
numerator = 〈0| T

(
φ1 · · ·φne−i

∫
V
)
|0〉 =

∑
A

MA =
∑
Ac

MAc

∑
{ni=0}

V n1
1

n1!
· V

n2
2

n2!
· · · V

nα
α

nα!

=
∑
Ac

MAc · eV1 · eV2 · · · eVα

=
∑
Ac

MAce
∑
i Vi (2.4)

– the bubbles always exponentiate to give the same factor of e
∑
i Vi , independent of

the external data in G. In particular, consider the case of n = 0, where there are no

external lines and hence no Ac:

G
(0)
numerator = 〈0| T e−i

∫
V |0〉 = 1 · e

∑
i Vi

But we care about this because it is the denominator of the actual Green’s function:

G(n) =
〈0| T

(
φ1 · · ·φne−i

∫
V
)
|0〉

〈0| T e−i
∫
V |0〉

=
G

(n)
numerator

G
(0)
numerator

=
∑
Ac

MAc . (2.5)
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And with that we can forget all about the bubbles. So for example,

G(2) =

G(4) =

Notice that in this manipulation (2.5) we are adding terms of many orders in per-

turbation theory in the coupling g. If we want an answer to a fixed order in g, we can

regard anything of higher order as zero, so for example, it makes perfect sense to write

G(2) =
· (1 + 8 + 88 + · · ·)

(1 + 8 + 88 + · · ·)
+O(g) = · e

V

eV
+O(g) = +O(g).

(I only drew one kind of bubble in the previous expression since that one was easy to

type.)

Momentum space Green’s functions from Feynman diagrams. In translation-

invariant problems, things are usually a little nicer in momentum space. In φ4 theory

in d+ 1 dimensions, let’s think about

G̃(n)(p1 · · · pn) ≡
n∏
i=1

∫
dd+1xie

−ipixiG(n)(x1 · · ·xn).

This an off-shell Green’s function, a function of general p, not necessarily p2 = m2.

It will, however, vanish unless
∑

i p
µ
i = 0 by translation invariance. Consider a fully-

connected contribution to it, at order gN . (We’ll get the others by multiplying these

bits.)

In φ4 theory, we need to make a diagram by connecting n external position vertices

xi toN 4-valent vertices za using Feynman propagators ∆F (yA−yB) =
∫

d̄d+1qre
−i(yA−yB)qr i

q2
r−m2+iε

,

where {yA} = {za, xi}. All of the position dependence is in these exponentials.

Since each propagator has two ends, the number of lines (by the fully-connected

assumption) is

NI =
# of ends of lines

2
=
n+ 4N

2
=
n

2
+ 2N.

This is the number of q integrals, a priori.

The integral over the external positions xi (in the Fourier transform) gives
∫
dd+1xie

ixi(qi−pi) =

/δ
d+1

(qi − pi) and so we can label the external lines by pi (and we lose n q integrals).

The integral over the position of each internal vertex is of the form
∫
dd+1zeiz(

∑
r qr)

where qr are the momenta associated to the lines coming into the vertex. So each
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internal vertex decreases the number of q integrals by 1. One combination of the

momenta is fixed by overall momentum conservation so we have left

NI − n− (N − 1) = N − n

2
+ 1 ≡ NL (2.6)

momentum integrals. This number is ≥ 0 for fully connected diagrams, and it is the

number of loops in the diagram. (This counting is the same as in a Kirchoff’s law

resistor network problem.)11

For example, consider a particular contribution to G(4) (n = 4 external legs) and

N = 2 interaction vertices

which has NI =
4 + 2 · 4

2
= 6.

In the example, NL = 2− 2 + 1 = 1 which agrees with one undetermined momentum

integral. This gives the amplitude

MFC(p1 · · · pn) = (−ig)N · s(FC)/δ
(d+1)

(
∑

pi)

∫ NL∏
loops,α=1

d̄d+1kα
∏

lines,r

i

q2
r −m2 + iε

=
(−ig)2

2!
/δ
d+1

(
4∑
i=1

pi)
n=4∏
i=1

i

p2
i −m2 − iε

∫
d̄d+1k

i

k2 −m2 + iε

i

(p1 + p2 + k)2 −m2 + iε

(You might notice that the integral over k is in fact formally infinite, since at large k

it goes like
∫ Λ d4k

k2 ∼ log(Λ). Try to postpone that worry.) The propagators for the

external lines just factor out, and can be brought outside the momentum integrals.

Notice that here p is general, and this function has poles when the external particles

go on-shell, p2
i = m2.

So here are the momentum space Feynman rules for Green’s function in φ4 theory:

• Every line gives a factor of = i
p2−m2+iε

= ∆̃F (p). Notice that since

∆F (x − y) = ∆F (y − x), the choice of how we orient the momenta is not so

fateful.

• An internal vertex gives  (−ig)
∫
dd+1ze−i

∑
i piz = (−ig)/δ

d+1
(
∑

i pi),

momentum conservation at each vertex. So, set
∑

i pi = 0 at each vertex (I’ve as-

sumed the arrows are all pointing toward the vertex). After imposing momentum

11 Here’s a proof that (2.6) is the number of loops in the diagram: place the N + n internal and

external vertices on the page. Add the propagators one at a time. You must add N + n − 1 just to

make the diagram fully connected. After that, each line you add makes a new loop.
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conservation, the remaining consequence of the vertex is

= −ig.

• Integrate over the loop momenta
∏NL

α=1d̄
d+1qα for each undetermined momentum

variable. There is one for each loop in the diagram. You should think of these

integrals as just like the Feynman path integral: if there is more than one way

to get from here to there, we should sum over the amplitudes.

• Multiply by the wretched symmetry factor s(A).

• For G̃(p), multiply by an overall /δ
d+1

(
∑
p) in each diagram.

• An external vertex at fixed position, = e−ipx. (Such vertices would arise

if we wanted to compute G(x) using momomentum-space feynman rules.) More

generally, external vertices are associated with the wavefunctions of the states we

are inserting; here they are plane waves.

Here is another perspective on the exponentiation of the vacuum bubbles. Consider

the diagram:

= (−ig)2

4∏
i=1

∫
d̄d+1pi/δ

d+1
(p1 + p2)/δ

d+1
(p1 + p2) · · ·

The two delta functions come from the integrals over z1,2, and we can restore sense by

remembering this:(
/δ
d+1

(p1 + p2)
)2

= /δ
d+1

(p1 + p2)

∫
dd+1z2 = /δ

d+1
(p1 + p2)V T

where V T is the volume of spacetime. This factor arises because this process can

happen anywhere, anytime. There is one such factor for each connected component

of a collection of vacuum bubbles, so for example the diagram
( )

is

proportional to (V T )2. But the free energy ∝ logZ = logG(0) should be extensive,

∝ V T . Therefore, the vacuum bubbles must exponentiate.

The whole two point function in momentum space is then (through order g2) :

G̃(2) = O(g3)

(2.7)
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I draw the blue dots to emphasize the external propagators. Notice that for the two-

point function, the number of loops is NL = N − n
2

+ 1 = N , the same as the number

of powers of g. More generally, for n 6= 2, there is an additive shift: NL = constant

plus number of powers of g.

Organizing the propagator. We would like to unpack the physics contained in

the correlation functions which we’ve learned to compute in perturbation theory. The

first interesting one is the two-point function aka the propagator. Let’s factor out the

overall delta function by writing:

G̃(2)(p1, p2) ≡ /δ
d+1

(p1 + p2)G̃(2)(p1).

It will be useful to re-organize this sum, in the following way:

Here’s the pattern: we define a diagram to be one-particle irreducible (1PI) if it cannot

be disconnected by cutting through a single internal propagator. So for example,

is 1PI, but is not; rather, the latter contributes to the bit with two

1PI insertions. Then

G̃(2)(p) = +· · ·

So that we may write equations without pictures, let

−iΣ(p) ≡

denote the 1PI two-point function. Σ being 1PI means that the external lines sticking

out of it are ‘nubbins,’ placeholders where propagators may be attached. That’s why

there are no blue dots at the ends.
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Now suppose we know Σ. It is known as the self-energy, for reasons we will see

next. Then we can write

G̃(2)(p) =
i

p2 −m2
0

+
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

+
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

+ · · ·

=
i

p2 −m2
0

(
1 +

Σ

p2 −m2
0

+

(
Σ

p2 −m2
0

)2

+ · · ·

)
=

i

p2 −m2
0

1

1− Σ
p2−m2

0

=
i

p2 −m2
0 − Σ(p)

. (2.8)

[End of Lecture 5]

We see that the self-energy shifts the m2 of the particle – it moves the location of

the pole in the propagator. In the interacting theory, m2
0 + Σ(p)|pole is the physical

mass, while m0 (what we’ve been calling m until just now) is deprecatingly called the

‘bare mass’. For p2 ∼ m2, we will write

G̃(2)(p) ≡
(

iZ

p2 −m2
+ regular bits

)
(2.9)

This equation defines the residue Z which is called the ‘wavefunction renormalization

factor’. It is 1 in the free theory, and represents the amplitude for the field to create

a particle, and the other terms, which are not singular at p2 = m2, represent the

amplitude for the field to do something else (such as create multiparticle states), and

are absent in the free theory. Later we will see that unitarity requires Z ≤ 1. Notice

that if we know Σ only to some order in perturbation theory, then (2.8) is still true,

up to corrections at higher order.

The notion of 1PI extends to diagrams for G̃(n>2)(p1 · · · pn). Let

G̃
(n)
1PI(p1 · · · pn) ≡

where the blob indicates the sum over all 1PI diagrams with n external nubbins (notice

that these do not have the blue circles that were present before). This means G1PI

does not include diagrams like:

or .
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Notice that 1PI diagrams are amputated – their external limbs have been cut off.

LSZ reduction formula. This is almost what we need to make S-matrix elements.

If we multiply the n-point function by
∏n

i=1
p2
i−m2

√
Z

we cancel out the propagators from

the external legs, near the mass shell. This object is naturally called the amputated

n-point function. (It differs from the 1PI n-point Green’s function because of diagrams

like this one which is amputated but not 1PI.) If we then take

p2
i → m2, we keep only the part of G̃ which is singular on the mass-shell. And here’s

why we care about that:

Claim (the LSZ reduction formula):

Sfi ≡ 〈~p1 · · · ~pn|S|~k1 · · ·~km〉 =
n+m∏
a=1

(
lim

P 0
a→E~Pa

P 2
a −m2

i
√
Z

)
G̃(n+m) (k1 · · · km,−p1 · · · − pn)

(2.10)

where Pa ∈ {pi, ki}. In words: the S-matrix elements are obtained from Green’s

functions by amputating the external legs, and putting the momenta on-shell. Notice

that choosing all the final momenta pi different from all the initial momenta ki goes a

long way towards eliminating diagrams which are not fully connected.

This formula provides the bridge from time-ordered Green’s functions (which we

know how to compute in perturbation theory now) and the S-matrix, which collects

probability amplitudes for things to happen to particles, in terms of which we may

compute cross sections and lifetimes. Let us spend just another moment inspecting the

construction of this fine conveyance.

Why is LSZ true? Here’s the argument I’ve found which best combines concision

and truthiness. [It is mainly from the nice book by Maggiore §5.2; I also like Schwartz’

chapter 6; Peskin’s argument is in section 4.6.] The argument has several steps. The

field operators in this discussion are all in Heisenberg picture.

1. First, for a free field, the mode expansion implies that we can extract the ladder

operators by:
√

2ωkak = i

∫
ddx eikx (−iωk + ∂0)φfree(x)
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√
2ωka

†
k = −i

∫
ddx e−ikx (+iωk + ∂0)φfree(x) (2.11)

Notice that the LHS is independent of time, but the integrand of the RHS is not.

2. Now let’s pretend that we can turn the interactions off at t = ±∞, so that the

asymptotic states we are scattering are free particles.12 This allows us to write

the field in terms of some pretend free fields of mass m (not m0!)

φ(x)

{
t→−∞
 Z

1
2φin(x)

t→+∞
 Z

1
2φout(x)

.

The factors of
√
Z are required to get the correct two point functions (2.9) near

the mass shell. The mode operators for φin are called a(in) etc. φin, out are free

fields: their full hamiltonian is H0. They are in Heisenberg picture, and the

reference time for φin, out is ±∞ respectively. Since they are free fields, we can

use (2.11) to write

√
2ωka

(in)† = −i

∫
ddx e−ikx (+iωk + ∂0)φin(x) = −iZ−1/2

∫
ddx e−ikx (+iωk + ∂0)φ(x)|t→−∞

where in the second step we used the independence on time in (2.11), even though

φ(x) is not a free field. An expression for a(out)† obtains if we take t → +∞
instead.

3. Now make this expression manifestly covariant using the fundamental theorem

of calculus:

√
2ωk

(
a(in)† − a(out)†) = iZ−1/2

∫ ∞
−∞

dt∂t

(∫
ddx e−ikx (iωk + ∂0)φ(x)

)
IBP in time

= iZ−1/2

∫
dd+1x

e−ikx∂2
0φ− φ · ∂2

0 e
−ikµxµ︸ ︷︷ ︸

(~∇2−m2)e−ikx


IBP in space

= iZ−1/2

∫
dd+1xe−ikx

(
2 +m2

)
φ(x) (2.12)

In the last step we made a promise to only use wavepackets for external states,

so that we can do IBP in space.

4. Now, here’s where the S-matrix enters. Assume none of the incoming momenta

ki is the same as any outgoing momentum pj.

〈p1 · · · pn|S |k1 · · · km〉
12Here’s why this is really bad: nearly everything we might scatter is a boundstate. For example:

atoms, nuclei, nucleons etc... But if there are no interactions there are no boundstates.
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=
∏
p,k

√
2ω 〈Ω|

∏
aout
p S

∏
ain†
k |Ω〉

=
∏
p,k

√
2ω 〈Ω| T

(∏
aout
p S

∏
ain†
k

)
|Ω〉 a

out
lives at t = +∞

=
∏
p,k

√
2ω 〈Ω| T

(∏
aout
p S

(
ain†
k1
− aout†

k1

) m∏
2

ain†
k

)
|Ω〉 since pi 6= kj , use 〈0| aout† = 0

(2.12)
= iZ−1/2

∫
dd+1x1e

−ik1x1 〈Ω| T

(∏√
ωpa

out
p S

(
2 +m2

)
φ(x1)

m∏
2

√
ωka

in†
k

)
|Ω〉

= iZ−1/2

∫
dd+1x1e

−ik1x1
(
2 +m2

)
〈Ω| T

(∏√
ωpa

out
p Sφ(x1)

m∏
2

√
ωka

in†
k

)
|Ω〉+ X

In the last step, X comes from where the 2x1 hits the time ordering symbol. This

gives terms which will not matter when we take k2 → m2, I promise.

5. Now do this for every particle to get

〈p1 · · · pn|S |k1 · · · km〉 =
∏m

j=1

∫
dd+1yj e

+ipjyj iZ−1/2 (2j +m2)∏n
i=1

∫
dd+1xi e

−ikixiiZ−1/2 (2i +m2) 〈Ω| T φ(xi) · · ·φ(yj)S |Ω〉+ X

The x and y integrals are just Fourier transforms, and this says that near the

mass shell,

G̃(n+m)(k1 · · · km,−p1 · · · − pn) =
n+m∏
a

i
√
Z

P 2
a −m2

〈p1 · · · pn|S |k1 · · · km〉+ regular

(where Pa ∈ {pj, ki}) which is the same as (2.10).

Comment: In our discussion of QFT, a special role has been played by fields called

φ. Suppose we have some other (say hermitian) local operator O such that

〈p| O(x) |Ω〉 = ZOe
ipx

where 〈p| is a one-particle state made by our friend φ (we could put some labels, e.g. for

spin or polarization or flavor, on both the operator and the state, but let’s not). Such

an O is called an ‘interpolating field’ or ‘interpolating operator’. And suppose we have

information about the correlation functions of O:

G
(n)
O (1 · · ·n) ≡ 〈Ω| T (O1(x1) · · · On(xn)) |Ω〉 .

In this case, there is a more general statement of LSZ:∏
a∈i

(
Z
−1/2
a i

∫
dd+1xae

−ipaxa (2a +m2
a)
)
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∏
b∈f

(
Z
−1/2
b i

∫
dd+1xbe

+ipbxb (2b +m2
b)
)
G

(n)
O (1 · · ·n)

= 〈{pf}|S |{pa}〉 (2.13)

This more general statement follows as above if we can write Oa
t→−∞
 
√
Zaφin. This

more general formula allows us to scatter particles that are not ‘elementary’ in the

sense that they are made by the fields in terms of which we write our Lagrangian.

Here is a summary of the long logical route connecting Feynman diagrams to mea-

surable quantities in particle physics:

The final step was covered in 215A.
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S-matrix from Feynman diagrams. The end result of the previous discussion is

a prescription to compute S-matrix elements from Feynman diagrams. In a translation-

invariant system, the S matrix always has a delta function outside of it. Also we are

not so interested in the diagonal elements of the S matrix where nothing happens. So

more useful than the S matrix itself are the scattering amplitudes M defined by

〈f | (S − 1) |i〉 ≡ (2π)d+1δ(d+1)

(∑
f

pf −
∑
i

pi

)
iMfi . (2.14)

(The object iM/δ
d+1

(
∑
p) is sometimes called the transfer matrix. The i is a conven-

tion.)

The rules for the Feynman diagram calculation ofM (for φ4 theory, as a represen-

tative example) are:

1. Draw all amputated diagrams with appropriate external nubbins for the initial

and final states. For a diagram with NL loops think of NL letters that are like k

or q or p to call the undetermined loop momenta.

2. For each vertex, impose momentum conservation and multiply by the coupling

(−iλ).

3. For each internal line, put a propagator.

4. For each external line, put a factor of
√
Z.

5. For each loop, integrate over the associated momentum
∫

d̄d+1k.

A comment about rule 1: For tree-level diagrams (diagrams with no loops), ‘am-

putate’ just means leave off the propagators for the external lines. More generally, it

means leave off the resummed propagator (2.8). In particular, a diagram like

is already included by using the correct Z and the correct m.

I skipped the example in lecture. Please read through it and make sure you are

happy about it. Please ask questions if you are not. We will do some examples in QED

soon.

Example: snucleon scattering. [Here we follow Tong §3.5 very closely] Let’s

consider an example with a complex scalar field Φ interacting with a real scalar field

φ with Lagrangian

L =
1

2
∂µΦ?∂µΦ− 1

2
m2Φ?Φ +

1

2
∂µφ∂

µφ− 1

2
M2φ2 + LI (2.15)
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with LI = −gΦ?Φφ.

In specifying initial states below, I will need names for the mode operators of the two

fields:

φ =

∫
d̄dp√

2ωp

(
ape
−ipx + a†pe

ipx
)
|p0=ωp

Φ =

∫
d̄dp√
2Ep

(
bpe

−ipx + c†pe
ipx
)
|p0=Ep

where I’ve written ωp ≡
√
M2 + p2, Eq ≡

√
m2 + q2. Notice that the Φ → e−iαΦ

symmetry is conserved; the charge is

q = Nc −Nb.

But the φ particles are not conserved.13 Relative to φ4 theory, the differences in the

Feynman rules are: we have two kinds of propagators, one of which is oriented (to keep

track of the flow of the conserved Φ number through the diagrams), and instead of a

4-point vertex which costs −ig, we have a 3-point vertex for φΦ?Φ which costs −ig.

Let’s consider 2→ 2 scattering of Φ particles, so

|i〉 = |~p1, ~p2〉 , |f〉 = |~p3, ~p4〉 with |~pi, ~pj〉 ≡
√

2E~pi

√
2E~pjb

†
~pi

b†~pj |0〉 .

(To appreciate some of the beauty of the diagram technique, see Tong §3.3.3 for the

artisanal version of this calculation.) The Feynman rules above give, to leading nonzero

order,

iM =

= (−ig)2

(
i

(p1 − p3)2 −M2 + iε
+

i

(p1 − p4)2 −M2 + iε

)
. (2.16)

The diagrams depict two ‘snucleons’ Φ (solid lines with arrows indicating snucleons

versus antisnucleons) exchanging a meson φ (double gray line, with no arrow) with

momentum k ≡ p1 − p3 = p4 − p2 (first term) or k ≡ p4 − p1 = p2 − p3 (second term).

Time goes to the left as always. Notice that here I am being careful about using arrows

13You might notice a possible problem with this theory: what happens to the quadratic term for Φ

when φ is very negative? Let’s not take it too seriously.
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on the lines to indicate flow of particle number through the diagram, while the extra

(light blue) arrows indicate momentum flow.

The meson in these diagrams is virtual, or off-shell, in the sense that it does not

satisfy its equation of motion k2 6= M2. In fact, each of these diagrams is actually

the sum of retarded and advanced exchange of real on-shell particles. (For more on

this statement, see Schwartz chapter 4 or §4.5 of the notes here.) The two diagrams

included in (2.16) make the amplitude symmetric under interchanging the two particles

in the initial or final state, as it must be because they are indistinguishable bosons.

Two more examples with the same ingredients are useful for comparison. If we

instead scatter a snucleon and an anti-snucleon, so |i〉 =
√

2E~p1

√
2E~p2b

†
~p1

c†~p2
|0〉, then

the leading diagrams are

iM =

= (−ig)2

(
i

(p1 + p2)2 −M2 + iε
+

i

(p1 − p3)2 −M2 + iε

)
. (2.17)

This one has a new ingredient: in the first diagram, the meson momentum is k = p1+p2,

which can be on-shell, and the iε matters. This will produce a big bump, a resonance,

in the answer as a function of the incoming center-of-mass energy
√
s ≡

√
(p1 + p2)2.

Finally, we can scatter a meson and a snucleon:

iM =

= (−ig)2

(
i

(p+ k)2 −m2 + iε
+

i

(p− k′)2 −m2 + iε

)
. (2.18)

Now the intermediate state is a snucleon.

There is a common notation for the Lorentz-invariant combinations of the momenta

appearing in these various processes, called Mandelstam variables, of which s is one.

A concise summary appears in §3.5.1 of Tong’s notes.
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3 QED

3.1 Quantum light: Photons

I skipped this subsection in lecture. Please read through it and make sure you are

happy about it. Please ask questions if you are not.

The quantization of the Maxwell field is logically very similar to the case of a

harmonic chain. There are just a few complications from its several polarizations,

and from the fact that quantum mechanics means that the vector potential is real and

necessary (whereas classically it is just a convenience). This is a quick-and-dirty version

of the story. I mention it here to emphasize that the machinery we are developing

applies to a system you have already thought a lot about!

Maxwell’s equations (with c = 1) are:

εµνρσ∂νFρσ = 0 ~∇ · ~B = 0, ~∇× ~E = −∂t ~B, (3.1)

∂µFµν = 4πjν ~∇ · ~E = 4πρ, ∇× ~B = ∂t ~E + 4π~j (3.2)

(where the familiar electric and magnetic fields are Ei = −F 0i and εijkBk = −F ij). The

first two equations (3.1) are constraints on ~E and ~B which mean that their components

are not independent. This is annoying for trying to treat them quantumly. To get

around this we introduce potentials Aµ = (Φ, ~A)µ which determine the fields by taking

derivatives and which automatically solve the constraints (3.1):

Fµν = ∂µAν − ∂νAµ, aka ~E = −~∇Φ− ∂t ~A, ~B = ~∇× ~A.

Potentials related by a gauge transformation

~A→ ~Aλ = ~A− ~∇λ, Φ→ Φλ = Φ + ∂tλ

for any function λ(~r, t), give the same ~E, ~B. The Bohm-Aharonov effect is proof that

(some of the information in) the potential is real and useful, despite this redundancy.

We can partially remove this redundancy be choosing our potentials to satisfy Coulomb

gauge
~∇ · ~A = 0 .

In the absence of sources ρ = 0 = ~j, we can also set Φ = 0. In this gauge, Ampere’s

law becomes

c2~∇×
(
~∇× ~A

)
= c2~∇ ·

(
~∇ · ~A

)
− c2∇2 ~A = −∂2

t
~A i.e. ∂2

t
~A− c2∇2 ~A = 0 .

This wave equation is different from the scalar wave equation 2φ = 0 in three ways:
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• we’re in three spatial dimensions,

• the speed of sound vs has been replaced by the speed of light c,

• the field ~A is a vector field obeying the constraint ~∇ · ~A = 0. In fourier space
~A(x) =

∑
k e

i~k·~x ~A(k) this condition is

0 = ~k · ~A(k)

– the vector field is transverse.

An action which gives rise to Maxwell’s equations is

S[A] =

∫
d4x

(
−1

4
FµνF

µν

)
=

∫
d4xLMaxwell. LMaxwell = −1

4
FµνF

µν =
1

2

(
E2 −B2

)
.

Note that we must regard A as the dynamical variable to obtain (3.2) by 0 = δS
δAµ(x)

.

The canonical momentum of A is then ΠAi = ∂LMaxwell

∂Ȧi
= Ei. So the Hamiltonian is14:

H =
1

2

∫
d3x

(
~E2 + c2 ~B2

)
. (3.3)

Here ~E = −∂t ~A plays the role of field momentum π(x) in (1.3), and ~B = ~∇× ~A plays

the role of the spatial derivative ∂xq. We immediately see that we can quantize this

system just like for the scalar case, with the canonical commutator

[φ(x), π(x′)] = i~δ(x− x′)  [Ai(~r),Ej(~r
′)] = −i~δ3(~r − ~r′)δij

where i, j = 1..3 are spatial indices15. So we can immediately write down an expres-

sion for the quantum Maxwell field in terms of independent creation and annihilation

operators:

~A(~r) =

∫
d̄3k

1√
2ωk

∑
s=1,2

(
a~k,s~es(k̂)ei~k·~r + a†~k,s~e

?
s(k̂)e−i~k·~r

)
14You may also recall that the energy density of a configuration of Maxwell fields is u =

1
2

(
~E2 + ~B2

)
. This result can be obtained either by Legendre transformation of LMaxwell, or from

T 0
0 , the energy momentum tensor.
15As a check, note that using this Hamiltonian and the canonical commutator, we can reproduce

Maxwell’s equations using Ehrenfest’s theorem:〈
∂2
t
~A
〉

= ∂t

〈
~E
〉

= − i

~

〈
[H, ~E]

〉
=
〈
c2~∇2 ~A

〉
.

50



The field momentum is ~E = −∂t ~A :

~E(~r) = i

√
ωk
2

∑
s=1,2

(
a~k,s~es(k̂)ei~k·~r − a†~k,s~e

?
s(k̂)e−i~k·~r

)
Also, the magnetic field operator is

~B = ~∇× ~A =
∑
~k

∑
s

√
~

2ε0ωkL3
i~k ×

(
a~k,s~es(k̂)ei~k·~r − a†~k,s~e

?
s(k̂)e−i~k·~r

)
;

the magnetic field is analogous to ~∇φ in the scalar field theory16. Plugging these

expressions into the Hamiltonian (3.3), we can write it in terms of these oscillator

modes (which create and annihilate photons). As for the scalar field, the definitions of

these modes were designed to make this simple: It is:

H =
∑
~k,s

~ωk
(

a†~k,sa~k,s +
1

2

)
.

Notice that in this case we began our story in the continuum, rather than with

microscopic particles connected by springs. (However, if you read Maxwell’s papers

you’ll see that he had in mind a particular UV completion involving gears and cogs. I

actually don’t understand it; if you do please explain it to me.)

The vacuum energy is

E0 =
1

2

∑
~k,s

~ωk =
L3

(2π)3

∫
d3k~ck.

The fact that
∑

k is no longer a finite sum might be something to worry about. This

vacuum energy has physical consequences, since it can depend on boundary conditions

placed on the field by conducting objects, as we’ll discuss in §4.1.

3.2 More on vector fields

A few things we did not do yet for vector fields: study the propagator, figure out the

data on external states, and understand the relation of between the masslessness of the

photon and gauge invariance.

16I should say a little more about the polarization vectors, ~es. They conspire to make it so that

there are only two independent states for each ~k and they are transverse ~k · ~es(k̂) = 0, so s = 1, 2.

The polarization vectors of a given ~k can be chosen to satisfy the following completeness relation:∑
s

esi(k̂)e?sj(k̂) = δij − k̂ik̂j . (3.4)

This says that they span the plane perpendicular to k̂.
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Consider the following Lagrangian for a vector field Aµ (which I claim is the most

general quadratic Poincaré-invariant Lagrangian with at most two derivatives):

L = −1

2

∂µAν∂µAν + a ∂µA
µ∂νA

ν︸ ︷︷ ︸
=(∂A)2

+bAµA
µ + cεµνρσ∂µAν∂ρAσ

 .

The sign is chosen so that spatial derivatives are suppressed, and the normalization of

the first term is fixed by rescaling A. (Another possible-seeming term, ∂µA
ν∂νA

µ,

is related to the second term by two IBPs.) The last term is a total derivative,

εµνρσ∂µAν∂ρAσ ∝ ∂µ (εµνρσAν∂ρAσ), and will not affect the EoM or anything at all

in perturbation theory; it is called a θ term.

The EoM are

0 =
δ

δAν(x)

∫
L = −∂2Aν − a∂ν (∂ · A) + bAν (3.5)

which (like any translation-invariant linear equation) is solved by Fourier transforms

Aµ(x) = εµe
−ikx, if

k2εµ + akµ (k · ε) + bεµ = 0.

There are two kinds of solutions: longitudinal ones with εµ ∝ kµ (for which the disper-

sion relation is k2 = − b
1+a

), and transverse solutions ε · k = 0 with dispersion k2 = −b.
The longitudinal mode may be removed by taking b 6= 0 and a → −1, which we will

do from now on. This gives the Proca Lagrangian:

La=−1,b≡−µ2 = −1

4
FµνF

µν +
1

2
µ2AµA

µ,

where as usual Fµν ≡ ∂µAν − ∂νAµ. Note that the EOM (Proca equation) 0 = ∂·F·ν +

µ2Aν implies 0 = ∂νAν by 0 = ∂µ∂νFµν . So each component of Aµ satisfies (by (3.5))

the KG equation, k2 = µ2, and the transverse condition ε · k = 0. In the rest frame,

kµ = (k0,~0)µ, we can choose a basis of plane-wave transverse solutions which are

eigenstates of the vector rotation generator

Jz = i

 +1

−1

 , namely, ε(±) =
1√
2


0

1

∓i

0

 , ε(0) =


0

0

0

1

 .

They are normalized so that ε(r) · ε(s) = +δrs and
∑

r=±1,0 ε
(r)?
µ ε

(r)
ν = −ηµν + kµkν

µ2 so

that they project out ε ∝ k. Notice that in the massless case, only two of these three

polarization states will be transverse to kµ. If ~k ∝ ẑ (for example in the massless case

with kµ = (E, 0, 0, E)µ) then these ε are also all helicity eigenstates: h = ~J · k̂ = Jz.
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Canonical stuff: The canonical momenta are πi = ∂L
∂Ȧi

= −F 0i = Ei (as for

electrodynamics in §3.1) and π0 = ∂L
∂Ȧ0

= 0. This last bit is a little awkward, but it

just means we can solve the equations of motion for A0 algebraically in terms of the

other (real) dofs:

0 =
δS

δA0

= ~∇· ~E−µ2A0 = (−∇2+µ2)A0+~∇· ~̇A =⇒ A0(~x) =

∫
d3ye−µ|~x−~y|

(
−~∇ · ~̇A

)
4π|~x− ~y|

.

(3.6)

So at each moment A0 is determined by Ai. (Notice that this is still true for µ →
0.) The hamiltonian density is (after using πi = F 0i, integration by parts, and the

equations of motion for A0)

h = +
1

2

(
F 2

0i +
1

2
F 2
ij + µ2A2

i + µ2A2
0

)
=

1

2

(
~E2 + ~B2 + µ2 ~A2 + µ2A2

0

)
≥ 0,

where positivity follows from the fact that it is a sum of squares of real things.

The canonical equal time commutators are then

[Ai(t, ~x), F j0(t, ~y)] = iδji δ
(3)(~x− ~y)

which if we add up the plane wave solutions as

Aµ(x) =
∑
r=1,2,3

∫
d̄3k√
2ωk

(
e−ikxarkε

(r)
µ + e+ikxar†k ε

(r)?
µ

)
give the bosonic ladder algebra for each mode

[ark, a
s†
p ] = /δ

(3)
(~k − ~p)δrs.

The normal-ordered hamiltonian is

: H :=
∑
r

∫
d̄3k ωka

r†
k ark.

Using the mode expansion above, the propagator for the Aµ(x) field is found to be

〈0|T Aµ(x)Aν(y)|0〉 =

∫
d̄4ke−ik(x−y)

[
−i(ηµν − kµkν/µ2)

k2 − µ2 + iε

]
. (3.7)

Notice that like in the spinor case the polarization sum
∑

r ε
r?
µ ε

r
ν = −(ηµν−kµkν/µ2) ap-

pears in the numerator of the propagator. (Note that there are 3 orthonormal polariza-

tions, so this is a rank-3 matrix; its kernel is the longitudinal direction, kµ.) The quan-

tity in square brackets is then the momentum-space propagator. Since 〈0|Aµ(x) |k, r〉 =
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εrµ(k)e−ikx, a vector in the initial state produces a factor of εrµ(k), and in the final state

gives ε?.

Massless case. In the limit µ → 0 some weird stuff happens. If we couple Aµ
to some object jµ made of other matter, by adding ∆L = jµAµ, then we learn that

∂µA
µ = µ−2∂µj

µ. This means that in order to take µ→ 0, it will be best if the current

is conserved ∂µj
µ.

One example is the QED coupling, jµ = Ψ̄γµΨ. Here jµ is the Noether current

for the symmetry Ψ→ eiαΨ of the Dirac Lagrangian. This coupling Aµj
µ arises from

the ‘minimal coupling’ prescription of replacing ∂µ → Dµ = ∂µ + ieqAµ in the Dirac

Lagrangian. In this case, the model, with Lagrangian

L = Ψ̄
(
i /D −m

)
Ψ− 1

4
FµνF

µν − µ2

2
AµA

µ|µ2=0,

has a local invariance under Aµ → Aµ + ∂µλ(x)/e,Ψ(x) → eiqλ(x)Ψ(x). For λ non-

constant (and going to zero far away), this is a redundancy of our description rather

than a symmetry (for example, they have the same configuration of ~E, ~B,
∮
A). That is,

configurations related by this gauge transformation should be regarded as equivalent.

[End of Lecture 6]

Another example can be obtained by taking a complex scalar and doing the same

replacement: L = DµΦ?DµΦ + ... Notice that in this case the vertex involves a deriva-

tive, so it comes with a factor of = −ieq(pΦ +pΦ?)
µ. Also, there is a AµAνΦ

?Φ

coupling, which gives a vertex = −ie2q2ηµν .

How do I know that configurations related by a gauge transformation should be

regarded as equivalent? If not, the kinetic operator for the massless vector field

(ηµν (∂ρ∂ρ)− ∂µ∂ν)Aν = 0 is not invertible (even in Euclidean section!), since it anni-

hilates Aν = ∂νλ.

What’s the propagator for a massless vector field, then? One strategy is to simply

ignore the gauge equivalence and use the same propagator (3.7) that we found in the

massive case with µ → 0. Since the dynamics are gauge invariant, it will never make

gauge-variant stuff, and the longitudinal bits ∝ kµkν in (3.7) (which depend on µ) will

just drop out, and we can take µ → 0 in the denominator at the end. This actually

works. The guarantee that it works is the QED Ward identity: any amplitude with an
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external vector ε(k)µ is of the form

= iM = iMµ(k)εµ(k)

and if all external fermion lines are on-shell then

Mµ(k)kµ = 0.

There is a complicated diagrammatic proof of this statement in Peskin; Schwartz §8.4

argues that it is a necessary condition for Lorentz invariance of M = εµ · Mµ; and

we will see some illustrations of it below (I also recommend Zee §II.7). But it is

basically a statement of current conservation: such an amplitude is made (by LSZ

and the photon Schwinger-Dyson equation) from a correlation function involving an

insertion of the electromagnetic current jµ(k) =
∫
d4x e−ikxjµ(x), in the form, Mµ ∼

... 〈Ω|....jµ(k)...|Ω〉, and kµj
µ(k) = 0 is current conservation17.

This property guarantees that we will not emit either of the unphysical polarizations

of massless photons, since the amplitude to do so is either A( emit ελ ∝ kλ) = εµMµ ∝
kµMµ Ward

= 0, or the µ→ 0 limit of

A

(
emit εLλ = 1

µ
(k, 0, 0,−ω)λ

with kλ = (ω, 0, 0, k)λ

)
∝ εLµMµ =

1

µ

(
kM0 − ωM3

)
=

1

µ

kM0 −
√
k2 + µ2︸ ︷︷ ︸

=k+µ2

2k
+...

M3


=

1

µ
kµMµ︸ ︷︷ ︸

=0,by Ward

− µ

2k
M3 +O(µ3)︸ ︷︷ ︸
→0 as µ→0

µ→0→ 0.

For the same reason, in summing over photon final-states (for example in computing

a cross section), we’ll have∑
ε

|M|2 =
∑
ε

ε(k)µε(k)?νMµ(k)Mν(k)?.

17 Current conservation ∂µj
µ is a statement which requires the equations of motion (recall the

proof of Noether’s theorem). Recall that equations of motion are true in correlation functions, up

to contact terms, using the independence of the path integral on choice of integration variables. By

contact terms, I mean terms which are only nonzero when two operators are at the same point. So

you can worry about the contact terms in the argument for the Ward identity. The reason they do

not contribute is that all the operators in the correlation function (using the LSZ formula) correspond

to external states. A collision between the operators creating the external particles would lead to a

disconnected amplitude, which could only contribute for degenerate kinematical configurations, and

we can ignore them. If you would like to read more words about this, look at Schwartz §14.8, or §3.3.
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This sum is only over the two physical polarizations of the massless photon. If we choose

a frame with kµ = (k, 0, 0, k)µ, the Ward identity says 0 = kµMµ = k(M0 −M3), so∑
ε

ε(k)µε(k)?νMµ(k)Mν(k)? = |M1|2+|M2|2 = |M1|2+|M2|2+|M3|2−|M0|2 = −ηµνMµ(k)Mν(k)?,

(3.8)

that is, just like in the numerator of the propagator, we can replace∑
ε

ε(k)µε(k)?ν  −ηµν

since they differ by stuff proportional to kµ which vanishes when contracted with the

rest of the amplitude. In (3.8) we see explicitly that the crazy timelike polarization

(which looks like negative probability) cancels the longitudinal polarization ~ε ∝ ~k.

Gauge fixing. You might not be happy with the accounting procedure I’ve advo-

cated above, where unphysical degrees of freedom are floating around in intermediate

states and only drop out at the end by some formal trick. In that case, a whole zoo of

formal tricks called gauge fixing has been prepared for you. Here’s a brief summary to

hold you over until we really need it for the non-Abelian case.

At the price of Lorentz invariance, we can make manifest the physical dofs, by

choosing Coulomb gauge. That means we restrict ∂µA
µ = 0 (so far, so Lorentz in-

variant) and also ~∇ · ~A = 0. Looking at (3.6), we see that this kills off the bit of A0

that depended on ~A. We also lose the helicity-zero polarization ~∇ · ~A ∝ ε(0). But the

Coulomb interaction is instantaneous action at a distance.

To keep Lorentz invariance, we can instead merely discourage configurations with

∂ · A 6= 0 by adding a term to the action

L = −1

4
FµνF

µν − 1

2ξ
(∂ · A)2

for some arbitrary number ξ. Physics should not depend on ξ, and this is a check on

calculations. The propagator is

〈T Aµ(x)Aν(y)〉α =

∫
d̄4k e−ik(x−y)

[
−i(ηµν − (1− ξ)kµkν/µ2)

k2 − µ2 + iε

]
and again the bit with kµkν must drop out. ξ = 1 is called Feynman gauge and makes

this explicit. ξ = 0 is called Landau gauge and makes the propagator into a projector

onto k⊥.

It becomes much more important to be careful about this business in non-Abelian

gauge theory.
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3.3 On the non-perturbative proof of the Ward identity

[Schwartz §14.8] First, consider a Green’s function from which we might make an S-

matrix element by LSZ,

G ≡ 〈Ω|T O1(x1) · · · On(xn)|Ω〉 =

∫
[DΨ]eiSO1(x1) · · · On(xn)

where the operators O1(x1) 7→ e−iQiαO1(x1) have charge Qi under a global U(1) sym-

metry. For example the O(x) could be just the elementary field Ψ(x) 18.

Now change variables in the path integral so that Oi(xi) 7→ e−iQiα(xi)Oi(xi); the

action will shift by S 7→ S−
∫
α∂µj

µ where jµ is the Noether current. The path integral

doesn’t change at all, so its infinitesimal variation is

0 = δG =

∫
[DΨ]

(
−
∫

iα∂µjµe
iSO1 · · · On − i

∑
i

Qiα(xi)e
iSO1 · · · On

)
(3.9)

=

∫
dDxα(x)

[
i∂µ 〈jµ(x)O1 · · · On〉 −

∑
i

Qiδ
D(x− xi)G

]
. (3.10)

Since this is true for any α(x), we learn that the thing in square brackets is zero:

∂µj
µ = 0 up to contact terms. This is called the Ward-Takahashi identity.

Now suppose we do this same manipulation in a gauge theory, like QED. The

additional terms in S are −1
4
FµνF

µν + iAµΨ̄γµΨ, which are invariant under the trans-

formation, so don’t change these statements. Notice that the transformation we’re

doing here is not the gauge transformation, since Aµ doesn’t transform – we’re only

doing the gauge transformation on the matter fields here, so their kinetic terms actually

shift and produce the α∂µjµ term above. Photon field insertions in G don’t contribute,

since they have charge zero here.

Next, think about the LSZ formula for an S-matrix element with (say) two external

photons:

M = 〈ε, ...εk...|S|...〉
LSZ
= εµερki

n

∫
d4xeipx2µν

∫
d4x1e

ipkxk2k
ρσ

∫
... 〈Aν(x)...Aσ(xk)...〉

(3.11)

where 2µν is shorthand for the photon kinetic operator 2µν ≡ 2ηµν−∂µ∂ν/µ2, and I’m

ignoring the wavefunction renormalization factors (
√
Z) for simplicity. The Schwinger-

Dyson equation for Aµ then implies that

2k
ρσ2µν 〈Aν(x)...Aσ(xk)...〉 = 2k

ρσ

(
〈jµ(x)...Aσ(xk)...〉 − iδ4(x− xk)ηµσ 〈...〉

)
(3.12)

= 〈jµ(x)...jσ(xk)〉 − i2δ(x− xk)ηµσ 〈...〉 (3.13)

18You’ll have to trust me for now that the path integral for fermionic fields exists. That’s the only

information about it we’ll need here. Also I’ve absorbed the factor of Z−1 into [DΨ].
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First of all, this is why I said we could get the S-matrix elements with photons from

correlators with currents. But notice that this is only true up to the contact terms.

But those are disconnected amplitudes which we can ignore.

Finally, set the polarization of one of the photons equal to its momentum ε = p.

Then

pµMµ = ερki
n

∫
d4xeipx

∫
d4x1e

ipkxk

∫
dyeiq1y

(
i/∂y +m1

)
... 〈−i∂µj

µ...jρ(x1)...Ψ(y)..〉

(3.14)

=
(
/q1
−m1

)(
/q2
−m2

)
· · ·
∑
j

QjG̃(..., qj ± p, ...) (3.15)

where the ± depends on whether particle j is incoming or outgoing. At the last step

we used the Fourier transform of (3.10).

Now here’s the punchline: The G̃ on the RHS of (3.15) has poles at (qj±p)2 = m2
j ,

and not at q2
j = m2

j . So when it’s multiplied by /qj −mj =
q2
j−m2

j

/q+m
it will vanish. End of

story. Notice that no use of perturbation theory was made here.

3.4 Feynman rules for QED

First, Feynman rules for Dirac fermion fields, more generally19. As always in these

notes, time goes to the left, so I draw the initial state on the right (like the ket) and

the final state on the left (like the bra).

1. An internal fermion line gives

=
i

/k −mΨ

19Another good example of a QFT with interacting fermions is the Yukawa theory theory of a Dirac

fermion field plus a scalar φ and an interaction

V = gφΨ̄Ψ =⇒ = − igδrr
′
. (3.16)

Notice that in 3 + 1 dimensions, [g] = +4− [φ]− 2[Ψ] = 4− 1− 2 3
2 = 0, the coupling is dimensionless.

This describes more realistically the interactions between nucleons (which are fermions, as opposed to

snucleons) and scalar pions, which hold together nuclei. It also is a crude sketch of the Higgs coupling

to matter; notice that if φ is some nonzero constant 〈φ〉, then there is a contribution to the mass of

the fermions, g 〈φ〉.
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which is a matrix on the spinor indices.

There are four possibilities for an external fermion line of definite momentum. Here

u, v are respectively the positive- and negative-energy solutions of the Dirac equation,(
/p−m

)
ur(k) = 0,

(
/p+m

)
vr(k) = 0. (For a reminder, see e.g. §5.4 of my 215A lecture

notes.)

2. = Ψ|k, r〉 = ur(k)

3. = 〈k, r|Ψ̄ = ūr(k)

4. = Ψ̄|k, r〉 = v̄r(k)

5. = 〈k, r|Ψ = vr(k).

6. Some advice: When evaluating a Feynman diagram with spinor particles, always

begin at the head of the particle-number arrows on the fermion lines, and keep

going along the fermion line until you can’t anymore. This will keep the spinor

indices in the form of matrix multiplication. Why: every Lagrangian you’ll ever

encounter has fermion parity symmetry, under which every fermionic field gets

a minus sign; this means fermion lines cannot end, except on external legs. The

result is always of the form of a scalar function (not a matrix or a spinor) made

by sandwiching gamma matrices between external spinors:

r′p′ rp =
∑

a,b...=1..4

ūr
′
(p′)a (pile of gamma matrices)ab u

r(p)b

Furthermore, in S-matrix elements the external spinors u(p), v(p) satisfy the equa-

tions of motion (/p −m)u(p) = 0, a fact which can be used to our advantage to

shrink the pile of gammas.

There can also be fermion lines which form internal loops (though not at tree

level, by definition). In this case, the spinor indices form a trace,∑
a

(pile of gamma matrices)aa ≡ tr (pile of gamma matrices) .

We’ll learn to compute such traces below (around (3.18)); in fact, traces appear

even in the case with external fermions if we do not measure the spins.
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7. Diagrams related by exchanging external fermions have a relative minus sign.

8. Diagrams with an odd number of fermion loops have an extra minus sign.

The last two rules are best understood by looking at an example in detail.

To understand rule 8 consider the following amplitude in the Yukawa theory with

interaction (3.16): It is a contribution to the meson propagator.

It is proportional to∑
abcd

Ψ̄a(x)Ψb(x)Ψ̄c(y)Ψd(y) = (−1)trΨ(x)Ψ̄(y)Ψ(x)Ψ̄(y) = (−1)trSF (x− y)SF (x− y)

[Peskin page 119] To understand rule 7 consider ΨΨ → ΨΨ (nucleon) scattering

in the Yukawa theory: The blob represents the matrix

element

0 〈p3r3; p4r4| T e−i
∫
V d4z |p1r1; p2r2〉0

where the initial state is

|p1r1; p2r2〉0 ∝ ar1†p1
ar2†p2
|0〉

and the final state is

0 〈p3r3; p4r4| = (|p3r3; p4r4〉0)† ∝ 〈0| ar4p4
ar3p3

= −〈0| ar3p3
ar4p4

where note that the dagger reverses the order.

The leading contribution comes at second order in V :

0 〈p3r3; p4r4| T
(

1

2!
(ig)2

∫
d4z1

∫
d4z2

(
Ψ̄Ψφ

)
1

(
Ψ̄Ψφ

)
2

)
|p1r1; p2r2〉0

To get something nonzero we must contract the φs with

each other. The diagrams at right indicate best the pos-

sible ways to contract the fermions. Exchanging the roles

of z1 and z2 interchanges two pairs of fermions so costs

no signs and cancels the 1
2!

.

The overall sign is annoying but can be fixed by demand-

ing that the diagonal bit of the S-matrix give

〈p3p4| (1 + ...) |p1p2〉 = +δ(p1 − p3)δ(p2 − p4) + · · ·

The relative sign is what we’re after, and it comes by comparing the locations of fermion
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operators in the contractions in the two diagrams at right. In terms of the contractions,

these t− and u− channel diagrams are related by leaving the annihilation operators

alone and switching the contractions between the creation operators and the final state.

Denoting by a†1,2 the fermion creation operators coming from the vertex at z1,2,

〈0| ap4 ap3a
†
1︸ ︷︷ ︸ a†2... + 〈0| ap4 ap3a

†
1a
†
2︸ ︷︷ ︸ ...

= 〈0| ap4 ap3a
†
1︸ ︷︷ ︸ a†2... − 〈0| ap4a

†
1︸ ︷︷ ︸ ap3a

†
2︸ ︷︷ ︸ ...

In the last expression the fermion operators to be contracted are all right next to each

other and we see the relative minus sign.

While we’re at it, let’s evaluate this whole amplitude to check the Feynman rules

I’ve claimed and get some physics out. It is

Sfi = −g2

∫
dz1dz2

∫
d̄4q

e−iq(z1−z2)i

q2 −m2 + iε

(
e−ız2(p1−p3)ūr3(p3)ur1(p1) · e−ız1(p2−p4)ūr4(p4)ur2(p2)− (3↔ 4)

)
.

In the first (t-channel) term, the integrals over z1,2 gives /δ(p1 − p3 − q)/δ(p2 − p4 − q),
and the q integral then gives δ(p1 + p2 − p3 − p4), overall momentum conservation. In

the second (u-channel) term, q = p1 − p4 = p3 − p2. Altogether,

Sfi = 1 + /δ
4
(pT )iM

with, to leading order,

iM = −ig2

(
1

t−m2
(ū3u1) (ū4u2)− 1

u−m2
(ū4u1) (ū3u2)

)
(3.17)

with t ≡ (p1 − p3)2, u ≡ (p1 − p4)2. This minus sign implements Fermi statistics.

Yukawa force revisited. In the non-relativistic limit, we can again relate this

amplitude to the force between particles, this time with the actual spin and statistics of

nucleons. In the COM frame, p1 = (m, ~p), p2 = (m,−~p) and p3 = (m, ~p′), p4 = (m,−~p′).

In the non-relativistic limit, the spinors become urp =

(√
σ · pξr√
σ̄ · pξr

)
→
√
m

(
ξr

ξr

)
so that

ū3u1 ≡ ū(p3)r3u(p1)r1 = 2mξ†r3ξr1 = 2mδr3r1 . Let’s simplify our lives and take two

distinguishable fermions (poetically, they could be proton and neutron, but let’s just

add a label to our fermion fields; they could have different masses, for example, or

different couplings to φ, call them g1, g2). Then we only get the t-channel diagram.

The intermediate scalar momentum is q = p1 − p3 = (0, ~p − ~p′) so t = (p1 − p3)2 =

−~q2 = − (~p− ~p′)2 and

iMNR,COM = ig1g2
1

~q2 +m2
φ

4m2δr1r3δr2r4 .
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Compare this to the NR Born approximation matrix element

2πδ(Ep − Ep′)
(
−iṼ (~q)

)
= NR 〈~p′|S |~p〉NR

=
∑
r4

∫
d̄3p4V

4∏
i=1

1√
2Ei︸ ︷︷ ︸

= 1√
2m

4

S(34← 12)

= 2πδ(Ep − Ep′)δr1r3
ig1g2

~q2 +m2
φ

where in the second line we summed over possible final states of the second (target)

particle, and corrected the relativistic normalization, so that NR 〈~p′|~p〉NR = /δ
3
(p− p′).

This is completely independent of the properties of the second particle. We infer that

the scalar mediates a force with potential U(x) = −g1g2e
−mφr

4πr
. It is attractive if g1g2 > 0.

[End of Lecture 7]

Back to QED. The new ingredients in QED are the propagating vectors, and the

interaction hamiltonian V = eΨ̄γµΨAµ. The rest of the Feynman rules are

9. The interaction vertex gets a

= − ieγµ

10. An external photon in the initial state gets a εµ(p), and in the final state gets a

εµ?(p).

11. An internal photon line gets a

=
i

k2 −m2
γ

(
−ηµν + (1− ξ)kµkν/k2

)
where mγ = 0 (it’s sometimes useful to keep it in there for a while as an IR

regulator) and the value of ξ is up to you (meaning that your answers for physical

quantities should be independent of ξ).

Spinor trace ninjutsu.

The trace is cyclic: tr (AB · · ·C) = tr (CAB · · ·) . (3.18)

62



Our gamma matrices are 4× 4, so tr1 = 4.

trγµ = tr
(
γ5
)2
γµ

(3.18)
= trγ5γµγ5 {γ

5,γµ}=0
= −trγµ = 0. (3.19)

The same trick shows that the trace of any odd number of gammas vanishes. The idea

is that an odd number of gammas is a map between the L and R subspaces, so it has

only off-diagonal terms in the Weyl basis.

trγµγν
clifford

= −trγνγµ + 2ηµνtr1
(3.18)
= −trγµγν + 8ηµν =⇒ trγµγν = 4ηµν . (3.20)

trγµγνγργσ = 4 (ηµνηρσ + ησµηνρ − ηµρηνσ) . (3.21)

Why is this? The completely antisymmetric bit vanishes because it is proportional to

γ5 which is traceless (by the same argument as (3.19)). If any pair of indices is the

same then the other two must be too by (3.20). If adjacent pairs are the same they can

just square to one and we get +1; if alternating pairs are the same (and different from

each other) then we must move them through each other with the anticommutator. If

they are all the same we get 4.

trγµγνγργσγ5 = −4iεµνρσ.

3.5 QED processes at leading order

Now we are ready to do lots of examples, nearly all of which (when pushed to the

end) predict cross sections which are verified by experiments to about one part in

137.20 Here 1
137
≈ α ≡ e2

4π
is the small number by which the next order corrections are

suppressed. 21

Did I mention that the antiparticle of the electron, predicted by the quantum Dirac

theory (i.e. by Dirac), is the positron? It has the same mass as the electron and the

opposite electromagnetic charge, since the charge density is the 0 component of the

electromagnetic current, jµ = Ψ̄γµΨ, so the charge is∫
d3xj0(x) =

∫
Ψ̄γ0Ψ =

∫
Ψ†Ψ =

∫
d̄3p

∑
s

(
a†p,saps − b†p,sbps

)
.

20I guess it is this overabundance of scientific victory in this area that leads to the intrusion of so

many names of physicists in the following discussion.
21This statement is true naively (in the sense that the next diagrams which are nonzero come with

two more powers of e), and also true in fact, but in between naiveté and the truth is a long road of

renormalization, which begins in the next section.
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So b† creates a positron.

[Schwarz §13.3, Peskin §5.1] Perhaps the simplest to start with is scattering of

electrons and positrons. We can make things even simpler (one diagram instead of

two) by including also the muon, which is a heavy version of the electron22, and asking

about the process µ+µ− ← e+e−. At leading order in e, this comes from

iMµ+µ−←e+e− =

= (−ieūs3(p3)γµvs4(p4))muons

−i
(
ηµν − (1−ξ)kµkν

k2

)
k2

(−iev̄s2(p2)γνus1(p1))electrons (3.22)

with k ≡ p1 + p2 = p3 + p4 by momentum conservation at each vertex. I’ve labelled

the spinors according to the particle types, since they depend on the mass.

Ward identity in action. What about the kµkν term in the photon propagator?

The spinors satisfy their equations of motion, /p1
u1 = meu1 (where u1 ≡ us1p1

for short)

and v̄2/p2
= −mev̄2. The kν appears in

kν v̄2γ
νu1 = v̄2

(
/p1

+ /p2

)
u1 = v̄2/p1

u1 + v̄2/p2
u1 = (m−m)v̄u = 0.

(The other factor is also zero, but one factor of zero is enough.) Therefore

M =
e2

s
ū3γµv4 · v̄2γ

µu1

where s ≡ k2 = (p1 + p2)2 = E2
CoM is the Mandelstam variable. And I am relying on

you to remember which spinors refer to muons (3,4) and which to electrons (1,2).

Squaring the amplitude. We need to findM† (the dagger here really just means

complex conjugate, but let’s put dagger to remind ourselves to transpose and reverse

the order of all the matrices). Recall the special role of γ0 here:

γ†µγ0 = γ0γµ, γ†0 = γ0.

This means that for any two Dirac spinors,(
Ψ̄1γ

µΨ2

)†
= Ψ̄2γ

µΨ1.

22Who ordered that? (I. I. Rabi’s reaction to learning about the muon.) I hope you don’t find it

too jarring that the number of ‘elementary’ particles in our discussion increased by three in the last

two paragraphs. People used to get really disgruntled about this kind of thing. But here we have, at

last, uncovered the true purpose of the muon, which is to halve the number of Feynman diagrams in

this calculation (compare (3.28)).
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(This is the same manipulation that showed that the Dirac Lagrangian was hermitian.)

So

M† =
e2

s
(v̄4γ

µu3) (ū1γµv2) .

and therefore

|Mµ+µ−←e+e− |2 =
e4

s2
(v̄4γ

µu3) (ū3γ
νv4)︸ ︷︷ ︸

out

· (ū1γµv2) (v̄2γνu1)︸ ︷︷ ︸
in

. (3.23)

These objects in parentheses are just c-numbers, so we can move them around, no

problem. I’ve grouped them into a bit depending only on the initial state (the electron

stuff 1, 2) and a bit depending only on the final state (the muon stuff 3,4).

Average over initial, sum over final. In the amplitude above, we have fixed the

spin states of all the particles. Only very sophisticated experiments are able to discern

this information. So suppose we wish to predict the outcome of an experiment which

does not measure the spins of the fermions involved. We must sum over the final-state

spins using ∑
s4

vs4a (p4)v̄s4b (p4) =
(
/p4
−mµ

)
ab

=
∑
s4

v̄s4b (p4)vs4a (p4)

(where I wrote the last expression to emphasize that these are just c-numbers) and∑
s3

us3a (p3)ūs3b (p3) =
(
/p3

+mµ

)
ab
.

Looking at just the ‘out’ factor of |M|2 in (3.23), we see that putting these together

produces a spinor trace, as promised:∑
s3,s4

(
ū(p3)s3a γ

µ
ab v(p4)s4b

)(
v̄(p4)s4c︸ ︷︷ ︸

(/p4
−mµ)bc

γνcdu
s3(p3)d

)
= γµab(/p4

−mµ)bcγ
ν
cd(/p3

+mµ)da

= tr
(
γµ
(
/p4
−mµ

)
γν
(
/p3

+mµ

))
= p4ρp3σtrγµγργνγσ −m2

µtrγµγν

(3.20),(3.21)
= 4

pµ4pν3 + pν3p
µ
4 − p3 · p4︸ ︷︷ ︸

≡p34

ηµν −m2
µη

µν

 (3.24)

If also we don’t know the initial (electron) spins, then the outcome of our experiment

is the average over the initial spins, of which there are four possibilities. Therefore, the

relevant probability for unpolarized scattering is

1

4

∑
s1,2,3,4

|M|2 =
e4

4s2
tr
(
γµ
(
/p4
−mµ

)
γν
(
/p3

+mµ

))
tr
(
γν

(
/p2
−me

)
γµ

(
/p1

+me

))
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(3.24) twice
=

8e4

s2

(
p13p24 + p14p23 +m2

µp12 +m2
ep34 + 2m2

em
2
µ

)
algebra

=
2e4

s2

(
t2 + u2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)2
)

(3.25)

In the second step of (3.25) the p12p34 terms cancel. In the

last step of (3.25) we used all the Mandelstam variables:

s ≡ (p1 + p2)2 = (p3 + p4)2 = E2
CoM = 4E2

t ≡ (p1 − p3)2 = (p2 − p4)2 = m2
e +m2

µ − 2E2 + 2~k · ~p
u ≡ (p1 − p4)2 = (p2 − p3)2 = m2

e +m2
µ − 2E2 − 2~k · ~p

where the particular kinematic variables (in the rightmost

equalities) are special to this problem, in the center of

mass frame (CoM), and are defined in the figure at right.

Really there are only two independent Lorentz-invariant

kinematical variables, since s+ t+ u =
∑

im
2
i .

Now we can use the formula for a differential cross section with a two-body final

state, in the CoM frame (for the derivation, see these notes, §4.7):(
dσ

dΩ

)
CoM

=
1

64π2E2
CoM

|~p|
|~k|

(
1

4

∑
spins

|M|2
)

=
α2

16E6

|~p|
|~k|

(
E4 + |~k|2|~p|2 cos2 θ + E2(m2

e +m2
µ)
)

(3.26)

where α ≡ e2

4π
is the fine structure constant. This can be boiled a bit with kinematical

relations |~k| =
√
E2 −m2

e, |~p| =
√
E2 −m2

µ to make manifest that it depends only on

two independent kinematical variables, which we can take to be the CoM energy E

and the scattering angle θ in ~k · ~p = |~k||~p| cos θ (best understood from the figure). It

simplifies a bit if we take E � me, and more if we take E � mµ ∼ 200me, to

dσ

dΩ
=

α2

4E2
CoM

(
1 + cos2 θ

)
. (3.27)

In fact, the two terms here come respectively from spins transverse to the scattering

plane and in the scattering plane; see Schwartz §5.3 for an explanation.

There is a lot more to say about what happens when we scatter an electron and a

positron! Another thing that can happen is that the final state could be an electron

and positron again (Bhabha scattering23).

23See figure 3 here. Now remember that a person doesn’t have much control over their name. By

the way, I totally believe the bit about non-perturbative strings = lint.
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They are not necessarily the same e− and e+, though

(except in the sense that they are all the same), because

another way to get there at tree level is the second, t-

channel, diagram, at right. The intermediate photon in

that diagram has kt = (p1−p3), so that the denominator

of the propagator is t = k2
t = (p1 − p3)2 instead of s.

Squaring this amplitude gives

|Ms +Mt|2 = |Ms|2 + |Mt|2 + 2Re(MsM?
t ), (3.28)

interference terms. Interference terms mean that you have to be careful about the

overall sign or phase of the amplitudes.

You may be surprised that the cross section (3.27) decreases with energy. Mechan-

ically this comes mainly from the 1/s2 from the photon propagator: as s grows, the

intermediate photon is more and more off-shell. But more deeply, it’s because above

we’ve studied an exclusive cross-section, in the sense that we fixed the final state to be

exactly a muon and an antimuon. At higher energies, nothing new happens, because

the final state is fixed.

It has also been very valuable to think about inclusive cross-sections for e+e− scat-

tering, because in this way you can make anything that the s-channel photon couples

to, if you put enough energy into it. The inclusive cross section for (e+e− goes to

anything) does grow with energy, and jumps at energies which are thresholds for new

particles in the final state. In this way, for example, we can also make quarks (more

specifically quark-antiquark pairs) since they also carry electric charge. See Peskin pp

139-140 (and our later discussion in §5.3) for a bit more about that, and in particular

how this observable gives evidence that there are three colors of quarks.

e−e− ← e−e− . What happens if instead we scatter two

electrons (Möller scattering)? In that case, the leading

order diagrams are the ones at right. Now the interme-

diate photons have kt = (p1 − p3) and ku = (p1 − p4)

respectively, so that the denominator of the propaga-

tor is t and u in the two diagrams. The evaluation of

these diagrams has a lot in common with the ones for

e+e− → e+e−, namely you just switch some of the legs

between initial and final state.

67



The relation between such amplitudes is called crossing

symmetry. Let’s illustrate it instead for e−µ− ← e−µ−,

where again there is only one diagram, related by cross-

ing to (3.30). The diagram is the one at right. (The

muon is the thicker fermion line.)

iM = = (−ieū3γ
µu1))electrons

−i
(
ηµν − (1−ξ)kµkν

k2

)
k2

(−ieū2γ
νu4)muons (3.29)

with k ≡ p1 − p3 = p2 − p4. It differs from (3.30) by replacing the relevant vs with

us for the initial/final antiparticles that were moved into final/initial particles, and

relabelling the momenta. After the spin sum,

1

4

∑
s1,2,3,4

|M|2 =
e4

4t2
tr
(
γµ
(
/p4

+mµ

)
γν
(
/p2

+mµ

))
tr
(
γν

(
/p3

+me

)
γµ

(
/p1

+me

))
this amounts to the replacement (p1, p2, p3, p4)→ (p1,−p3, p4,−p2); on the Mandelstam

variables, this is just the permutation (s, t, u)→ (t, u, s).

Crossing symmetry more generally. If you look at a Feynman diagram on its

side (for example because someone else fails to use the convention that time goes to the

left) it is still a valid amplitude for some process. Similarly, dragging particles between

the initial and final state also produces a valid amplitude. Making this relation precise

can save us some work. The precise relation for dragging an incoming particle into the

final state, so that it is an outgoing antiparticle, is:

iMf←iA(pf ; pi, pA) = = iMĀf←i(pf , k = −pA; pi) = .

(If you must, note that this is another sense in which an antiparticle is a particle

going backwards in time.) If A is a spinor particle, the sum relations for particles and

antiparticles are different:∑
r

ur(p)ūr(p) = /p+m,
∑
r

vr(k)v̄r(k) = /k −m = −(/p+m)

– after accounting for k = −pA, they differ by an overall sign. Hence we must also ap-

pend a fermion sign factor (−1)number of fermions shuffled between in and out in the unpolarized

scattering probability. We’ll study a well-motivated example in more detail next.
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Mott formula. By studying scattering of an electron from a heavy charged fermion

(a muon is convenient) we can reconstruct the cross section for scattering off a Coulomb

potential (named after Mott). This example will be important later in §4, where we’ll

figure out how it is corrected by other QED processes.

µ+µ− ← e+e− . Consider again the process µ+µ− ← e+e−. To try to keep things

straight, I’ll call the electron momenta p, p′ and the muon momenta k, k′, since that

won’t change under crossing. We found the amplitude

iMµ+µ−←e+e− =

=
(
−ieūs(k)γµvs

′
(k′)
)

muons

−i
(
ηµν − (1−ξ)qµqν

q2

)
q2

(
−iev̄r

′
(p′)γνur(p)

)
electrons

(3.30)

(with q ≡ p+ p′ = k + k′)24 and the (unpolarized) scattering probability density

1

4

∑
spins

|M|2 spinor traces
=

1

4

e4

s2
EµνMµν ,

where the tensor objects Eµν ,Mµν come respectively from the electron and muon lines,

1

4
Eµν = pµp

′
ν + p′µpν − ηµν(p · p′ +m2

e)

1

4
Mµν = kµk

′
ν + k′µkν − ηµν(k · k′ +m2

µ).

and they are contracted by the photon line, with s = q2 = (p+ p′)2.

e−µ− ← e−µ− . To get from this the amplitude (tree level, so far) for the process

e−µ− ← e−µ−, we must move the incoming positron line to an outgoing electron line,

and move the outgoing antimuon line to an incoming muon line (hence the sign in σ will

be (−1)number of fermions shuffled between in and out = (−1)2 = 1). Relative to the amplitude

for µ+µ− ← e+e− (3.30), we must replace the relevant vs with us for the initial/final

antiparticles that were moved into final/initial particles, and we must replace p′ →
−p′, k′ → −k′:

iM = = (−ieū(p′)γµu(p)))electrons

−i
(
ηµν −

(1−ξ)qtµqtν
q2
t

)
q2
t

(−ieū(k)γνu(k′))muons(3.31)

24Relative to the notation I used earlier, p1 = p, p2 = p′, p3 = k, p4 = k′.
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with qt ≡ p− p′ = k − k′. After the spin sum,

1

4

∑
s,s′,r,r′

|M|2 = 4
e4

t2
(
−pµp′ν − p′µpν − ηµν(−p · p′ +m2

e)
)

·
(
−kµk′ν − k′µkν − ηµν(−k · k′ +m2

µ)
)

(3.32)

On the Mandelstam variables, this is just the permutation (s, t, u)→ (t, u, s).

Payoff: the Mott formula. Recall other ways of figuring out the scattering cross

section from a Coulomb potential from a point charge of charge ze.

We think about scattering from a fixed electrostatic potential A0 = ze
r

and do classical

mechanics. I can never remember how this goes. Instead, let’s just scatter an electron

off a heavy charge, such as a muon. If the charge of the heavy object were z times that

of the electron, we would multiply the amplitude by z and the cross section by z2.

‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi-

nal energy as k′0 = mµ, k0 =
√
m2
µ + ~k2 = mµ +

1
2
~k2/mµ + · · · ' mµ. Also, this means the collision

is approximately elastic, E ′ ' E. In the diagram of

the kinematics at right, annoyingly, s ≡ cos θ, c ≡
sin θ. (Sorry.)

This means that the muon-line tensor factor Mµν in (4.11) simplifies dramatically:

−1

4
Mµν ' kµk

′
ν + k′µkν − ηµν

k · k′ −m2
µ︸ ︷︷ ︸

=m2
µ−m2

µ=0

 ' δµ0δν02m2
µ.

In the electron line, we’ll need the ingredient

− p · p′ +m2
e = −E2 + ~p2 cos θ +m2

e = −~p2(1− cos θ). (3.33)

So

EµνMµν = 32m2
µE

00 = 32m2
µ(2E2 + η00(−p · p′ +m2

e))
(3.33)
= 32m2

µ(2E2 − ~p2(1− cos θ))
trig
= 32m2

µ2(E2 − ~p2 sin2 θ/2)
β2≡~p2/E2

= 64m2
µE

2(1− β2 sin2 θ/2) .

70



From the two-body phase space, the cross section is

dσ =
1

vrel︸︷︷︸
=β

1

2E

1

2mµ

4z2e4

t2
64m2

µE
2(1− β2 sin2 θ/2)

dΩ

16π2

p

Etotal

Etotal∼mµ
=

4E

β

z2e4(1− β2 sin2 θ/2)

t2
dΩ

16π2
.

Noting that t = (p− p′)2 = −2~p2(1− cos θ), we get

dσ

dΩMott
= z2α

2(1− β2 sin2 θ/2)

4β2~p2 sin4 θ/2
.

If we take β � 1 in this formula we get the Rutherford formula. Notice that it blows

up at θ → 0. This is a symptom of the long-range nature of the Coulomb potential,

i.e. the masslessness of the photon.

Electron-proton scattering. The answer is basically the same if we think of

the heavy particle in (4.10) as a proton (we have to flip the sign of the charge but

this gets squared away since there is no interference in this case). ep → ep is called

Rutherford scattering, for good reason25. More generally, the Mott formula applies to

scattering electrons off of heavy pointlike charged particles. For ep collisions at high

enough energies, this formula fails because the proton has structure. At even higher

energies it works again because the electron scatters off pointlike, approximately free

quarks.

Electron-photon scattering. In the case of the process e−γ ← e−γ, 26 we meet

a new ingredient, namely external photons:

iM = ≡ iMs + iMt

= (−ie)2εµ1ε
?ν
4 ū3

(
γν

i/ks +m

s−m2
γµ + γµ

i/kt +m

t−m2
γν

)
u2 . (3.34)

The two amplitudes have a relative plus since we only mucked with the photon contrac-

tions, they just differ by how the gamma matrices are attached. If you don’t believe

me, draw the contractions on this:

〈γe| (Ψ̄ /AΨ)1(Ψ̄ /AΨ)2 |γe〉
25If you don’t know why, you should go read Inward Bound, by Abraham Pais, as soon as possible.
26which at high energy is called Compton scattering and at low energies is called Thomson scattering.

Despite my previous curmudgeonly footnote chastising the innocent reader for an imagined incomplete

knowledge of the history of science, I do have a hard time remembering which name goes where.

Moreover, as much as I revere the contributions of many of these folks, I find that using their names

makes me think about the people instead of the physics. No one owns the physics! It’s the same

physics for lots of space aliens, too.
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(I’m not going to TeX it, thank you).

Now, if we don’t measure the photon polarizations, we need

P =
1

4

∑
polarizations, spins

|M|2.

The key ingredient is the completeness relation∑
i=1,2

εi?µ (k)εiν(k) = −ηµν + something proportional to kµkν .

We can do various incantations to find a definite coefficient of kµkν , but it will not

matter because of the Ward identity: anytime there is an external photon ε(k)µ, the

amplitude is M = Mµε
µ(k) and satisfies kµMµ = 0. Therefore, we can ignore the

term about which I was vague and we have∑
polarizations

|M|2 =
∑
i

εi?µMµ?Mνεiν = −ηµνMµ?Mν + (terms with Mµk
µ)

= −M?
µMµ.

Don’t be scared of the minus sign, it’s because of the mostly minus signature, and

makes the thing positive. But notice the opportunity to get negative probabilities if

the gauge bosons don’t behave!

A dramatic process related by crossing to Compton scattering is pair annihilation,

Mγγ←e+e− . See the end of Peskin §5, where he has a nice plot comparing to experi-

mental data the result for dσ
dΩ

as a function of scattering angle.

[End of Lecture 8]
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4 To infinity and beyond

At this point we are capable of successfully computing the amplitudes and cross-sections

for many processes using QED. More precisely, we can do a good job of the leading-

order-in-α amplitudes, using Feynman diagrams which are trees – no loops. The natural

next step is to look at the next terms in the perturbation expansion in α, which come

from diagrams with one loop. When we do that we’re going to encounter some confusing

stuff. A place we’ve already encountered this stuff is in the additive constant in the

Hamiltonian; this has physical consequences as we’ll see in thinking about Casimir

forces in §4.1.

We don’t encounter these short-distance issues in studying tree-level diagrams be-

cause in a tree-level diagram, the quantum numbers (and in particular the momenta)

of the intermediate states are fixed by the external states. In contrast, once there is

a loop, there are undetermined momenta which must be summed, and this sum in-

cludes, it seems, arbitrarily-high-momentum modes, about which surely we have no

information yet.

In order to put ourselves in the right frame of mind to think about that stuff, we’ll

make a brief retreat in §4.2 to systems with finitely many degrees of freedom.

Then we’ll apply some of these lessons to a toy field theory example (scalar field

theory). Then we’ll come back to perturbation theory in QED. Reading assignment

for this chapter: Zee §III.
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4.1 Casimir effect: vacuum energy is real

[A. Zee, Quantum Field Theory in a Nutshell, §I.9] This subsection has two purposes.

One is to show that the 1
2
~ω energy of the vacuum of the quantum harmonic oscillator

(which appeared in our discussion of quantum sound and light) is real. Sometimes we

can get rid of it by choosing the zero of energy (which doesn’t matter unless we are

studying dynamical gravity). But it is meaningful if we can vary ω (or the collection of

ωs in the case of many oscillators as for the radiation field) and compare the difference.

The other purpose is to give an object lesson in asking the right questions. In

physics, the right question is often a question which can be answered by an experiment,

at least in principle. The answers to such questions are less sensitive to our silly

theoretical prejudices, e.g. about what happens to physics at very short distances.

In the context of the bunch of oscillators making up the radiation field, we can

change the spectrum of frequencies of these oscillators {ωk} by putting it in a box and

varying the size of the box. In particular, two parallel conducting plates separated by

some distance d experience an attractive force from the change in the vacuum energy

of the EM field resulting from their presence. The plates put boundary conditions on

the field, and therefore on which normal modes are present.

To avoid some complications of E&M which are not essential for our point here,

we’re going to make two simplifications:

• we’re going to solve the problem in 1+1 dimensions

• and we’re going to solve it for a scalar field.

To avoid the problem of changing the boundary conditions outside the plates we

use the following device with three plates:

| ← d→ | ←− L− d −→ |

(We will consider L � d, so we don’t really care about the far right plate.) The

‘perfectly conducting’ plates impose the boundary condition that our scalar field q(x)

vanishes there. The normal modes of the scalar field q(x) in the left cavity are then

qj = sin (jπx/d) , j = 1, 2, ...

with frequencies ωj = π|j|
d
c. There is a similar expression for the modes in the right

cavity which we won’t need. We’re going to add up all the 1
2
~ωs for all the modes in

both cavities to get the vacuum energy E0(d); the force on the middle plate is then

−∂dE0.
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The vacuum energy in the whole region of interest between the outer plates is the

sum of the vacuum energies of the two cavities

E0(d) = f(d) + f(L− d)

where

f(d) =
1

2
~
∞∑
j=1

ωj = ~c
π

2d

∞∑
j=1

j
?!?!!
= ∞.

We have done something wrong. What?

Our crime is hubris: we assumed that we knew what the modes of arbitrarily large

mode number k (arbitrarily short wavelength, arbitrarily high frequency) are doing,

and in particular we assumed that they cared about our silly plates. In fact, no metal

in existence can put boundary conditions on the modes of large enough frequency –

those modes don’t care about d. The reason a conductor puts boundary conditions

on the EM field is that the electrons move around to compensate for an applied field,

but there is a limit on how fast the electrons can move (e.g. the speed of light). The

resulting cutoff frequency is called the plasma frequency but we don’t actually need to

know about all these details. To parametrize our ignorance of what the high-frequency

modes do, we must cut off (or regularize) the contribution of the high-frequency modes.

Let’s call modes with ωj � π/a high frequency, where a is some short time27. Replace

f(d) f(a, d) = ~
π

2d

∞∑
j=1

e−aωj/πj

= −π~
2
∂a

(
∞∑
j=1

e−aj/d

)
︸ ︷︷ ︸

= 1

1−e−a/d
−1

= +
π~
2d

ea/d

(ea/d − 1)
2

a�d' ~

 πd

2a2︸︷︷︸
→∞ as a→0

− π

24d
+

πa2

480d3
+ ...

 (4.1)

Answers which don’t depend on a have a chance of being meaningful. The thing we

can measure is the force:

F = −∂dE0 = − (f ′(d)− f ′(L− d))

27You can think of a as the time it takes the waves to move by one lattice spacing. If we work

in units where the velocity is c = 1, this is just the lattice spacing. I will do so for the rest of this

discussion.
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= −~
(( π

2a2
+

π

24d2
+O(a2)

)
−
(
π

2a2
+

π

24 (L− d)2 +O(a2)

))
a→0
= −π~

24

(
1

d2
− 1

(L− d)2

)
L�d
= − π~c

24d2
(1 +O(d/L)) . (4.2)

This is an attractive force between the plates. (I put the c back in the last line.)

The analogous force between real conducting plates, caused by the change of bound-

ary conditions on the electromagnetic field, has been measured.

The string theorists will tell you that
∑∞

j=1 j = − 1
12

, and our calculation above

agrees with them in some sense. But what this foolishness means is that if we compute

something which is not dependent on the cutoff we have to get the same answer no

matter what cutoff we use. Notice that it is crucial to ask the right questions.

An important question is to what extent could we have picked a different cutoff

function (instead of e−πω/a) and gotten the same answer for the physics. This interest-

ing question is answered affirmatively in Zee’s wonderful book, 2d edition, section I.9

(available electronically here!).

A comment about possible physical applications of the calculation we actually did:

you could ask me whether there is such a thing as a Casimir force due to the vacuum

fluctuations of phonons. Certainly it’s true that the boundary of a chunk of solid

puts boundary conditions on the phonon modes, which change when we change the

size of the solid. The problem with the idea that this might produce a measurable

force (which would lead the solid to want to shrink) is that it is hard to distinguish

the ‘phonon vacuum energy’ from the rest of the energy of formation of the solid,

that is, the energy difference between the crystalline configuration of the atoms and

the configuration when they are all infinitely separated. Certainly the latter is not

well-described in the harmonic approximation (λ = 0 in (1.1)).

A few comments about the 3+1 dimensional case of E&M. Assume the size

of the plates is much larger than their separation L. Dimensional analysis shows that

the force per unit area from vacuum fluctuations must be of the form

P = A
~c
L4

where A is a numerical number. A is not zero!

Use periodic boundary conditions in the xy planes (along the plates). The allowed
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wave vectors are then

~k =

(
2πnx
Lx

,
2πny
Ly

)
with nx, ny integers.

We have to do a bit of E&M here. Assume the plates are perfect conductors

(this where the hubris about the high-frequency modes enters). This means that the

transverse component of the electric field must vanish at the surface. Instead of plane

waves in z, we get standing waves: φ(z) ∝ sin (nπz/L) .

The frequencies of the associated standing waves are then

ωn(~k) = c

√
π2n2

L2
+ ~k2, n = 0, 1, 2

Also, there is only one polarization state for n = 0.

So the zero-point energy is

E0(L) =
~
2

2
′∑
n,~k

ωn(~k)


where it’s useful to define

′∑
n,~k

≡ 1

2

∑
n=0,~k

+
∑
n≥1,~k

Now you can imagine introducing a regulator like the one we used above, and replacing

′∑
n,~k

· 
′∑
n,~k

e−aωn(~k)/π·

and doing the sums and integrals and extracting the small-a behavior.

4.2 A parable from quantum mechanics on the breaking of

scale invariance

Recall that the coupling constant in φ4 theory in D = 3 + 1 spacetime dimensions

is dimensionless, and the same is true of the electromagnetic coupling e in QED in

D = 3+1 spacetime dimensions. In fact, the mass parameters are the only dimensionful

quantities in those theories, at least in their classical avatars. This means that if we

ignore the masses, for example because we are interested in physics at much higher

energies, then these models seem to possess scale invariance: the physics is unchanged

under zooming in.

77



Here we will study a simple quantum mechanical example (that is: an example

with a finite number of degrees of freedom)28 with such (classical) scale invariance. It

exhibits many interesting features that can happen in strongly interacting quantum

field theory – asymptotic freedom, dimensional transmutation. Because the model is

simple, we can understand these phenomena without resort to perturbation theory.

They will nevertheless illuminate some ways of thinking which we’ll need in examples

where perturbating is our only option.

Consider the following (‘bare’) action:

S[q] =

∫
dt

(
1

2
~̇q2 + g0δ

(2)(~q)

)
≡
∫
dt

(
1

2
~̇q2 − V (~q)

)
where ~q = (x, y) are two coordinates of a quantum particle, and the potential involves

δ(2)(~q) ≡ δ(x)δ(y), a Dirac delta function. I chose the sign so that g0 > 0 is attractive.

(Notice that I have absorbed the inertial mass m in 1
2
mv2 into a redefinition of the

variable q, q →
√
mq.)

First, let’s do dimensional analysis (always a good idea). Since ~ = c = 1, all

dimensionful quantites are some power of a length. Let −[X] denote the number of

powers of length in the units of the quantity X; that is, if X ∼ (length)ν(X) then we

have [X] = −ν(X), a number. We have:

[t] = [length/c] = −1 =⇒ [dt] = −1.

The action appears in the exponent in the path integrand, and is therefore dimension-

less (it has units of ~), so we had better have:

0 = [S] = [~]

and this applies to each term in the action. We begin with the kinetic term:

0 = [

∫
dt~̇q2] =⇒

[~̇q2] = +1 =⇒ [~̇q] = +
1

2
=⇒ [~q] = −1

2
.

Since 1 =
∫
dqδ(q), we have 0 = [dq] + [δ(q)] and

[δD(~q)] = −[q]D =
D

2
, and in particular [δ2(~q)] = 1.

This implies that the naive (“engineering”) dimensions of the coupling constant g0 are

[g0] = 0 – it is dimensionless. Classically, the theory does not have a special length

scale; it is scale invariant.

28I learned this example from Marty Halpern.
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The Hamiltonian associated with the Lagrangian above is

H =
1

2

(
p2
x + p2

y

)
+ V (~q).

Now we treat this as a quantum system. Acting in the position basis, the quantum

Hamiltonian operator is

H = −~2

2

(
∂2
x + ∂2

y

)
− g0δ

(2)(~q)

So in the Schrödinger equation Hψ =
(
−~2

2
∇2 + V (~q)

)
ψ = Eψ, the second term

on the LHS is

V (~q)ψ(~q) = −g0δ
(2)(~q)ψ(0).

To make it look more like we are doing QFT, let’s solve it in momentum space:

ψ(~q) ≡
∫

d2p

(2π~)2 e
i~p·~q/~ϕ(~p)

The delta function is

δ(2)(q) =

∫
d2p

(2π~)2 e
i~p·~q/~.

So the Schrödinger equation says(
−1

2
∇2 − E

)
ψ(q) = −V (q)ψ(q)∫

d̄2peip·q
(
p2

2
− E

)
ϕ(p) = +g0δ

2(q)ψ(0)

= +g0

(∫
d̄2peip·q

)
ψ(0) (4.3)

which (integrating the both-hand side of (4.3) over q:
∫
d2qe−ip·q ((4.3)) ) says(

~p2

2
− E

)
ϕ(~p) = +g0

∫
d2p′

(2π~)2ϕ(~p′)︸ ︷︷ ︸
=ψ(0)

There are two cases to consider:

• ψ(~q = 0) =
∫

d̄2pϕ(~p) = 0. Then this case is the same as a free theory, with the

constraint that ψ(0) = 0, (
~p2

2
− E

)
ϕ(~p) = 0

i.e. plane waves which vanish at the origin, e.g. ψ ∝ sin pxx
~ e
±ipyy/~. These scat-

tering solutions don’t see the delta-function potential at all.
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• ψ(0) ≡ α 6= 0, some constant to be determined. This means ~p2/2−E 6= 0, so we

can divide by it :

ϕ(~p) =
g0

~p2

2
− E

(∫
d̄2p′ϕ(~p′)

)
=

g0

~p2

2
− E

α.

The integral of the RHS (for ψ(0) = α) is a little problematic if E > 0, since

then there is some value of p where p2 = 2E. Avoid this singularity by going to

the boundstate region: consider E = −εB < 0. So:

ϕ(~p) =
g0

~p2

2
+ εB

α.

What happens if we integrate this
∫

d̄2p to check self-consistency – the LHS should

give α again:

0
!

=

∫
d̄2pϕ(~p)︸ ︷︷ ︸

=ψ(0)=α 6=0

(
1−

∫
d̄2p

g0

~p2

2
+ εB

)

=⇒
∫

d̄2p
g0

~p2

2
+ εB

= 1

is a condition on the energy εB of possible boundstates.

But there’s a problem: the integral on the LHS behaves at large p like∫
d2p

p2
=∞ .

At this point in an undergrad QM class, you would give up on this model. In QFT we

don’t have that luxury, because this kind of thing happens all over the place. Here’s

what we do instead.

We cut off the integral at some large p = Λ:∫ Λ d2p

p2
∼ log Λ .

This our first example of the general principle that a classically scale invariant system

will exhibit logarithmic divergences (rather: logarithmic dependence on the cutoff).

It’s the only kind allowed by dimensional analysis.

The introduction of the cutoff can be thought of in many ways: we could say there

are no momentum states with |p| > Λ, or maybe we could say that the potential is not

really a delta function if we look more closely. The choice of narrative here shouldn’t

affect our answers to physics questions at energies far below the cutoff.
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More precisely:∫ Λ d2p
p2

2
+ εB

= 2π

∫ Λ

0

pdp
p2

2
+ εB

= 2π log

(
1 +

Λ2

2εB

)
.

So in our cutoff theory, the boundstate condition is:

1 = g0

∫ Λ d̄2p
p2

2
+ εB

=
g0

2π~2
log

(
1 +

Λ2

2εB

)
.

A solution only exists for g0 > 0. This makes sense since only then is the potential

attractive (recall that V = −g0δ).

[End of Lecture 9]

Now here’s a trivial-seeming step that offers a dramatic new vista: solve for εB.

εB =
Λ2

2

1

e
2π~2

g0 − 1
. (4.4)

As we remove the cutoff (Λ → ∞), we see that E = −εB → −∞, the boundstate

becomes more and more bound – the potential is too attractive.

Suppose we insist that the boundstate energy εB is a fixed thing – imagine we’ve

measured it to be 200 MeV29. We should express everything in terms of the measured

quantity. Then, given some cutoff Λ, we should solve for g0(Λ) to get the boundstate

energy we have measured:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) .
This is the crucial step: this silly symbol g0 which appeared in our action doesn’t mean

anything to anyone (see Zee’s dialogue with the S.E. in section III). We are allowing

g0 ≡ the bare coupling to be cutoff-dependent.

Instead of a dimensionless coupling g0, the useful theory contains an arbitrary

dimensionful coupling constant (here εB). This phenomenon is called dimensional

transmutation (d.t.). The cutoff is supposed to go away in observables, which depend

on εB instead.

In QCD we expect that in an identical way, an arbitrary scale ΛQCD will enter into

physical quantities. (If QCD were the theory of the whole world, we would work in

units where it was one.) This can be taken to be the rest mass of some mesons –

boundstates of quarks. Unlike this example, in QCD there are many boundstates, but

their energies are dimensionless multiplies of the one dimensionful scale, ΛQCD. Nature

chooses ΛQCD ' 200 MeV.

29Spoiler alert: I picked this value of energy to stress the analogy with QCD.
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[This d.t. phenomenon was maybe first seen in a perturbative field theory in S.

Coleman, E. Weinberg, Phys Rev D7 (1973) 1898. We’ll come back to their example.]

There are more lessons in this example. Go back to (4.4):

εB =
Λ2

2

1

e
2π~2

g0 − 1
6=
∞∑
n=0

gn0 fn(Λ)

it is not analytic (i.e. a power series) in g0(Λ) near small g0; rather, there is an essential

singularity in g0. (All derivatives of εB with respect to g0 vanish at g0 = 0.) You can’t

expand the dimensionful parameter in powers of the coupling. This means that you’ll

never see it in perturbation theory in g0. Dimensional transmutation is an inherently

non-perturbative phenomenon.

Look at how the bare coupling depends on the cutoff in this example:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) Λ2�εB→ 2π~2

log
(

Λ2

2εB

) Λ2�εB→ 0

– the bare coupling vanishes in this limit, since we are insisting that the parameter εB
is fixed. This is called asymptotic freedom (AF): the bare coupling goes to zero (i.e.

the theory becomes free) as the cutoff is removed. This also happens in QCD.

RG flow equations. Define the beta-function as the logarithmic derivative of the

bare coupling with respect to the cutoff:

Def: β(g0) ≡ Λ
∂

∂Λ
g0(Λ) .

For this theory

β(g0) = Λ
∂

∂Λ

 2π~2

log
(

1 + Λ2

2εB

)
 calculate

= − g2
0

π~2

 1︸︷︷︸
perturbative

− e−2π~2/g0︸ ︷︷ ︸
not perturbative

 .

Notice that it’s a function only of g0, and not explicitly of Λ. Also, in this simple toy

theory, the perturbation series for the beta function happens to stop at order g2
0.

β measures the failure of the cutoff to disappear from our discussion – it signals a

quantum mechanical violation of scale invariance. What’s β for? Flow equations:

ġ0 = β(g0).

82



30 This is a tautology. The dot is

Ȧ = ∂sA, s ≡ log Λ/Λ0 =⇒ ∂s = Λ∂Λ.

(Λ0 is some reference scale.) But forget for the moment that this is just a definition:

ġ0 = − g2
0

π~2

(
1− e−2π~2/g0

)
.

This equation tells you how g0 changes as you change the cutoff. Think of it as a

nonlinear dynamical system (fixed points, limit cycles...)

Def: A fixed point g?0 of a flow is a point where the flow stops:

0 = ġ0|g?0 = β(g?0) ,

a zero of the beta function. (Note: if we have many couplings gi, then we have such

an equation for each g: ġi = βi(g). So βi is (locally) a vector field on the space of

couplings.)

Where are the fixed points in our example?

β(g0) = − g2
0

π~2

(
1− e−2π~2/g0

)
.

There’s only one: g?0 = 0, near which β(g0) ∼ − g2
0

π~ , the non-perturbative terms are

small. What does the flow look like near this point? For g0 > 0, ġ0 = β(g0) < 0. With

this (high-energy) definition of the direction of flow, g0 = 0 is an attractive fixed point:

*<-<-<-<-<-<-<-<-<-<-<------------------------ g_0

g?0 = 0.

We already knew this. It just says g0(Λ) ∼ 1
log Λ2 → 0 at large Λ. A lesson is

that in the vicinity of such an AF fixed point, the non-perturbatuve stuff e
−2π~2

g0 is

small. So we can get good results near the fixed point from the perturbative part of β.

That is: we can compute the behavior of the flow of couplings near an AF fixed point

perturbatively, and be sure that it is an AF fixed point. This is the situation in QCD.

30Warning: The sign in this definition carries a great deal of cultural baggage. With the definition

given here, the flow (increasing s) is toward the UV, toward high energy. This is the high-energy

particle physics perspective, where we learn more physics by going to higher energies. As we will see,

there is a strong argument to be made for the other perspective, that the flow should be regarded as

going from UV to IR, since we lose information as we move in that direction – in fact, the IR behavior

does not determine the UV behavior in general, but UV does determine IR.
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On the other hand, the d.t. phenomenon that we’ve shown here is something that

we can’t prove in QCD. However, the circumstantial evidence is very strong!

Another example where this happens is quantum mechanics in any number of vari-

ables with a central potential V = −g2
0

r2 . It is also classically scale invariant:

[r] = −1

2
,

[
1

r2

]
= +1 =⇒ [g0] = 0.

This model was studied in K.M. Case, Phys Rev 80 (1950) 797 and you will study it on

the first homework. The resulting boundstates and d.t. phenomenon are called Efimov

states; this model preserves a discrete scale invariance.

Here’s a quote from Marty Halpern from his lecture on this subject:

I want you to study this set of examples very carefully, because it’s the only time in

your career when you will understand what is going on.

In my experience it’s been basically true. For real QFTs, you get distracted by Feynman

diagrams, gauge invariance, regularization and renormalization schemes, and the fact

that you can only do perturbation theory.
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4.3 A simple example of perturbative renormalization in QFT

[Zee §III.1, Schwartz §15.4] Now let’s consider an actual field theory but a simple one,

namely the theory of a real scalar field in four dimensions, with

L = −1

2
φ2φ−m2φ2 − g

4!
φ4. (4.5)

Recall that [φ] = D−2
2

so [m] = 1 and [g] = 4−D
2

, so g is dimensionless in D = 4. As

above, this will mean logarithms!

Let’s do 2← 2 scattering of φ particles.

iM2←2 = + O(g3)

= −ig + iMs + iMt + iMu + O(g3)

where, in terms of qs ≡ k1 + k2, the s-channel 1-loop amplitude is

iMs =
1

2
(−ig)2

∫
d̄4k

i

k2 −m2 + iε

i

(qs − k)2 −m2 + iε
∼
∫ Λ d4k

k4
.

Parametrizing ignorance. Recall our discovery of the scalar field at the be-

ginning of the quarter by starting with a chain of springs, and looking at the long-

wavelength (small-wavenumber) modes. In the sum,
∫
d4k, the region of integration

that’s causing the trouble is not the part where the system looks most like a field

theory. That is: if we look closely enough (small enough 1/k), we will see that the

mattress is made of springs. In terms of the microscopic description with springs, there

is a smallest wavelength, of order the inverse lattice spacing: the sum stops.

Field theories arise from many such models, which may differ dramatically in their

short-distance physics. We’d like to not worry too much about which one, but rather

say things which do not depend on this choice. Recall the discussion of the Casimir

force from §4.1: in that calculation, many different choices of regulators for the mode

sum corresponded to different material properties of the conducting plates. The leading

Casimir force was independent of this choice; more generally, it is an important part of

the physics problem to identify which quantities are UV sensitive and which are not.

If we had an actual lattice (like the chain of springs), we would replace the inverse

propagator p2 − m2 = ω2 − ~p2 − m2 with ω2 − ω2
p − m2, where ωp is the dispersion

relation (e.g. ωp = 2t
∑d

i=1 (1− cos pia) for nearest-neighbor hopping on the cubic

lattice), and p is restricted to the Brillouin zone (−π/a ≤ pi < π/a for the cubic

lattice). Instead, for simplicity, let’s keep just impose a hard cutoff on the euclidean

momentum
∑d

i=0 p
2 ≤ Λ2.
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Parametrizing ignorance is another way to say ‘doing science’. In the context of

field theory, at least in the high-energy community, it is called ‘regularization’.

Now we need to talk about the integral a little more. The part which is causing

the trouble is the bit with large k, which might as well be |k| ∼ Λ � m, so let’s set

m = 0 for simplicity.

We’ll spend lots of time learning to do integrals below. Here’s the answer:

iM = −ig + iCg2

(
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

)
+O(g3)

If you must know, C = 1
16π2 .

Observables can be predicted from other observables. Again, the boldface

statement might sound like some content-free tweet from some boring philosophy-of-

science twitter feed, but actually it’s a very important thing to remember here.

What is g? As Zee’s Smart Experimentalist says, it is just a letter in some theorist’s

lagrangian, and it doesn’t help anyone to write physical quantities in terms of it. Much

more useful would be to say what is the scattering amplitude in terms of things that

can be measured. So, suppose someone scatters φ particles at some given (s, t, u) =

(s0, t0, u0), and finds for the amplitude iM(s0, t0, u0) = −igP where P is for ‘physical’.31

This we can relate to our theory letters:

− igP = iM(s0, t0, u0) = −ig + iCg2L0 +O(g3) (4.6)

where L0 ≡ log Λ2

s0
+ log Λ2

t0
+ log Λ2

u0
. (Note that quantities like gP are often called gR

where ‘R’ is for ‘renormalized,’ whatever that is.)

Renormalization. Now here comes the big gestalt shift: Solve this equation (4.6)

for the stupid letter g

−ig = −igP − iCg2L0 +O(g3)

= −igP − iCg2
PL0 +O(g3

P ). (4.7)

and eliminate g from the discussion:

iM(s, t, u) = −ig + iCg2L+O(g3)

31You might hesitate here about my referring to the amplitude M as an ‘observable’. The difficult

and interesting question of what can actually be measured in experiments can be decoupled a bit from

this discussion. I’ll say more later, but if you are impatient see the beginning of Schwartz, chapter 18.
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(4.7)
= −igP − iCg2

PL0 + iCg2
PL+O(g3

P )

= −igP + iCg2
P

(
log

s0

s
+ log

t0
t

+ log
u0

u

)
+O(g3

P ). (4.8)

This expresses the amplitude at any momenta (within the range of validity of the

theory!) in terms of measured quantities, gP , s0, t0, u0. The cutoff Λ is gone! Just like

in our parable in §4.2, it was eliminated by letting the coupling vary with it, g = g(Λ),

according to (4.7). We’ll say a lot more about how to think about that dependence.

Renormalized perturbation theory. To slick up this machinery, consider the

following Lagrangian density (in fact the same as (4.5), with m = 0 for simplicity):

L = −1

2
φ2φ− gP

4!
φ4 − δg

4!
φ4 (4.9)

but written in terms of the measured coupling gP , and some as-yet-undetermined ‘coun-

terterm’ δg. Then

M(s, t, u) = −gP − δg − Cg2
P

(
log

s

Λ2
+ log

t

Λ2
+ log

u

Λ2

)
+O(g3

P ).

If, in order to enforce the renormalization condition M(s0, t0, u0) = −gP , we choose

δg = −g2
PC

(
log

s0

Λ2
+ log

t0
Λ2

+ log
u0

Λ2

)
then we find

M(s, t, u) = −gP − Cg2
P

(
log

s

s0

+ log
t

t0
+ log

u

u0

)
+O(g3

P )

– all the dependence on the unknown cutoff is gone, we satisfy the observational demand

M(s0, t0, u0) = −gP , and we can predict the scattering amplitude (and others!) at any

momenta.

The only price is that the ‘bare coupling’ g depends on the cutoff, and becomes

infinite if we pretend that there is no cutoff. Happily, we didn’t care about g anyway.

We can just let it go.

The step whereby we were able to absorb all the dependence on the cutoff into

the bare coupling constant involved some apparent magic. It is not so clear that the

same magic will happen if we study the next order O(g3
P ) terms, or if we study other

amplitudes. A QFT where all the cutoff dependence to all orders can be removed with

a finite number of counterterms is called ‘renormalizable’. As we will see, such a field

theory is less useful because it allows us to pretend that it is valid up to arbitrarily high

energies. The alternative, where we must add more counterterms (such as something

like δ6
Λ2φ

6) at each order in perturbation theory, is called an effective field theory, which

is a field theory that has the decency to predict its regime of validity.
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4.4 Radiative corrections to the Mott formula

Recall that by studying scattering of an electron from a heavy charged fermion (a muon

is convenient) we reconstructed the cross section for scattering off a Coulomb potential

(named after Mott). Our next goal is to figure out how this cross section is corrected

by other QED processes.

Recall that

iM = = (−ieū(p′)γµu(p)))electrons

−i
(
ηµν −

(1−ξ)qtµqtν
q2
t

)
q2
t

(−ieū(k)γνu(k′))muons(4.10)

with qt ≡ p− p′ = k − k′. After the spin sum,

1

4

∑
s,s′,r,r′

|M|2 = 4
e4

t2
(
−pµp′ν − p′µpν − ηµν(−p · p′ +m2

e)
)

·
(
−kµk′ν − k′µkν − ηµν(−k · k′ +m2

µ)
)

(4.11)

Consider the limit where the target µ particle is much heavier than the electron.
‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi-

nal energy as k′0 = mµ, k0 =
√
m2
µ + ~k2 = mµ +

1
2
~k2/mµ + · · · ' mµ. Also, this means the collision

is approximately elastic. In the diagram of the kine-

matics at right, c ≡ cos θ, s ≡ sin θ.
The answer we found after some boiling was:

dσ

dΩMott
=
α2(1− β2 sin2 θ/2)

4β2~p2 sin4 θ/2
.

If we take β � 1 in this formula we get the Rutherford formula.

Radiative corrections. Now it’s time to think about perturbative corrections to

this cross section. Given that the leading-order calculation reproduced the classical

physics of the Coulomb potential, you can think of what we are doing as effectively

discovering (high-energy or short-distance) quantum corrections to the Coulomb law.

The diagrams we must include are these (I made the muon lines thicker and also red):

iMeµ←eµ = +




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+

 +O(e6)

• What do the one-loop diagrams in the second line have in common? They have

an internal muon line. Why does this matter? When the energy going through the

line is much smaller than the muon mass, then the propagator is i(/k+mµ)

k2−m2
µ
∼ 1

mµ
and its

relative contribution is down by k/mµ � 1. So let’s neglect these for now.

• Why don’t we include diagrams like ? The LSZ formula tells us

that their effects on the S-matrix are accounted for by the wavefunction renormalization

factors Z

Seµ←eµ =
√
Ze

2√
Zµ

2

 +

( )
+ · · ·


amputated, on-shell

and in determining the locations of the poles whose residues are the S-matrix elements.

We’ll take care of these when we talk about the electron self-energy.

• Notice that the one-loop amplitudes are suppressed relative to the tree level am-

plitude by two factors of e, hence one factor of the fine structure constant α = e2

4π
.

Their leading effects on the cross section come from

σ ∼
∣∣∣ +

( )
+ · · ·

∣∣∣2 ∼ σtree +O(α3)

from the cross term between the tree and one-loop amplitudes.

In the above discussion, we encounter all three ‘primitive’ one-loop divergent am-

plitudes of QED, which we’ll study in turn:

• electron self-energy:

• vertex correction:

• vacuum polarization (photon self-energy):

[End of Lecture 10]
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4.5 Electron self-energy in QED

Let’s think about the electron two-point function in momentum space:

G̃(2)(p) = + · · ·

= + · · ·

(4.12)

As we did for the scalar field theory in §3, we will denote the 1PI two-point function

by

−iΣ(p) ≡

a blob with nubbins; for fermions with conserved particle number, the nubbins carry

arrows indicating the particle number flow. Let me call the tree level propagator

iS(p) ≡
i(/p+m0)

p2 −m2
0 + iε

=
i

/p−m0

– notice that I added a demeaning subscript to the notation for the mass appearing in

the Lagrangian. Foreshadowing.

The full two point function is then:

G̃(2)(p) = iS + iS (−iΣ(p)) iS + iS (−iΣ(p)) iS (−iΣ(p)) iS + · · ·
= iS (1 + ΣS + ΣSΣS + · · ·) = iS

1

1− ΣS

=
i

/p−m0

1

1− Σ 1
/p−m0

=
i

/p−m0 − Σ(p)
. (4.13)

Are you worried about these manipulations because Σ and S are matrices in the spinor

indices? Don’t be: they are both made entirely from /p, and therefore they commute;
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we could do these manipulations in the eigenbasis of /p. This fully corrected propagator

has a pole at

/p = m ≡ m0 + Σ(m) . (4.14)

This means that the actual mass of the particle is this new quantity m. But what is

m (it is called the ‘renormalized mass’)? To figure it out, we need to know about Σ.

In QED we must study Σ in perturbation theory. As you can see from (4.12), the

leading (one-loop) contribution is

−iΣ2(p) = = (−ie)2

∫
d̄4k γµ

i(/k +m0)

k2 −m2
0 + iε

γν
−iηµν

(p− k)2 − µ2 + iε
.

Notice that I am relying on the Ward identity to enforce the fact that only the traverse

bit of the photon propagator matters. Also, I added a mass µ for the photon as an

IR regulator. We must keep the external momentum p arbitrary, since we don’t even

know where the mass-shell is!

Finally, I can’t put it off any longer: how are we going to do this loop-momentum

integral?

Step 1: Feynman parameter trick. It is a good idea to consider the integral∫ 1

0

dx
1

(xA+ (1− x)B)2
=

∫ 1

0

dx
1

(x(A−B) +B)2
=

1

A−B
−1

x(A−B) +B

∣∣∣∣x=1

x=0

=
1

A−B

(
− 1

A
+

1

B

)
=

1

AB
.

This allows us to combine the denominators into one:

I =
1

k2 −m2
0 + iε︸ ︷︷ ︸

B

1

(p− k)2 − µ2 + iε︸ ︷︷ ︸
A

=

∫ 1

0

dx
1

(x ((p2 − 2pk + k2)− µ2 + iε) + (1− x)(k2 −m2
0 + iε))

2

Step 2: Now we can complete the square

I =

∫ 1

0

dx
1(k − px︸ ︷︷ ︸

≡`

)2 −∆ + iε

2

with

`µ ≡ kµ − pµx, ∆ ≡ +p2x2 + xµ2 − xp2 + (1− x)m2
0 = xµ2 + (1− x)m2

0 − x(1− x)p2.
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Step 3: Wick rotate. Because of the iε we’ve been dutifully car-

rying around, the poles of the p0 integral don’t occur in the first

and third octants of the complex p0 plane. (And the integrand

decays at large |p0|.) This means that we can rotate the contour

to euclidean time for free: `0 ≡ i`4. Equivalently: the integral

over the contour at right vanishes, so the real time contour gives

the same answer as the (upward-directed) Euclidean contour.
Notice that `2 = −`2

E. Altogether

−iΣ2(p) = −e2

∫
d̄4`

∫ 1

0

dx
N

(`2 −∆ + iε)2
= −e2

∫ 1

0

dxi

∫
d̄4`E

N

(`2
E + ∆)

2

where the numerator is

N = γµ
(
/̀+ x/p+m0

)
γµ = −2

(
/l + x/p

)
+ 4m0.

Here I used two Clifford algebra facts: γµγµ = 4 and γµ/pγµ = −2/p. Think about the

contribution from the term with /̀ in the numerator: everything else is invariant under

rotations of `

d̄4`E =
1

(2π)4
dΩ3`

3d` =
dΩ3

(2π)4
`2d`

2

2
,

so this averages to zero. The rest is of the form (using
∫
S3 dΩ3 = 2π2)

Σ2(p) = e2

∫ 1

0

dx

∫
`2d`2

2

(2π2)

(2π)4

2(2m0 − x/p)
(`2 + ∆)2

=
e2

8π2

∫ 1

0

dx(2m0 − x/p)J (4.15)

with

J =

∫ ∞
0

d`2 `2

(`2 + ∆)2 .

In the large ` part of the integrand this is∫ Λ d`2

`2
∼ log Λ.

You knew this UV divergence was coming. To be more precise, let’s add zero:

J =

∫
d`2

(
`2 + ∆

(`2 + ∆)2 −
∆

(`2 + ∆)2

)
=

∫ ∞
0

d`2

(
1

`2 + ∆
− ∆

(`2 + ∆)2

)
= ln(`2 + ∆)

∣∣∞
`2=0

+
∆

`2 + ∆

∣∣∣∣∞
`2=0

= ln(`2 + ∆)
∣∣∞
`2=0
− 1.

Recall that

∆ = xµ2 + (1− x)m2
0 − x(1− x)p2 ≡ ∆(µ2).
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Pauli-Villars regularization. Here is a convenient fiction: when you exchange

a photon, you also exchange a very heavy particle, with mass m2 = Λ2, with an extra

(−1) in its propagator. This means that (in this Pauli-Villars regulation scheme) the

Feynman rule for the wiggly line is instead

= −iηµν

(
1

k2 − µ2 + iε
− 1

k2 − Λ2 + iε

)
= −iηµν

(
µ2 − Λ2

(k2 − µ2 + iε) (k2 − Λ2 + iε)

)
This goes like 1

k4 at large k, so the integrals are more convergent. Yay.

Notice that the contribution from the Pauli-Villars photon to tree-level amplitudes

goes like | 1
k2−Λ2 |

Λ�k∼ 1
Λ2 (where k is the momentum going through the photon line,

determined by the external momenta), which innocuously vanishes as Λ→∞.

Remembering that the residue of the pole in the propagator is the probability for

the field operator to create a particle from the vacuum, you might worry that this is

a negative probability, and unitarity isn’t manifest. This particle is a ghost. However,

we will choose Λ so large that the pole in the propagator at k2 = Λ2 will never be

accessed and we’ll never have external Pauli-Villars particles. We are using this as a

device to define the theory in a regime of energies much less than Λ. You shouldn’t

take the regulated theory too seriously: for example, the wrong-sign propagator means

wrong-sign kinetic terms for the PV fields. This means that very wiggly configurations

will be energetically favored rather than suppressed by the Hamiltonian. It will not

make much sense non-perturbatively.

I emphasize that this regulator is one possibility of many. They each have their

drawbacks. They all break scale invariance. A nice thing about PV is that it is

Lorentz invariant. A class of regulators which make perfect sense non-perturbatively is

the lattice (as in the model with masses on springs). The price is that it really messes

up the spacetime symmetries.

Applying this to the self-energy integral amounts to the replacement

J  J∆(µ2) − J∆(Λ2)

=
[(

ln
(
`2 + ∆(µ2)

)
− 1
)
−
(
ln
(
`2 + ∆(Λ2)

)
− 1
)]∣∣∞

0

= ln
`2 + ∆(µ2)

`2 + ∆(Λ2)

∣∣∣∣∞
0

= ln 1/1− ln
∆(µ2)

∆(Λ2)
= ln

∆(Λ2)

∆(µ2)
.

Notice that we can take advantage of our ignorance of the microphysics to make the
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cutoff (the PV scale Λ) as big as we like and thereby simplify our lives:

∆(Λ2) = xΛ2 + (1− x)m2
0 − x(1− x)p2 Λ�everyone

≈ xΛ2.

Finally then

Σ2(p)PV =
α

2π

∫ 1

0

dx(2m0 − x/p) ln
xΛ2

xµ2 + (1− x)m2
0 − x(1− x)p2

. (4.16)

Having arrived at this regulated expression for the self-energy we need to “impose

a renormalization condition,” i.e. introduce some observable physics in terms of which

to parametrize our answers. We return to (4.14): the shift in the mass as a result of

this one-loop self-energy is

δm ≡ m−m0 = Σ2(/p = m) +O(e4) = Σ2(/p = m0) +O(e4)

=
α

2π

∫ 1

0

dx (2− x)m0 ln
xΛ2

xµ2 + (1− x)m2
0 + x(1− x)m2

0︸ ︷︷ ︸
=xµ2+(1−x2)m2

0≡f(x,m0,µ)

=
α

2π

∫ 1

0

dx (2− x)m0

 ln
Λ2

m2
0︸ ︷︷ ︸

divergent

+ ln
xm2

0

f(x,m0, µ)︸ ︷︷ ︸
relatively small


≈ α

2π

(
2− 1

2

)
m0 ln

Λ2

m2
0

=
3α

4π
m0 ln

Λ2

m2
0

. (4.17)

In the penultimate step (with the ≈), we’ve neglected the finite bit (labelled ‘relatively

small’) compared to the logarithmically divergent bit: we’ve already assumed Λ� all

other scales in the problem.

Mass renormalization. Now the physics input: The mass of the electron is 511

keV (you can ask how we measure it and whether the answer we get depends on the

resolution of the measurement, and indeed there is more to this story; this is a low-

energy answer, for example we could make the electron go in a magnetic field and

measure the radius of curvature of its orbit and set mev
2/r = evB/c), so

511 keV ≈ me = m0

(
1 +

3α

4π
ln

Λ2

m2
0

)
+O(α2).

In this equation, the LHS is a measured quantity. In the correction on the RHS α ≈ 1
137

is small, but it is multiplied by ln Λ2

m0
which is arbitrarily large. This means that the

bare mass m0, which is going to absorb the cutoff dependence here, must actually be

really small. (Notice that actually I’ve lied a little here: the α we’ve been using is
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still the bare charge; we will need to renormalize that one, too, before we are done.) I

emphasize: m0 and the other fake, bare parameters in L depend on Λ and the order of

perturbation theory to which we are working and other theorist bookkeeping garbage;

me does not. At each order in perturbation theory, we eliminate m0 and write our

predictions in terms of me. It is not too surprising that the mass of the electron

includes such contributions: it must be difficult to travel through space if you are

constantly emitting and re-absorbing photons.

Wavefunction renormalization. The actual propagator for the electron, near

the electron pole is

G̃(2)(p) =
i

/p−m0 − Σ(p)

p∼m
' iZ

/p−m
+ regular terms. (4.18)

The residue of the pole at the electron mass is no longer equal to one, but rather Z.

To see what Z actually is at this order in e2, Taylor expand near the pole

Σ(p)
Taylor

= Σ(/p = m) +
∂Σ

∂/p
|/p=m(/p−m) + · · ·

= Σ(/p = m0) +
∂Σ

∂/p
|/p=m0(/p−m0) + · · ·+O(e4)

So then (4.18) becomes

G̃(2)(p)
p∼m∼ i

/p−m− ∂Σ
∂/p
|m0(/p−m)

=
i(

/p−m
) (

1− ∂Σ
∂/p
|m0

) (4.19)

So that

Z =
1

1− ∂Σ
∂/p
|m0

' 1 +
∂Σ

∂/p
|m0 ≡ 1 + δZ

and at leading nontrivial order

δZ =
∂Σ2

∂/p
|m0

(4.16)
=

α

2π

∫ 1

0

dx

(
−x ln

xΛ2

f(x,m0, µ)
+ (2m0 − xm0)

−2x(1− x)

f(x,m0, µ)

)
= − α

4π

(
ln

Λ2

m2
0

+ finite

)
. (4.20)

Here f = f(x,m0, µ) is the same quantity defined in the second line of (4.17). We’ll

see below that the cutoff-dependence in δZ plays a crucial role in making the S matrix

(for example for the eµ → eµ process we’ve been discussing) cutoff-independent and

finite, when written in terms of physical variables.
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4.6 Big picture interlude

OK, I am having a hard time just pounding away at one-loop QED. Let’s take a break

and think about the self-energy corrections in scalar field theory. Then we will step

back and think about the general structure of short-distance senstivity in (relativistic)

QFT, before returning to the QED vertex correction and vacuum polarization.

4.6.1 Self-energy in φ4 theory

[Zee §III.3] Let’s return to the φ4 theory in D = 3 + 1 for a moment. The Mφφ←φφ

amplitude is not the only place where the cutoff appears.

Above we added a counterterm of the same form as the φ4 term in the Lagrangian.

Now we will see that we need counterterms for everybody:

L = −1

2

(
φ2φ+m2φ2

)
− gP

4!
φ4 − δg

4!
φ4 − 1

2
δZφ2φ− 1

2
δm2φ2.

Here is a way in which φ4 theory is weird: At one loop there is no wavefunction

renormalization. That is,

δΣ1(k) = = −ig

∫ Λ

d̄4q
i

q2 −m2 + iε
= δΣ1(k = 0) ∼ gΛ2

which is certainly quadratically divergent, but totally independent of the external mo-

mentum. This means that when we Taylor expand in k (as we just did in (4.19)), this

diagram only contributes to the mass renormalization. Demanding that the pole in the

propagator occurs at p2 = m2, we must set δm2 = −δΣ1.

So let’s see what happens if we keep going:

δΣ2(k) = = (−ig)2

∫
d̄4p

∫
d̄4qiD0(p)iD0(q)iD0(k− p− q) ≡ I(k2,m,Λ).

Here iD0(p) ≡ i
p2−m2+iε

is the free propagator (the factor of i is for later convenience),

and we’ve defined I by this expression. The fact that I depends only on k2 is a

consequence of Lorentz invariance. Counting powers of the loop momenta, the short-

distance bit of this integral is of the schematic form
∫ Λ d8P

P 6 ∼ Λ2, also quadratically

divergent, but this time k2-dependent, so there will be a nonzero δZ ∝ g2. As we just

did for the electron self-energy, we should Taylor expand in k. (We’ll learn more about
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why and when the answer is analytic in k2 at k = 0 later.) The series expansion in k2

(let’s do it about k2 = 0 ∼ m2 to look at the UV behavior) is

δΣ2(k2) = A0 + k2A1 + k4A2 + · · ·

where A0 = I(k2 = 0) ∼ Λ2. In contrast, dimensional analysis says A1 = ∂
∂k2 I|k2=0 ∼∫

d8P
P 8 ∼ Λ0+ ∼ ln Λ has two fewer powers of the cutoff. After that it’s clear sailing:

A2 =
(
∂
∂k2

)2
I|k2=0 ∼

∫ Λ d8P
P 10 ∼ Λ−2 is finite as we remove the cutoff, and so are all the

later coefficients.

Putting this together, the inverse propagator is

D−1(k) = D−1
0 (k)− Σ(k) = k2 −m2 − (δΣ1(0) + A0)︸ ︷︷ ︸

≡a∼Λ2

−k2A1 − k4A2 + · · ·

The · · · here includes both higher orders in g (O(g3)) and higher powers of k2, i.e. higher

derivative terms. If instead the physical pole were at a nonzero value of the mass, we

should Taylor expand about k2 = m2
P instead:

D−1(k) = D−1
0 (k)−Σ(k) = k2−m2

0−(δΣ1(0) + A0)︸ ︷︷ ︸
≡a∼Λ2

−(k2−m2
P )A1−(k2−m2

P )2A2 +· · ·

where now An ≡ 1
n!

(
∂
∂k2

)n
Σ2(k2)|k2=m2

P
.

Therefore, the propagator is

D(k) =
1

(1− A1)(k2 −m2
P )

+ · · · = Z

k2 −m2
P

+ · · ·

with

Z =
1

1− A1

, m2
P = m2 + a.

Some points to notice: • δZ = A1.

• The contributions An≥2(k2)n can be reproduced by counterterms of the form

Anφ2nφ. Had they been cutoff dependent we would have needed to add such (cutoff-

dependent) counterterms.

• The mass-squared of the scalar field in D = 3+1 is quadratically divergent, while

the mass of the spinor was only log divergent. This UV sensitivity of scalar fields is

ubiquitous32 (see the homework) and is the source of many headaches.

• On the term ‘wavefunction renormalization’: who is φ? Also just a theorist’s let-

ter. Sometimes (in condensed matter) it is defined by some relation to observation (like

32At least for most regulators. We’ll see that dim reg is special.
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the height of a wave in the mattress), in high energy theory not so much. Classically,

we fixed its (multiplicative) normalization by setting the coefficient of φ2φ to one. If

we want to restore that convention after renormalization, we can make a redefinition

of the field φR ≡ Z−1/2φ. This is the origin of the term ‘wavefunction renormalization’.

A slightly better name would be ‘field renormalization’, but even better would be just

‘kinetic term renormalization’.

Renormalized perturbation theory revisited. The full story for the renormal-

ized perturbation expansion in φ4 theory is

L =
1

2
(∂φ)2 − 1

2
m2
Pφ

2 − gP
4!
φ4 + Lct

with

Lct =
1

2
δZ (∂φ)2 − 1

2
δm2φ2 − δg

4!
φ4.

Here are the instructions for using it: The Feynman rules are as before: the coupling

and propagator are

= −igP , =
i

k2 −m2
P + iε

(4.21)

but the terms in Lct (the counterterms) are treated as new vertices, and treated per-

turbatively:

= −iδg, = −i(δZk2 + δm2).

All integrals are regulated, in the same way (whatever it is). The counterterm couplings

δg, δZ, δm
2 are determined iteratively, as follows: given the δN−1s up to O(gNP ), we fix

each one δ = δN−1 + gNP ∆δN +O(gN+1
P ) by demanding that (4.21) are actually true up

to O(gN+1
P ). This pushes the cutoff dependence back into the muck a bit further.

I say this is the full story, but wait: we didn’t try to compute amplitudes with more

than four φs (such as 3 ← 3 scattering of φ quanta). How do we know those don’t

require new counterterms (like a φ6 term, for example)?

4.6.2 Where is the UV sensitivity?

[still Zee §III.3, Peskin ch. 10. We’ll follow Zee’s discussion pretty closely for a bit.]

Given some process in a relativistic, perturbative QFT, how do we know if it will

depend on the cutoff? We’d like to be able answer this question for a theory with

scalars, spinors, vectors. Here’s how: First, look at each diagram A (order by order

in the loop expansion). Define the ‘superficial’ degree of divergence of A to be DA if
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A ∼ ΛDA (in the limit that Λ� all other scales – this is an asymptotic statement). A

log divergent amplitude has DA = 0 (sometimes it’s called DA = 0+).

Let’s start simple, and study the φ4 theory in D = 4. Consider a connected diagram

A with BE external scalar lines. I claim that DA = 4−BE. [End of Lecture 11]

Why didn’t it depend on any other data of the diagram, such as

BI ≡ # of internal scalar lines (i.e., propagators)

V ≡ # of φ4 vertices

L ≡ # of loops

? We can understand this better using two facts of graph theory and some

power counting. I recommend checking my claims below with an example,

such as the one at right.

BI = 8

BE = 4

V = 5

L = 4

Graph theory fact #1: These quantities are not all independent. For a connected

graph,

L = BI − (V − 1). (4.22)

We already discussed a version of this statement around (2.6). Math proof33: Imagine

placing the vertices on the page and adding the propagators one at a time. You need

V − 1 internal lines just to connect up all V vertices. After that, each internal line you

add necessarily adds one more loop. �

Another way to think about this fact makes clear that L = # of loops = # of

momentum integrals. Before imposing momentum conservation at the vertices, each

internal line has a momentum which we must integrate:
∏BI

α=1

∫
d̄Dqα. We then stick a

δ(D)(
∑
q) for each vertex, but one of these gives the overall momentum conservation

δ(D)(kT ), so we have V − 1 fewer momentum integrals. For the example above, (4.22)

says 4 = 8− (5− 1).

Graph theory fact #2: Each external line comes out of one vertex. Each internal

line connects two vertices. Altogether, the number of ends of lines sticking out of

vertices is

BE + 2BI = 4V

where the RHS comes from noting that each vertex has four lines coming out of it (in

φ4 theory). In the example, this is 4 + 2 · 8 = 4 · 5. So we can eliminate

BI = 2V −BE/2. (4.23)

33I learned this one from my class-mate M.B. Schulz.
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Now we count powers of momenta:

A ∼
L∏
a=1

∫ Λ

d̄Dka

BI∏
α=1

1

k2
α

.

Since we are interested in the UV structure, I’ve set the mass to zero, as well as all the

external momenta. The only scale left in the problem is the cutoff, so the dimensions

of A must be made up by the cutoff:

DA = [A] = DL− 2BI
(4.22)
= BI(D − 2)−D(V − 1)

(4.23)
= D +

2−D
2

BE + V (D − 4).

If we set D = 3 + 1 = 4, we get DA = 4 − BE as claimed. Notice that with BE = 2

we indeed reproduce DA = 2, the quadratic divergence in the mass renormalization,

and with BE = 4 we get DA = 0, the log divergence in the 2 ← 2 scattering. This

pattern continues: with more than four external legs, DA = 4−BE < 0, which means

the cutoff dependence must go away when Λ→ 0. This is illustrated by the following

diagram with BE = 6:

∼
∫ Λ d̄4P

P 6
∼ Λ−2.

So indeed we don’t need more counterterms for higher-point interactions in this theory.

Why is the answer independent of V in D = 4? This has the dramatic consequence

that once we fix up the cutoff dependence in the one-loop diagrams, the higher orders

have to work out, i.e. it strongly suggests that the theory is renormalizable. 34

Before we answer this, let’s explore the pattern a bit more. Suppose we include

also a fermion field ψ in our field theory, and suppose we couple it to our scalar by a

Yukawa interaction:

Sbare[φ, ψ] = −
∫
dDx

(
1

2
φ
(
2 +m2

φ

)
φ+ ψ̄ (−/∂ +mψ)ψ + yφψ̄ψ +

g

4!
φ4

)
.

34Why isn’t it a proof of renormalizability? Consider the following integral:

I =

∫ Λ d4p

(p2 +m2)5

∫ Λ

d4k.

According to our method of counting, we would say DI = 4 + 4− 10 = −2 and declare this finite and

cutoff-independent. On the other hand, it certainly does depend on the physics at the cutoff. (I bet

it is possible to come up with more pathological examples.) The rest of the work involving ‘nested

divergences’ and forests is in showing that the extra structure in the problem prevents things like I
from being Feynman amplitudes.
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To find the degree of divergence in an amplitude in this model, we have to independently

keep track of the number fermion lines FE, FI , since a fermion propagator has dimension

[1
/p
] = −1, so that DA = [A] = DL − 2BI − FI . The number of ends-of-fermion-lines

is 2Vy = 2FE + FI and the number of ends-of-boson-lines is Vy + 4Vg = BE + 2BI .

The number of loops is L = BI + FI − (Vy + Vg − 1). Putting these together (I used

Mathematica) we get

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
. (4.24)

Again in D = 4 the answer is independent of the number of vertices! Is there something

special about four spacetime dimensions?

To temper your enthusiasm, consider adding a four-fermion interaction: G(ψ̄ψ)(ψ̄ψ)

(or maybe GV (ψ̄γµψ)(ψ̄γµψ) or GA(ψ̄γµγ5ψ)(ψ̄γµγ
5ψ) or any other pile of gamma

matrices in between, with the indices contracted). When you redo this calculation on

the homework, you’ll find that in D = 4 a diagram (for simplicity, one with no φ4 or

Yukawa interactions) has

DA = 4− (1)BE −
(

3

2

)
FE + 2VG.

This dependence on the number of four-fermi vertices means that there are worse and

worse divergences as we look at higher-order corrections to a given process. Even worse,

it means that for any number of external lines FE no matter how big, there is a large

enough order in perturbation theory in G where the cutoff will appear! This means we

need δn(ψ̄ψ)n counterterms for every n, which we’ll need to fix with physical input. This

is a bit unappetizing, and such an interaction is called “non-renormalizable”. However,

when we remember that we only need to make predictions to a given precision (so that

we only need to go to a finite order in this process) we will see that such theories are

nevertheless quite useful.

So why were those other examples independent of V ? It’s because the couplings

were dimensionless. Those theories were classically scale invariant (except for the mass

terms).

4.6.3 Naive scale invariance in field theory

[Halpern] Consider a field theory of a scalar field φ in D spacetime dimensions, with

an action of the form

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ− gφp
)
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for some constants p, g. Which value of p makes this scale invariant? (That is: when

is g dimensionless, and hence possibly the coupling for a renormalizable interaction.)

Naive dimensions:

[S] = [~] = 0, [x] ≡ −1, [dDx] = −D, [∂] = 1

The kinetic term tells us the engineering dimensions of φ:

0 = [Skinetic] = −D + 2 + 2[φ] =⇒ [φ] =
D − 2

2
.

Notice that the D = 1 case agrees with our quantum mechanics counting from §4.2.

Quantum field theory in D = 1 spacetime dimensions is quantum mechanics.

Then the self-interaction term has dimensions

0 = [Sinteraction] = −D + [g] + p[φ] =⇒ [g] = D − p[φ] = D + p
2−D

2

We expect scale invariance when [g] = 0 which happens when

p = pD ≡
2D

D − 2
,

i.e. the scale invariant scalar-field self-interaction in D spacetime dimensions is φ
2D
D−2 .

D 1 2 3 4 5 6 ... D ∞
[φ] −1

2
0 1

2
1 3/2 2 ... D−2

2
∞

scale-inv’t p ≡ pD −2 ∞? 6 4 10/3 3 ... 2D
D−2

2

? What is happening in D = 2? The field is dimensionless, and so any power of

φ is naively scale invariant, as are more complicated interactions like gij(φ)∂µφ
i∂µφj,

where the coupling g(φ) is a function of φ. This allows for scale-invariant non-linear

sigma models, where the fields are coordinates on a curved manifold with metric ds2 =

gijdφ
idφj.

In dimensions where we get fractional powers, this isn’t so nice.

Notice that the mass term ∆S =
∫
dDxm

2

2
φ2 gives

0 = −D + 2[m] + 2[φ] =⇒ [m] = 1 ∀D <∞

– it’s a mass, yay.
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What are the consequences of this engineering dimensions calculation in QFT? For

D > 2, an interaction of the form gφp has

[g] = D · pD − p
pD


< 0 when p > pD, non-renormalizable or irrelevant

= 0 when p = pD, renormalizable or marginal

> 0 when p < pD, super-renormalizable or relevant.

(4.25)

Consider the ‘non-renormalizable’ case. Suppose we calculate in QFT some quantity f

with [f ] as its naive dimension, in perturbation theory in g, e.g. by Feynman diagrams.

We’ll get:

f =
∞∑
n=0

gncn

with cn independent of g. So

[f ] = n[g] + [cn] =⇒ [cn] = [f ]− n[g]

So if [g] < 0, cn must have more and more powers of some mass (inverse length) as

n increases. What dimensionful quantity makes up the difference? Sometimes it is

masses or external momenta. But generically, it gets made up by UV divergences (if

everything is infinite, dimensional analysis can fail, nothing is real, I am the walrus).

More usefully, in a meaningful theory with a UV cutoff, ΛUV , the dimensions get made

up by the UV cutoff, which has [ΛUV ] = 1. Generically: cn = c̃n (ΛUV )−n[g], where c̃n
is dimensionless, and n[g] < 0 – it’s higher and higher powers of the cutoff.

Consider the renormalizable (classically scale invariant) case: [cn] = [f ], since [g] =

0. But in fact, what you’ll get is something like

cn = c̃n logν(n)

(
ΛUV

ΛIR

)
,

where ΛIR is an infrared cutoff or a mass or external momentum, [ΛIR] = 1. Some

classically scale invariant examples (so that m = 0 and the bare propagator is 1/k2)

where you can see that we get logs from loop amplitudes:

φ4 inD = 4: φ6 inD = 3:

φ3 in D = 6: In D = 2, even the propagator for a massless

scalar field has logs:

〈φ(x)φ(0)〉 =

∫
d̄2k

e−ikx

k2
∼ log

|x|
ΛUV

.
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The terms involving ‘renormalizable’ in (4.25) are somewhat old-fashioned and come

from a high-energy physics point of view where the short-distance physics is unknown,

and we want to get as far as we can in that direction with our limited knowledge (in

which case the condition ‘renormalizability’ lets us get away with this indefinitely –

it lets us imagine we know everything). The latter terms are natural in the opposite

situation (like condensed matter physics) where we know some basically correct micro-

scopic description but want to know what happens at low energies. Then an operator

like 1
M24φ

28 whose coefficient is suppressed by some large mass scale M is irrelevant

for physics at energies far below that scale. Inversely, an operator like m2φ2 gives a

mass to the φ particles, and matters very much (is relevant) at energies E < m. In the

marginal case, the quantum corrections have a chance to make a big difference.

4.7 Vertex correction in QED

[Peskin chapter 6, Schwartz chapter 17, Zee chapter III.6] Back to work on QED. The

vertex correction has some great physics payoffs:

• We’ll cancel the cutoff dependence we found in the S matrix from δZ.

• We’ll compute g−2 (the anomalous magnetic moment) of the electron, the locus

of some of the most precise agreement between theory and experiment. (Actually

the agreement is so good that it’s used as the definition of the fine structure

constant. But a similar calculation gives the leading anomalous magnetic moment

of the muon.)

• We’ll see that the exclusive differential cross section
(
dσ
dΩ

)
eµ←eµ that we’ve been

considering is not really an observable. Actually it is infinity!35 The key word

here is ‘exclusive,’ which means that we demand that the final state is exactly one

electron and one muon and absolutely nothing else. Think for a moment about

how you might do that measurement.

This is an example of an IR divergence. While UV divergences mean you’re

overstepping your bounds (by taking too seriously your Lagrangian parameters

or your knowledge of short distances), IR divergences mean you are asking the

wrong question.

35More accurately, the exclusive cross section is zero; the one-loop correction is minus infinity, which

is perturbation theory’s clumsy attempt to correct the finite tree level answer to make it zero.
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To get started, consider the following class of diagrams.

=

≡ iM = ie2 (ū(p′)Γµ(p, p′)u(p))
1

q2
ū(K ′)γµu(K) (4.26)

The shaded blob is the vertex function Γ. The role of the light blue factors is just

to make and propagate the photon which hits our electron; let’s forget about them.

Denote the photon momentum by q = p′− p. We’ll assume that the electron momenta

p, p′ are on-shell, but qµ is not, as in the eµ scattering process. Then q2 = 2m2−2p′ ·p.

Before calculating the leading correction to the vertex Γµ = γµ +O(e2), let’s think

about what the answer can be. It is a vector made from p, p′, γµ and m, e and numbers.

It can’t have any γ5 or εµνρσ by parity symmetry of QED. So on general grounds we

can organize it as

Γµ(p, p′) = Aγµ +B(p+ p′)µ + C(p− p′)µ (4.27)

where A,B,C are Lorentz-invariant functions of p2 = (p′)2 = m2, p · p′, /p, /p′. But, for

example, /pγµu(p) = (mγµ − pµ)u(p) which just mixes up the terms; really A,B,C are

just functions of the momentum transfer q2. Gauge invariance, in the form of the Ward

identity, says that contracting the photon line with the photon momentum should give

zero:

0
Ward
= qµū(p′)Γµu(p)

(4.27)
= ū(p′)

A /q︸︷︷︸
= /p′−/p

ū(p′)...u(p)
= m−m=0

+B (p+ p′) · (p− p′)︸ ︷︷ ︸
=m2−m2=0

+Cq2

u(p)

Therefore 0 = Cq2ū(p′)u(p) for general q2 and general spinors, so C = 0. This is the

moment for the Gordon identity to shine:

ū(p′)γµu(p) = ū(p′)

(
pµ + p

′µ

2m
+

iσµνqν
2m

)
u(p)

(where σµν ≡ i
2
[γµ, γν ]) can be used to eliminate the p+p′ term36. The Gordon identity

36Actually this is why we didn’t include a σµν term. You could ask: what about a term like

σµν(p+p′)ν? Well, there’s another Gordon identity that relates that to things we’ve already included:

ū2σµν(p1 + p2)νu1 = iū2 (qµ − (m1 −m2)γµ)u1.

It is proved the same way: just use the Dirac equation /p1
u1 = m1u1, ū2/p2

= ū2m2 and the Clifford

algebra. We are interested here in the case where m1 = m2.
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shows that the QED interaction vertex ū(p′)γµu(p)Aµ contains a magnetic moment bit

in addition to the p+ p′ term (which is there for a charged scalar field).

It is then convenient (and conventional) to parametrize the vertex in terms of the

two form factors F1,2:

Γµ(p, p′) = γµF1(q2) +
iσµνqν

2m
F2(q2). (4.28)

This little monstrosity has the complete information about the coupling of the electron

to the electromagnetic field, such as for example a background electromagnetic field.

It is a parametrization of the matrix elements of the current between two one-electron

states, incorporating the fact of gauge invariance.

The first term at zero momentum eF1(q2 = 0) is the electric charge of the electron

(if you don’t believe it, use the vertex (4.28) to calculate the Coulomb field of the

electron; there are some details on page 186 of Peskin). Since the tree-level bit of

F1 is 1, if by the letter e here we mean the actual charge, then we’d better include

counterterms (Lct 3 ψ̄δeγµAµψ) to make sure it isn’t corrected: F1(0) = 1.

The magnetic moment of the electron is the coefficient ~µ of Ṽ (q) = −~µ · ~B(q) +

... in the non-relativistic effective potential. Comparing the non-relativistic limit of

ū(p′)Γiu(p)Ai(q) = −~µ · ~B(q) + ..., (similarly to the homework problem with the γ5

interaction) shows that (see Peskin p. 187)

~µ = g
e

2m
~S,

where ~S ≡ ξ† ~σ
2
ξ is the electron spin. Comparing with the vertex function, this says

that the g factor is

g = 2(F1(0) + F2(0)) = 2 + 2F2(0) = 2 +O(α).

We see that the anomalous magnetic moment of the electron is 2F2(q2 = 0).

Now that we have some expectation about the form of the answer, and some ideas

about what it’s for, we sketch the evaluation of the one-loop QED vertex correction:

= −ie3

∫
d̄4k ū(p′)γν

/k
′
+me

(k′)2 −m2
e

γµ
/k +me

k2 −m2
e

γρu(p)· ηνρ
(p− k)2 −m2

γ

with k′ ≡ k + q.
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(1) Feynman parameters again. The one we showed before can be rewritten more

symmetrically as:

1

AB
=

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)
1

(xA+ yB)2

Now how can you resist the generalization37:

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
2

(xA+ yB + zC)3

So, set A = (k′)2 −m2
e, B = k2 −m2

e, C = (p− k)2 −m2
γ (with the appropriate iεs), so

that the integral we have to do is∫
d̄4kNµ

(k2 + k · (· · · ) + · · · )3
.

(2) Complete the square, ` = k − zp+ xq to get
∫

d̄4`Nµ

(`2−∆)3 where

∆ = −xyq2 + (1− z)2m2 + zm2
γ.

The `-dependence in the numerator is either 1 or `µ or `µ`ν . In the integral over `, the

second averages to zero, and the third averages to ηµν`2 1
4
. As a result, the momentum

37Peskin outlines a proof by induction of the whole family of such identities on page 190. But here’s

a simpler proof using Schwinger parameters. You’ll agree that

1

A
=

∫ ∞
0

ds e−sA. (4.29)

Applying this identity to each factor gives

1

A1A2 · · ·An
=

∫ ∞
0

ds1 · · ·
∫ ∞

0

dsn e
−
∑n

i=1 siAi .

Now use scaling to set τ ≡
∑n
i=1 sn, and xi ≡ si/τ . Then

1

A1A2 · · ·An
=

∫ ∞
0

dττn−1
n∏
i=1

∫ 1

0

dxiδ

(
n∑
i=1

xi − 1

)
e−τ

∑
i xiAi .

Now do the integral over τ , using
∫∞

0
dττn−1e−τX = (n−1)!

Xn (differentiate (4.29) wrt A), to arrive at

1

A1A2 · · ·An
=

n∏
i=1

∫ 1

0

dxiδ

(
n∑
i=1

xi − 1

)
(n− 1)!

(
∑
i xiAi)

n .
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integrals we need are just ∫
d̄D`

(`2 −∆)m
and

∫
d̄D` `2

(`2 −∆)m
.

Right now we only need D = 4 and m = 3, but it turns out to be quite useful to think

about them all at once. Like in our discussion of the electron self-energy diagram, we

can evaluate them by Wick rotating (which changes the denominator to `2
E + ∆) and

going to polar coordinates. This gives:∫
d̄D`

(`2 −∆)m
= (−1)m

i

(4π)D/2
Γ
(
m− D

2

)
Γ(m)

(
1

∆

)m−D
2

. (4.30)

∫
d̄D` `2

(`2 −∆)m
= (−1)m−1D

2

i

(4π)D/2
Γ
(
m− D

2
− 1
)

Γ(m)

(
1

∆

)m−D
2
−1

. (4.31)

Notice that these integrals are not equal to infinity when the parameter D is not an

integer. This is the idea behind dimensional regularization.

(0) But for now let’s persist in using the Pauli Villars regulator. (I call this step

(0) instead of (3) because it should have been there all along.) Here this means we

subtract from the amplitude the same quantity with mγ replaced by Λ2. The dangerous

bit comes from the `2 term we just mentioned, since m −D/2 − 1 = 3 − 4/2 − 1 = 0

means logs.

The numerator is

Nµ = ū(p′)γν
(
/k + /q +me

)
γµ (/k +me) γνu(p)

= −2 (Aū(p′)γµu(p) + Bū(p′)σµνqνu(p) + Cū(p′)qµu(p)) (4.32)

where

A = −1

2
`2 + (1− x)(1− y)q2 + (1− 4z + z2)m2

B = imz(1− z)

C = m(z − 2)(y − x) . (4.33)

The blood of many men was spilled to arrive at these simple expressions (actually

most of the algebra is done explicitly on page 319 of Schwartz). Now you say: but you

promised there would be no term like C because of the Ward identity. Indeed I did and

indeed there isn’t because C is odd in x↔ y while everything else is even, so this term

integrates to zero. [End of Lecture 12]

The first term (with A) is a correction to the charge of the electron and will be UV

divergent. More explicitly, we get, using Pauli-Villars,∫
d̄4`

(
`2(

`2 −∆mγ

)3 −
`2

(`2 −∆Λ)3

)
=

i

(4π)2
ln

∆Λ

∆mγ

.
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The other bits are finite, and we ignore the terms that go like negative powers of Λ.

More on this cutoff dependence soon. But first something wonderful:

4.7.1 Anomalous magnetic moment

The second term B contains the anomalous magnetic moment:

F2(q2) =
2m

e
· (the term with B )

=
2m

e
4e3 (im)

∫
dxdydzδ(x+ y + z − 1)z(1− z)

∫
d̄4`

(`2 −∆)3︸ ︷︷ ︸
= −i

32π2∆

=
α

π
m2

∫
dxdydzδ(x+ y + z − 1)

z(1− z)

(1− z)2m2 − xyq2
. (4.34)

The correction to the magnetic moment is the long-wavelength bit of this:

F2(q2 = 0) =
α

π
m2

∫ 1

0

dz

∫ 1−z

0

dy
z

(1− z)m2
=

α

2π
.

g = 2 +
α

π
+O(α2).

A rare opportunity for me to plug in numbers: g = 2.00232.

4.7.2 IR divergences mean wrong questions.

There is a term in the numerator from the Aγµ bit∫
d̄4`

(`2 −∆)3
= c

1

∆

(with c = − i
32π2 again), but without the factor of z(1 − z) we had in the magnetic

moment calculation. It looks like we’ve gotten away without having to introduce a UV

regulator here, too (so far). But now look at what happens when we try to do the

Feynman parameter integrals. For example, at q2 = 0, we get (if we had set mγ = 0)∫
dxdydzδ(x+ y + z − 1)

m2(1− 4z + z2)

∆
= m2

∫ 1

dz

∫ 1−z

0

dy
−2 + 2(1− z) + (1− z)2

(1− z)2m2

=

∫ 1

dz
−2

(1− z)
+ finite, (4.35)

which diverges at the upper limit of integration. In fact it’s divergent even when q2 6= 0.

This is a place where we actually need to include the photon mass, mγ, for our own

safety.
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The (IR singular bit of the) vertex (to O(α)) is of the form

Γµ = γµ
(

1− α

2π
fIR(q2) ln

(
−q2

mγ
2

))
+ stuff which is finite as mγ → 0. (4.36)

Notice that the IR divergent stuff depends on the electron momenta p, p′ only through

q, the momentum of the photon. So it looks like we are led to conclude(
dσ

dΩ

)
µe←µe

=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

mγ
2

))
+O

(
α2
)

which blows up when we remove the fake photon mass mγ → 0. Notice that for t-

channel exchange, −q2 > 0, so the argument of the log is positive, the cross-section is

real. But notice that the one-loop correction is not only infinite, but negative infinity,

which simply cannot happen from the definition of the cross section. This is perturba-

tion theory’s way of telling us that the answer is 1−α ·∞+O(α2) ' 0 – the putatively

small corrections from radiative effects are actually trying to make the answer zero.

[Schwartz §20.1] I wanted to just quote the above result for (4.36) but I lost my

nerve, so here is a bit more detail leading to it. The IR dangerous bit comes from the

second term in A above. That is,

F1(q2) = 1 + f(q2) + δ1 +O(α2)

with

f(q2) =
e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

(
ln
zΛ2

∆
+
q2(1− x)(1− y) +m2

e(1− 4z + z2)

∆

)
.

δ1 here is a counterterm for the ΨγµAµΨ vertex.

We can be more explicit if we consider −q2 � m2
e so that we can ignore the electron

mass everywhere. Then we would choose the counterterm δ1 so that

1 = F1(0) =⇒ δ1 = −f(0)
me/q→0→ − e2

8π2

1

2
ln

Λ2

m2
γ

.

And the form of f(q2) is

f(q2)|me=0 =
e2

8π2

∫
dxdydzδ(x+ y + z − 1)

ln
(1− x− y)Λ2

∆︸ ︷︷ ︸
IR finite

+
q2(1− x)(1− y)

−xyq2 + (1− x− y)m2
γ


F1(q2)|me=0 = 1− e2

16π2

(
ln2 −q2

m2
γ

+ 3 ln
−q2

m2
γ

)
+ finite.

In doing the integrals, we had to remember the iε in the propagators, which can be

reproduced by the replacement q2 → q2 +iε. This ln2(q2/mγ) is called a Sudakov double

logarithm. Notice that taking differences of these at different q2 will not make it finite.
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Diversity and inclusion to the rescue. Before you throw up your hands in de-

spair, I would like to bring to your attention another consequence of the masslessness of

the photon: It means real (as opposed to virtual) photons can be made with arbitrarily

low energy. But a detector has a minimum triggering energy: the detector works by

particles doing some physical something to stuff in the detector, and it has a finite en-

ergy resolution – it takes a finite amount of energy for those particles to do stuff. This

means that a process with exactly one e and one µ in the final state cannot

be distinguished from a process ending in eµ plus a photon of arbitrarily small energy,

such as would result from (final-state radiation) or (initial-state

radiation). This ambiguity is present for any process with external charged particles.

Being more inclusive, then, we cannot distinguish amplitudes of the form

ū(p′)M0(p′, p)u(p) ≡ −i


 ,

from more inclusive amplitudes like

−i




= ū(p′)γµ e
/p′+/k−meM0(p′, p)u(p)ε?µ(k) + ū(p′)M0(p′, p) e

/p−/k−meγ
µu(p)ε?µ(k) .

Now, by assumption the photon is real (k2=0) and it is soft, in the sense that k0 < Ec,

the detector cutoff. So we can approximate the numerator of the second term as(
/p− /k +me

)
γµu(p) '

(
/p+me

)
γµu(p)

Clifford
= (2pµ + γµ

(
−/p+me

)
)u(p)︸ ︷︷ ︸

=0

= 2pµu(p).

In the denominator we have e.g. (p− k)2 −m2
e = p2 −m2

e − 2p · k + k2 ∼ −2p · k since

the electron is on shell and k � p. Therefore

M (eµ+ one soft γ ← eµ) = eū(p′)M0(p′, p)u(p)

(
p′ · ε?

p′ · k + iε
− p · ε?

p · k − iε

)
(4.37)
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This is bremsstrahlung. Before we continue this calculation to find the inclusive

amplitude which a real detector actually measures, let’s pause to relate the previous

expression to some physics we know. Where have we seen this kind of expression

p
′µ

p′ · k + iε
− pµ

p · k − iε
≡ 1

ie
j̃µ(k)

before? Notice that the iε are different because one comes from final state and one

from initial. Well, this object is the Fourier transform j̃µ(k) =
∫
d4x e+ikxjµ(x) of the

current

jµ(x) = e

∫
dτ
dyµ

dτ
δ(4)(x− y(τ))

associated with a particle which executes a piecewise linear motion 38

yµ(τ) =

{
pµ

m
τ, τ < 0

p
′µ

m
τ, τ > 0

.

This is a good approximation to the motion a free particle which experiences a sudden

acceleration; sudden means that the duration of the pulse is short compared to ω−1

for any frequency we’re going to measure. The electromagnetic radiation that such

an accelerating charge produces is given classically by Maxwell’s equation: Ãµ(k) =

− 1
k2 j̃

µ(k).

I claim further that the factor fIR(q2) = α
π

ln
(
−q2

m2

)
(which entered our lives in

(4.36)) arises classically as the number of soft photons produced by such a process in

each decade of wavenumber. You can figure this out by plugging Ãµ(k) = − 1
k2 j̃

µ(k)

into the electromagnetic energy 1
2

∫
d3x (E2 +B2) =

∫
d̄3k~ωknk. (Note that the in-

tegral over k here actually diverges; this is an artifact of the approximation that the

momentum change is instantaneous.) See Peskin §6.1 for help.

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

=

(
dσ

dΩ

)
Mott

e2

∫ Ec

0

d̄3k

2Ek︸ ︷︷ ︸
γ phase space

∣∣∣∣2p · ε?2p · k
− 2p′ · ε?

2p′ · k

∣∣∣∣2 Ek=|~k|∼
∫

0

d3k

k3
=∞.

This is another IR divergence. (One divergence is bad news, but two is an opportunity

for hope.) Just like we must stick to our UV regulators like religious zealots, we must

38Check it:∫
d4xjµ(x)e+ikx = e

∫
dτ
dyµ(τ)

dτ
eik·y(τ) = e

∫ ∞
0

dτ
p
′µ

m
e
i
(

k·p′
m +iε

)
τ

+ e

∫ 0

−∞
dτ
pµ

m
ei(

k·p
m −iε)τ = j̃µ(k).

Notice that the iε are convergence factors in the Fourier transforms.
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cleave tightly to the consistency of our IR regulators: we need to put back the photon

mass:

Ek =

√
~k2 +mγ

2

which means that the lower limit of the k integral gets cut off at mγ:∫ Ec

0

dk

Ek
=

(∫ mγ

0

+

∫ Ec

mγ

)
dk√

k2 +mγ
2
∼
∫ mγ

0

dk

mγ︸ ︷︷ ︸
=1

+

∫ Ec

mγ

dk

k︸ ︷︷ ︸
ln Ec
mγ

.

Being careful about the factors, the actual cross section measured by a detector with

energy resolution Ec is39

(
dσ

dΩ

)observed

=

(
dσ

dΩ

)
eµ←µe

+

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

+O(α3)

=

(
dσ

dΩ

)
Mott

1−α
π
fIR(q2) ln

(
−q2

mγ
2

)
︸ ︷︷ ︸

vertex correction

+
α

π
fIR(q2) ln

(
E2
c

mγ
2

)
︸ ︷︷ ︸

soft photons


=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

E2
c

))

The thing we can actually measure is independent of the IR regulator photon mass mγ,

and finite when we remove it. On the other hand, it depends on the detector resolution.

Like in the plot of some kind of Disney movie, an apparently minor character whom

you may have been tempted to regard as an ugly detail has saved the day.

I didn’t show explicitly that the coefficient of the log is the same function fIR(q2).

In fact this function is fIR(q2) = 1
2

log(−q2/m2), so the product fIR ln q2 ∼ ln2 q2 is

the Sudakov double logarithm. A benefit of the calculation which shows that the same

fIR appears in both places (Peskin chapter 6.5) is that it also shows that this pattern

persists at higher order in α: there is a ln2(q2/mγ
2) dependence in the two-loop vertex

correction, and a matching − ln2(E2
c /mγ

2) term in the amplitude to emit two soft

photons. There is a 1
2!

from Bose statistics of these photons. The result exponentiates,

and we get

e−
α
π
f ln(−q2/mγ2)e−

α
π
f(E2

c/mγ
2) = e−

α
π
f ln(−q2/E2

c ).

39Notice that we add the cross-sections, not the amplitudes, for these processes with different final

states. Here’s why: even though we don’t measure the existence of the photon, something does: it

gets absorbed by some part of the apparatus or the rest of the world and therefore becomes entangled

some of its degrees of freedom; when we fail to distinguish between those states, we trace over them,

and this erases the interference terms we would get if we summed the amplitudes.
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You may be bothered that I’ve made all this discussion about the corrections from

the electron line, but said nothing about the muon line. But the theory should make

sense even if the electron and muon charges Qe, Qm were different, so the calculation

should make sense term-by-term in an expansion in Qm.

Some relevant names for future reference: The name for the guarantee that this

always works in QED is the Bloch-Nordsieck theorem. Closely-related but more serious

issues arise in QCD, the theory of quarks and gluons; this is the beginning of the story

of jets (a jet is some IR-cutoff dependent notion of a QCD-charged particle plus the

cloud of stuff it carries with it) and parton distribution functions.

Sketch of exponentiation of soft photons. [Peskin §6.5] Consider a diagram

with n soft external photons, summed over ways of distributing them on an initial and

final electron line:

n∑
nf=1

= ū(p′)iM0u(p)en
n∏

α=1

(
p
′µα

p′ · kα
− pµα

p · kα

)
≡ An.

Here the difference in each factor is just as in (4.37), one term from initial and one from

final-state emission; expanding the product gives the sum over nf = 1−ni, the number

coming from the final-state line. From this expression, we can make a diagram with a

soft-photon loop by picking an initial line α and a final line β setting kα = −kβ ≡ k

and tying them together with a propagator and summing over k:

= An−2
e2

2

∫
d̄4k
−iηρσ
k2

(
p′

p′ · k
− p

p · k

)ρ(
p
′

−p′ · k
− p

−p · k

)σ

The factor of 1
2

accounts for the symmetry under exchange of α ↔ β. For the case of

n = 2, this is the whole story, and this is

ūiM0u ·X =

  ·
 

soft part

(where here ‘soft part’ means the part which is singular in mγ) from which we conclude

that

X = − α

2π
fIR(q2) ln

(
−q2

m2
γ

)
+ finite.
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Taking the most IR-divergent bit with m virtual soft photons (order αm) for each m

gives

Mvirtual soft =
∞∑
m=0


 =

︸ ︷︷ ︸
iM0


∑
m

1

m!
Xm

︸ ︷︷ ︸
eX

where the 1/m! is a symmetry factor from interchanging the virtual soft photons.

Notice that this verifies my claim that the −∞ in the one-loop answer is perturbation

theory’s way of trying to make the cross-section zero: since X
mγ→0→ −∞, dσexclusive ∝

e2X mγ→0→ 0.

Now consider the case of one real external soft (E ∈ [mγ, Ec]) photon in the final

state. The cross section is

dσ1γ =

∫
dΠ
∑
pols

εµε?ν︸ ︷︷ ︸
=−ηµν

MµM?
ν

= |ū(p′)M0u(p)|2
∫

d̄3k

2Ek
(−ηµν) e2

(
p′

p′ · k
− p

p · k

)µ(
p
′

−p′ · k
− p

−p · k

)ν
≡ dσ0Y,

Y =
α

π
fIR(q2) ln

(
E2
c

m2
γ

)
.

(The integral is done in Peskin, page 201.) Therefore, the exclusive cross section,

including contributions of soft real photons gives

∞∑
n=0

dσnγ = dσ0

∑
n

1

n!
Yn = dσ0e

Y.

Here the n! is because the final state contains n identical bosons.

Putting the two effects together gives the promised cancellation of mγ dependence

to all orders in α:

dσ = dσ0e
2XeY

= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

m2
γ

+
α

π
fIR(q2) ln

E2
c

m2
γ

)
= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

E2
c

)
This might seem pretty fancy, but unpacking the sum we did, the basic statement

is that the probability of finding n photons with energy in a given (low-energy) range
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[E−, E+] is

P[E−,E+] =
1

n!
λne−λ, λ =

α

π
fIR(q2) ln

E+

E−
= 〈n〉 =

〈
n2
〉
− 〈n〉2

a Poisson distribution. This is just what one finds in a coherent state of the radiation

field.

[End of Lecture 13]

4.7.3 Some magic from gauge invariance of QED

We found that the self-energy of the electron gave a wavefunction renormalization

factor

Z2 = 1 +
∂Σ

∂/p
|/p=m0 +O(e4) = 1− α

4π
ln

Λ2

m2
+ finite +O(α2).

We care about this because there is a factor of Z2 in the LSZ formula for an S-matrix

element with two external electrons. On the other hand, we found a cutoff-dependent

correction to the vertex eγµF1(q2) of the form

F1(q2) = 1 +
α

4π
ln

Λ2

m2
+ finite +O(α2).

Combining these together

Seµ←eµ =
(√

Z2(e)
)2 (

+
( )

+ · · ·
)

=

(
1− α

4π
ln

Λ2

m2
+ · · ·

)
e2ū(p′)

(
γµ
(

1 +
α

4π
ln

Λ2

m2
+ · · ·

)
+ α

iσµνqν
2m

)
u(p)

the UV divergence from the vertex cancels the one in the self-energy. Why did this have

to happen? During our discussion of the IR divergences, I mentioned a counterterm δ1

for the vertex. But how many counterterms do we get here? Is there a point of view

which makes this cancellation obvious? Notice that the · · · multiplying the γµ term

still contain the vacuum polarization diagram, which is our next subject, and which

may be (is) cutoff dependent. Read on.

4.8 Vacuum polarization

[Zee, III.7] We’ve been writing the QED lagrangian as

L = ψ̄
(
/∂ + ie /̃A−m

)
ψ − 1

4
F̃µνF̃

µν .
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I’ve put tildes on the photon field because of what’s about to happen: Suppose we

rescale the definition of the photon field eÃµ ≡ Aµ, eF̃µν ≡ Fµν . Then the coupling e

moves to the photon kinetic term:

L = ψ̄
(
/∂ + i /A−m

)
ψ − 1

4e2
FµνF

µν .

With this normalization, instead of measuring the coupling between electrons and

photons, the coupling constant e measures the difficulty a photon has propagating

through space:

〈AµAν〉 ∼
−iηµνe

2

q2
.

None of the physics is different, since each internal photon line still has two ends on a

ψ̄ /Aψ vertex.

But from this point of view it is clear that the magic of the previous subsection is

a consequence of gauge invariance, here’s why: the demand of gauge invariance relates

the coefficients of the ψ̄ /∂ψ and ψ̄ /Aψ terms40. Therefore, any counterterm we need for

the ψ̄ /∂ψ term (which comes from the electron self-energy correction and is traditionally

called δZ2) must be the same as the counterterm for the ψ̄ /Aψ term (which comes from

the vertex correction and is called δZ1). No magic, just gauge invariance.

A further virtue of this reshuffling of the factors of e (emphasized by Zee on page

205) arises when we couple more than one species of charged particle to the electromag-

netic field, e.g. electrons and muons or, more numerously, protons: once we recognize

that charge renormalization is a property of the photon itself, it makes clear that quan-

tum corrections cannot mess with the ratio of the charges. A deviation from −1 of

the ratio of the charges of electron and proton as a result of interactions might seem

plausible given what a mess the proton is, and would be a big deal for atoms. Gauge

invariance forbids it.

Just as we defined the electron self-energy (amputated 2-point function) as =

−iΣ(/p) (with two spinor indices implied), we define the photon self-energy as

+iΠµν(q
2) ≡ IPI = +O(e4)

(the diagrams on the RHS are amputated). It is a function of q2 by Lorentz symmetry.

(The reason for the difference in sign is that the electron propagator is +i
/p−m while the

40Notice that the gauge transformation of the rescaled Aµ is Aµ → Aµ+∂µλ(x), ψ(x)→ eiqλ(x)ψ(x)

so that Dµψ ≡ (∂ + qiA)µ ψ → eiqλDµψ where q is the charge of the field (q = −1 for the electron).

This is to be contrasted with the transformation of Ãµ → Ãµ − ∂µλ(x)/e.
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photon propagator is −iηµν
q2 .) We can parametrize the answer as

Πµν(q2) = A(q2)ηµν +B(q2)qµqν .

The Ward identity says

0 = qµΠµν(q2) =⇒ 0 = Aqν +Bq2qν =⇒ B = −A/q2.

Let A ≡ Πq2 so that

Πµν(q2) = Π(q2)q2

(
ηµν − qµqν

q2

)
︸ ︷︷ ︸

=∆µν
T

.

This object ∆µν
T is a projector

∆µ
T ρ∆T

ρ
ν = ∆µ

T ν (4.38)

onto modes transverse to qµ. Recall that we can take the bare propagator to be

=
−i∆T

q2

without changing any gauge-invariant physics. This is useful because then

G̃(2)(q) = + · · ·
(4.38)
=

−i∆T

q2

(
1 + iΠq2∆T

(
−i∆T

q2

)
+ iΠq2∆T

(
−i∆T

q2

)
iΠq2∆T

(
−i∆T

q2

)
+ · · ·

)
∆2
T=∆T
=

−i∆T

q2

(
1 + Π∆T + Π2∆T + · · ·

)
=
−i∆T

q2

1

1− Π(q2)
. (4.39)

Does the photon get a mass? If the thing I called A above q2Π(q2)
q2→0→ A0 6= 0

(that is, if Π(q2) ∼ A0

q2 or worse), then G̃
q2→0∼ 1

q2−A0
does not have a pole at q2 = 0.

If Π(q2) is regular at q2 = 0, then the photon remains massless. In order to get

such a singularity in the photon self energy Π(q2) ∼ A0

q2 we need a process like δΠ ∼
, where the intermediate state is a massless boson with propagator

∼ A0

q2 . As I will explain below, this is the Anderson-Higgs mechanism (not the easiest

way to understand it).

The Ward identity played an important role here. Why does it work for the vacuum

polarization?

qµΠµν
2 (q2) = qµ ∝ e2

∫
d̄4ptr

1

/p+ /q −m
/q

1

/p−m
γν .
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But here is an identity:

1

/p+ /q −m
/q

1

/p−m
=

1

/p−m
− 1

/p+ /q −m
. (4.40)

Now, if we shift the integration variable p → p + q in the second term, the two terms

cancel.

Why do I say ‘if’? If the integral depends on the UV limit, this shift is not innocu-

ous. So we have to address the cutoff dependence.

In addition to the (lack of) mass renormalization, we’ve figured out that the elec-

tromagnetic field strength renormalization is

Zγ ≡ Z3 =
1

1− Π(0)
∼ 1 + Π(0) +O(e4).

We need Zγ for example for the S-matrix for processes with external photons, like

Compton scattering.

Claim: If we do it right41, the cutoff dependence looks like42:

Π2(q2) =
α0

4π

−2

3
ln Λ2 + 2D(q2)︸ ︷︷ ︸

finite


where Λ is the UV scale of ignorance. The photon propagator gets corrected to

e2
0∆T

q2
 

Z3e
2
0∆T

q2
,

and Z3 = 1
1−Π(0)

blows up logarithmically if we try to remove the cutoff. You see

that the fine structure constant α0 =
e20
4π

has acquired the subscript of deprecation: we

can make the photon propagator sensible while removing the cutoff if we are willing to

recognize that the letter e0 we’ve been carrying around is a fiction, and write everything

41What I mean here is: if we do it in a way which respects the gauge invariance and hence the

Ward identity. The simple PV regulator we’ve been using does not quite do that. However, an only

slightly more involved implementation, explained in Zee page 202-204, does. Alternatively, we could

use dimensional regularization everywhere.
42The factor in front of the ln Λ can be made to look like it does in other textbooks using α = e2

4π ,

so that
α0

4π

(
2

3
ln Λ2

)
=

e2
0

12π2
ln Λ.
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in terms of e ≡
√
Z3e0 where e2

4π
= 1

137
is the measured fine structure constant (at low

energy). To this order, then, we write

e2
0 = e2

(
1 +

α0

4π

2

3
ln Λ2

)
+O(α2). (4.41)

m0 = m+O(α0) = m+O(α). (4.42)

Since the difference between α0 and α is higher order (in either), our book-keeping is

unchanged. Inverting the relationship perturbatively, the renormalized charge is

e2 = e2
0

(
1− α0

4π

2

3
ln Λ2 +O(α2)

)
– in QED, the quantum fluctuations reduce the charge, as you might expect from the

interpretation of this phenomenon as dielectric screening by virtual e+e− pairs.

In the example case of eµ← eµ scattering, the full one-loop UV cutoff dependence

then looks like

Seµ←eµ =
√
Z2
e

(
1− α0

4π
ln Λ2 +

α0

2π
A(m0)

)
e2

0

Lµū(p′)

[
γµ
(

1 +
α0

4π
ln Λ2 +

α0

2π
(B +D) +

α0

4π

(
−2

3
ln Λ2

))
+

iσµνqν
2m

α0

2π
C(q2,m0)

]
u(p)

= e2Lµū(p′)

[
γµ
(

1 +
α

2π
(A+B +D)

)
+

iσµνqν
2m

α

2π
C

]
u(p) +O(α2) (4.43)

where Lµ is the stuff from the muon line, and A,B,C,D are finite functions of m, q2.

In the second step, two things happened: (1) we cancelled the UV divergences from

the Z-factor and from the vertex correction: this had to happen because there was no

possible counterterm. (2) we used (4.41) and (4.42) to write everything in terms of the

measured e,m. This removes the remaining cutoff dependence.

Claim: this works for all processes to order α2. For example, Bhabha scattering

gets a contribution of the form

∝ e0
1

1− Π(0)
e0 = e2.

In order to say what is A+B+D we need to specify more carefully a renormalization

scheme (other combinations of A,B,D can be changed by gauge transformations and

field redefinitions). To do that, I need to give a bit more detail about the integral.
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4.8.1 Under the hood

The vacuum-polarization contribution of a fermion of mass m and charge e at one loop

is

q,µ q,ν = −
∫

d̄Dktr

(
(ieγµ)

i (/k +m)

k2 −m2
(ieγν)

i
(
/q + /k +m

)
(q + k)2 −m2

)
The minus sign out front is from the fermion loop. Some boiling, which you can find

in Peskin (page 247) or Zee (§III.7), reduces this to something manageable. The steps

involved are: (1) a trick to combine the denominators, like the Feynman trick 1
AB

=∫ 1

0
dx
(

1
(1−x)A+xB

)2

. (2) some Dirac algebra, to turn the numerator into a polynomial

in k, q. As Zee says, our job in this course is not to train to be professional integrators.

The result of this boiling can be written

iΠµν
2 (q) = −e2

∫
d̄D`

∫ 1

0

dx
Nµν

(`2 −∆)2

with ` = k+xq is a new integration variable, ∆ ≡ m2−x(1−x)q2, and the numerator

is

Nµν = 2`µ`ν − ηµν`2 − 2x(1− x)qµqν + ηµν
(
m2 + x(1− x)q2

)
+ terms linear in `µ .

At this point I can illustrate explicitly why we can’t use the euclidean momentum

cutoff in gauge theory. With a euclidean momentum cutoff, the diagram gives

something of the form

iΠµν
2 ∝ e2

∫ Λ

d4`E
`2
Eη

µν

(`2
E −∆)

2 + ... ∝ e2Λ2ηµν

This is NOT of the form Πµν = ∆µν
T Π(p2); rather it produces a correction to the photon

mass proportional to the cutoff. What happened? Our cutoff was not gauge invariant.

Oops.43

Fancier PV regularization. [Zee page 202] We can fix the problem by adding

also heavy Pauli-Villars electron ghosts. Suppose we add a bunch of them with masses

43Two points: How could we have predicted that the cutoff on euclidean momentum `2E < Λ2 would

break gauge invariance? Its violation of the Ward identity here is a proof, but involved some work.

The idea is that the momentum of a charged field shifts under a gauge transformation. Second: it

is possible to construct a gauge invariant regulator with an explicit UV cutoff, using a lattice. The

price, however, is that the gauge field enters only via the link variables U(x, ê) = ei
∫ x+ê
x

A where x is a

site in the lattice and ê is the direction to a neighboring site in the lattice. For more, look up ‘lattice

gauge theory’ in Zee’s index. More on this later.

121



ma and couplings
√
cae to the photon. Then the vacuum polarization is that of the

electron itself plus

−
∑
a

ca

∫
d̄Dktr

(
(ieγµ)

i

/q + /k −ma

(ieγν)
i

/q −ma

)
∼
∫ Λ

d̄4k

(∑
a ca
k2

+

∑
a cam

2
a

k4
+ · · ·

)
.

So, if we take
∑

a ca = −1 we cancel the Λ2 term, and if we take
∑

a cam
2
a = −m2, we

also cancel the ln Λ term. This requires at least two PV electron fields, but so what?

Once we do this, the momentum integral converges, and the Ward identity applies, so

the answer will be of the promised form Πµν = q2Π∆µν
T . After some more boiling, the

answer is

Π2(q2) =
1

2π2

∫
dxx(1− x) ln

M2

m2 − x(1− x)q2

where lnM2 ≡ −
∑

a ca lnm2
a. This M plays the role of the UV scale of ignorance

thenceforth.

Notice that this is perfectly consistent with our other two one-loop PV calculations:

in those, the extra PV electrons never get a chance to run. At higher loops, we would

have to make sure to be consistent.

Dimensional regularization. A regulator which is more automatically gauge

invariant is dimensional regularization (dim reg). I have already been writing many of

the integrals in D dimensions. One small difference when we are considering this as a

regulator for an integral of fixed dimension is that we don’t want to violate dimensional

analysis, so we should really replace∫
d4` −→

∫
d4−ε`

µ̄−ε

where D = 4 − ε and µ̄ is an arbitrary mass scale which will appear in the regulated

answers, which we put here to preserve dim’l analysis – i.e. the couplings in dim

reg will have the same engineering dimensions they had in the unregulated theory

(dimensionless couplings remain dimensionless). µ̄ will parametrize our RG, i.e. play

the role of the RG scale. (It is often called µ at this step and then suddenly replaced

by something also called µ; I will instead call this µ̄ and relate it to the thing that ends

up being called µ.)

[Zinn-Justin 4th ed page 233] Dimensionally regularized integrals can be defined

systematically with a few axioms indicating how the D-dimensional integrals behave

under

1. translations
∫

d̄Dpf(p+ q) =
∫

d̄Dpf(p) 44

44Note that this rule fails for the euclidean momentum cutoff. Also note that this is the property

we needed to demonstrate the Ward identity for the vertex correction using (4.40).
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2. scaling
∫

d̄Dpf(sp) = |s|−D
∫

d̄Dpf(p)

3. factorization
∫

d̄Dp
∫

d̄Dqf(p)g(q) =
∫

d̄Dpf(p)
∫

d̄Dqg(q)

The (obvious?) third axiom implies the following formula for the sphere volume as a

continuous function of D:(π
a

)D/2
=

∫
dDxe−a~x

2

= ΩD−1

∫ ∞
0

xD−1dxe−ax
2

=
1

2
a−

D
2 Γ

(
D

2

)
ΩD−1 . (4.44)

This defines ΩD−1 for general D.

In dim reg, the one-loop vacuum polarization correction does satisfy the gauge-

invariance Ward identity Πµν = ∆µν
T q

2Π2(q2). A peek at the tables of dim reg integrals

shows that Π2 is:

Π2(q2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

))
(4.45)

where we have introduced the heralded µ:

µ2 ≡ 4πµ̄2e−γE

where γE is the Euler-Mascheroni constant, which appears in the Taylor expansion

of the Euler gamma function; we define µ in this way so that, like Rosencrantz and

Guildenstern in Hamlet, γE both appears and disappears from the discussion in this

one scene.

In the second line of (9.9), we expanded the Γ-function about D = 4. Notice that

what was a log divergence, becomes a 1
ε

pole in dim reg. There are other singularities

of this function at other integer dimensions. It is an interesting question to ponder why

the integrals have such nice behavior as a function of D. That is: they only have simple

poles. A partial answer is that in order to have worse (e.g. essential) singularities at

some D, the perturbative field theory would have to somehow fail to make sense at

larger D.

Now we are in a position to choose a renormalization condition (also known as a

renormalization scheme), which will specify how much of the finite bit of Π gets sub-

tracted by the counterterm. One possibility is to demand that the photon propagator

is not corrected at q = 0, i.e. demand Zγ = 1. Then the resulting one-loop shift is

δΠ2(q2) ≡ Π2(q2)− Π2(0) =
e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

m2

)
.
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We’ll use this choice below.

Another popular choice, about which more later, is called the MS scheme, in which

Π is defined by the rule that we subtract the 1/ε pole. This means that the counterterm

is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

.

(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction

between µ̄ and µ.) The resulting vacuum polarization function is

δΠ
(MS)
2 (q2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

µ2

)
.

[End of Lecture 14]

4.8.2 Physics from vacuum polarization

One class of physical effects of vacuum polarization arise from attaching the corrected

photon propagator to a static delta-function charge source. The resulting effective

Coulomb potential is the fourier transform of

Ṽ (q) =
1

q2

e2

1− Π(q2)
≡ e2

eff(q)

q2
. (4.46)

This has consequences in both IR and UV.

IR: In the IR (q2 � m2), it affects the spectra of atoms. The leading correction is

δΠ2(q) =
e2

2π2

∫
dxx(1−x) ln

(
1− q2

m2
x(1− x))

)
q�m
' e2

2π2

∫
dxx(1−x)

(
− q2

m2
x(1− x))

)
= − q2

60π2m2

which means

Ṽ (q)
q�m
' e2

q2
+
e2

q2

(
− q2

30m2

)
+ · · ·

and hence

V (r) = − e2

4πr2
− e4

60π2m2
δ(r) + · · · ≡ V + ∆V.

This shifts the energy levels of hydrogen s-orbitals (the ones with support at the origin)

by ∆Es = 〈s|∆V |s〉 which contributes to lowering the 2S state relative to the 2P state

(the Lamb shift).
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This delta function is actually a long-wavelength approximation to what is called the

Uehling potential; its actual range is 1/me, which is the scale on which Π2 varies . The

delta function approximation is a good idea for atomic physics, since 1
me
� a0 = 1

αme
,

the Bohr radius. See Schwartz p. 311 for a bit more on this.

UV: In the UV limit (q2 � m2), we can approximate ln
(

1− q2

m2x(1− x)
)
'

ln
(
− q2

m2x(1− x)
)
' ln

(
− q2

m2

)
to get45

Π2(q2) =
e2

2π2

∫ 1

0

dxx(1−x) ln

(
1− q2

m2
x(1− x)

)
' e2

2π2

∫ 1

0

dxx(1−x) ln

(
− q2

m2

)
=

e2

12π2
ln

(
− q2

m2

)
.

Therefore, the effective charge in (4.46) at high momentum exchange is

e2
eff(q2)

q2�m2
e' e2

1− e2

12π2 ln
(
− q2

m2

) . (4.47)

(Remember that q2 < 0 for t-channel exchange, as in the static potential, so the

argument of the log is positive and this is real.)

Two things: if we make q2 big enough, we can make the loop correction as big as

the 1. This requires |q| ∼ 10286 eV. Good luck with that. This is called a Landau pole.

The second thing is: this perspective of a scale-dependent coupling is very valuable,

and is a crucial ingredient in the renormalization group. The value α = 1
137

is the

extreme IR value, for q � me.

45The last step is safe since the x(1 − x) suppresses the contributions of the endpoints of the x

integral, so we can treat x(1− x) as finite.
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5 Consequences of unitarity

Next I would like to fulfill my promise to show that conservation of probability guar-

antees that some things are positive (for example, Z and 1− Z, where Z is the wave-

function renormalization factor). We will show that amplitudes develop an imaginary

part when the virtual particles become real. (Someone should have put an extra factor

of i in the definition to resolve this infelicity.) We will discuss the notion of density

of states in QFT (this should be a positive number!), and in particular the notion

of the density of states contributing to a correlation function G = 〈OO〉, also known

as the spectral density of G (or of the operator O). In high-energy physics this idea

is associated with the names Källen-Lehmann and is part of a program of trying to

use complex analysis to make progress in QFT. These quantities are also ubiquitous

in the theory of condensed matter physics and participate in various sum rules. This

discussion will be a break from perturbation theory; we will say things that are true

with a capital ‘t’.

5.1 Spectral density

[Zee III.8, Appendix 2; Peskin §7.1; Xi Yin’s notes for Harvard Physics 253b] In the

following we will consider a (time-ordered) two-point function of an operator O. We

will make hardly any assumptions about this operator. We will assume it is a scalar

under rotations, and will assume translation invariance in time and space. But we

need not assume that O is ‘elementary’. This is an extremely loaded term, a useful

definition for which is: a field governed by a nearly-quadratic action. Also: try to keep

an eye out for where (if anywhere) we assume Lorentz invariance.

So, let

−iD(x) ≡ 〈0| T O(x)O†(0) |0〉 .

Notice that we do not assume that O is hermitian. Use translation invariance to move

the left operator to the origin: O(x) = eiPxO(0)e−iPx. This follows from the statement

that P generates translations 46

∂µO(x) = i[Pµ,O(x)] .

46Note that P here is a D-component vector of operators

Pµ = (H, ~P)µ

which includes the Hamiltonian – we are using relativistic notation – but we haven’t actually required

any assumption about the action of boosts.
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And let’s unpack the time-ordering symbol:

− iD(x) = θ(t) 〈0| eiPxO(0)e−iPxO†(0) |0〉+ θ(−t) 〈0| O†(0)eiPxO(0)e−iPx |0〉 . (5.1)

Now we need a resolution of the identity operator on the entire QFT H:

1 =
∑
n

|n〉 〈n| .

This innocent-looking n summation variable is hiding an enormous sum! Let’s also

assume that the groundstate |0〉 is translation invariant:

P |0〉 = 0.

We can label each state |n〉 by its total momentum (since the components of Pµ com-

mute with each other):

Pµ |n〉 = pµn |n〉 .

Let’s examine the first term in (5.1); sticking the 1 in a suitable place:

〈0| eiPxO(0)1e−iPxO†(0) |0〉 =
∑
n

〈0| O(0) |n〉 〈n| e−iPxO†(0) |0〉 =
∑
n

e−ipnx||O0n ||2 ,

with O0n ≡ 〈0| O(0) |n〉 the matrix element of our operator between the vacuum and

the state |n〉. Notice the absolute value: unitarity of our QFT requires this to be

positive and this will have valuable consequences.

Next we work on the time-ordering symbol. I claim that :

θ(x0) = θ(t) = −i

∫
d̄ω

e+iωt

ω − iε
; θ(−t) = +i

∫
d̄ω

e+iωt

ω + iε
.

Just like in our discussion of the Feynman contour, the point of the iε is to push

the pole inside or outside the integration contour. The half-plane in which we must

close the contour depends on the sign of t. There is an important sign related to the

orientation with which we circumnavigate the pole. Here is a check that we got the

signs and factors right:

dθ(t)

dt
= −i∂t

∫
d̄ω

eiωt

ω − iε
=

∫
d̄ωeiωt = δ(t).

Consider now the fourier transform of D(x) (for simplicity, I’ve assumed O = O†
here):

−iD(q) =

∫
dDxeiqxiD(x) = i(2π)D−1

∑
n

||O0n ||2
(
δ(D−1)(~q − ~pn)

q0 − p0
n + iε

− δ(D−1)(~q + ~pn)

q0 + p0
n − iε

)
.

(5.2)
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With this expression in hand, you could imagine measuring the O0ns and using that

to determine D.

Now suppose that our operator O is capable of creating a single particle (for ex-

ample, suppose, if you must, that O = φ, a perturbative quantum field). Such a state

is labelled only by its spatial momentum:
∣∣∣~k〉 (here I briefly retreat to non-relativistic

normalization of states
〈
~k|~k′

〉
= δD−1(~k − ~k′)). The statement that O can create this

state from the vacuum means〈
~k
∣∣∣O(0) |0〉 =

Z
1
2√

(2π)D−1 2ω~k

(5.3)

where Z 6= 0 and ω~k is the energy of the particle as a function of ~k. For a Lorentz

invariant theory, we can parametrize this as

ω~k
Lorentz!≡

√
~k2 +m2

in terms of m, the mass of the particle. 47 What is Z? From (5.3) and the axioms of

QM, you can see that it’s the probability that O creates this 1-particle state from the

vacuum. In the free field theory it’s 1, and it’s positive because it’s a probability. 1−Z
measures the extent to which O does anything besides create this 1-particle state.

The identity of the one-particle Hilbert space (relatively tiny!) H1 is

11 =

∫
d̄D−1~k

∣∣∣~k〉〈~k∣∣∣ , 〈
~k|~k′

〉
= δ(D−1)(~k − ~k′).

This is a summand in the whole horrible resolution:

1 = 11 + · · · .
47It’s been a little while since we spoke explicitly about free fields, so let’s remind ourselves about

the appearance of ω−
1
2 in (5.3), recall the expansion of a free scalar field in creation an annihilation

operators:

φ(x) =

∫
d̄D−1~p√

2ω~p

(
a~pe
−ipx + a†~pe

ipx
)

.

For a free field
∣∣∣~k〉 = a†~k

|0〉, and
〈
~k
∣∣∣φ(0) |0〉 = 1√

(2π)D−12ω~k

. The factor of ω−
1
2 is required by the

ETCRs:

[φ(~x), π(~x′)] = iδD−1(~x− ~x′), [a~k,a
†
~k′

] = δD−1(~k − ~k′) ,

where π = ∂tφ is the canonical field momentum. It is just like in the simple harmonic oscillator, where

q =

√
~

2mω

(
a + a†

)
, p = i

√
~ω
2

(
a− a†

)
.
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I mention this because it lets us define the part of the horrible
∑

n in (5.2) which comes

from 1-particle states:

=⇒ − iD(q) = ...+ i(2π)D−1

∫
d̄D−1~k

Z

(2π)D−12ωk

(
δD−1(~q − ~k)

q0 − ω~k + iε
− (ωk → −ωk)

)
= ...+ i

Z

2ωq

(
1

q0 − ωq + iε
− 1

q0 + ωq + iε

)
Lorentz

= ...+ i
Z

q2 −m2 + iε

(Here again ... is contributions from states involving something else, e.g. more than

one particle.) The big conclusion here is that even in the interacting theory, even if

O is composite and complicated, if O can create a 1-particle state with mass m with

probability Z, then its 2-point function has a pole at the right mass, and the residue

of that pole is Z. (This result was promised when we discussed LSZ.)48

The imaginary part of D is called the spectral density ρ (beware that different

physicists have different conventions for the factor of i in front of the Green’s function;

the spectral density is not always the imaginary part, but it’s always positive (in unitary

theories)!

Using

Im
1

Q∓ iε
= ±πδ(Q), (for Q real). (5.4)

we have

ImD(q) = π (2π)D−1
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
.

More explicitly (for real operators):

Im i

∫
dDx eiqx 〈0| T O(x)O(0) |0〉 = π (2π)D−1

∑
n

||O0n ||2

δD(q − pn)+ δD(q + pn)︸ ︷︷ ︸
=0 for q0 > 0 since p0

n > 0

 .

The second term on the RHS vanishes when q0 > 0, since states in H have energy

bigger than the energy of the groundstate. Therefore, the contribution of a 1-particle

state to the spectral density is:

ImD(q) = ...+ πZδ(q2 −m2).

48If we hadn’t assumed Lorentz invariance, this would be replaced by the statement: if the operator

O can create a state with energy ω from the vacuum with probability Z, then its Green’s function

has a pole at that frequency, with residue Z.
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This quantity ImD(q) (the spectral density ofO) is positive because it is the number

of states (with D-momentum in an infinitesimal neighborhood of q), weighted by the

modulus of their overlap with the state engendered by the operator on the groundstate.

Now what about multiparticle states? The associated sum over such states involves

multiple (spatial) momentum integrals, not fixed by the total momentum e.g. in φ4

theory, φ can make a 3-particle state: and the three particles must

share the momentum q. In this case the sum over all 3-particle states is∑
n, 3-particle states with momentum q

∝
∫
d~k1d~k2d~k3δ

D(k1 + k2 + k3 − q)

(Note that I am not saying that a single real φ particle is decaying to three real φ

particles; that can’t happen if they are massive. Rather, in the diagram you

can think of the particle with momentum q as virtual.)

Now instead of an isolated pole, we have a whole collection of

poles right next to each other. This is a branch cut. In this

example, the branch cut begins at q2 = (3m)2. 3m is the lowest

energy q0 at which we can produce three particles of mass m

(they have to be at rest).

Note that in φ3 theory, we would instead find that the particle can decay into two

particles, and the sum over two particle states would look like∑
n, 2-particle states with momentum q

∝
∫
d~k1d~k2δ

D(k1 + k2 − q)

so the branch cut would start at q2 = (2m)2.

Now we recall some complex analysis, in the form of the Kramers-Kronig (or dis-

persion) relations:

ReG(z) =
1

π
P
∫ ∞
−∞

dω
ImG(ω)

ω − z
(valid if ImG(ω) is analytic in the UHP of ω and falls off faster than 1/ω). These

equations, which I think we were supposed to learn in E&M but no one seems to, and

which relate the real and imaginary parts of an analytic function by an integral equa-

tion, can be interpreted as the statement that the imaginary part of a complex integral
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comes from the singularities of the integrand, and conversely that those singularities

completely determine the function.

An even more dramatic version of these relations (whose imaginary part is the

previous eqn) is

f(z) =
1

π

∫
dw

ρ(w)

w − z
, ρ(w) ≡ Imf(w + iε).

The imaginary part determines the whole function.

Comments:

• The spectral density ImD(q) determines D(q). When people get excited about

this it is called the “S-matrix program” or something like that.

• The result we’ve shown protects physics from our caprices in choosing field vari-

ables. If someone else uses a different field variable η ≡ Z
1
2φ + αφ3, the result

above with O = η shows that∫
dDxeiqx 〈T η(x)η(0)〉

still has a pole at q2 = m2 and a cut starting at the three-particle threshold,

q2 = (3m)2.

• A sometimes useful fact which we’ve basically already shown (for real operators):

ImD(q) = (2π)D
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
=

1

2

∫
dDxeiqx 〈0| [O(x),O(0)] |0〉 .

We can summarize what we’ve learned in the Lorentz-invariant case as follows: In

a Lorentz invariant theory, the spectral density ρ for a scalar operator φ is a scalar

function of pµ with∑
s

δD(p− ps)|| 〈0|φ(0) |s〉 ||2 =
θ(p0)

(2π)D−1
ρ(p2) .

Claims:

• ρ(s) = N ImD for some number N (I believe N = π here), when s > 0.

• ρ(s) = 0 for s < 0. There are no states for spacelike momenta.

• ρ(s) ≥ 0 for s > 0. The density of states for timelike momenta is positive or zero.
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• With our assumption about one-particle states, ρ(s) has a delta-function singu-

larity at s = m2, with weight Z. More generally we have shown that

D(k2) =

∫
ds ρ(s)

1

k2 − s+ iε
.

This is called the Källen-Lehmann spectral representation of the propagator; it

represents it as a sum of free propagators with different masses, determined by

the spectral density. One consequence (assuming unitarity and Lorentz symme-

try) is that at large |k2|, the Green’s function is bigger than 1
k2 , since each term

in the integral goes like 1
k2 and ρ(s) ≥ 0 means that there cannot be cancella-

tions between each 1
k2−s contribution. This means that if the kinetic term for

your scalar field has more derivatives, something must break at short distances.

Breaking Lorentz symmetry is the easiest way out, for example on a lattice; in

a Lorentz-invariant theory, this is an indication that non-renormalizable terms

imply more degrees of freedom at high energy. More on this in subsection §5.2.

Taking into account our assumption about single-particle states, this is

D(k2) =
Z

k2 −m2 + iε
+

∫ ∞
(3m)2

ds ρc(s)
1

k2 − s+ iε

where ρc is just the continuum part. The pole at the particle-mass2 survives

interactions, with our assumption. (The value of the mass need not be the same

as the bare mass!)

• Sum rule. Finally, suppose that the field φ in question is a canonical field, in

the sense that

[φ(x, t), ∂tφ(y, t)] = iδ(d)(x− y).

This is a statement both about the normalization of the field, and that its canon-

ical momentum is its time derivative. Then49

1 =

∫ ∞
0

dsρ(s). (5.6)

49 Here’s how to see this. For free fields (chapter 2) we have

〈0|[φ(x), φ(y)]|0〉free = ∆+(x− y,m2)−∆+(y − x,m2),

where ∆+(x) =
∫

d̄dp
2ω~p

e−ip·x|p0=ω~p
. For an interacting canonical field, we have instead a spectral

representation (by exactly the methods above):

〈Ω|[φ(x), φ(y)]|Ω〉 =

∫
dµ2ρ(µ2)

(
∆+(x− y, µ2)−∆+(y − x, µ2)

)
, (5.5)

where ρ is the same spectral density as above. Now take ∂x0 |x0=y0 of the BHS of (5.5) and use

∂t∆+(x− y;µ2)|x0=y0 = − i
2δ

(d)(~x− ~y).
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If we further assume that φ can create a one-particle state with mass m, so that

ρ(s) = Zδ(s−m2)+ρc(s) where ρc(s) ≥ 0 is the contribution from the continuum

of ≥ 2-particle states, then

1 = Z +

∫ ∞
threshold

dsρc(s)

is a sum rule. It shows that Z ∈ [0, 1] and is just the statement that if the

field doesn’t create a single particle, it must do something else. The LHS is the

probability that something happens.

The idea of spectral representation and spectral density is more general than the

Lorentz-invariant case. In particular, the spectral density of a Green’s function is

an important concept in the study of condensed matter. For example, the spectral

density for the electron 2-point function is the thing that actually gets measured in

angle-resolved photoemission experiments (ARPES).

5.2 Cutting rules and optical theorem

[Zee §III.8] So, that may have seemed like some math. What does this mean when we

have in our hands a perturbative QFT? Consider the two point function of a relativistic

scalar field φ which has a perturbative cubic interaction:

S =

∫
dDx

(
1

2

(
(∂φ)2 +m2φ2

)
− g

3!
φ3

)
.

Sum the geometric series of 1PI insertions to get

iDφ(q) =
i

q2 −m2 − Σ(q) + iε

where Σ(q) is the 1PI two point vertex.

The leading contribution to Σ comes from the one loop

diagram at right and is

iΣ1 loop(q2) =
1

2
(ig)2

∫
d̄Dk

i

k2 −m2 + iε

i

(q − k)2 −m2 + iε
.

The 1
2

is a symmetry factor from exchanging the two inter-

nal lines of the loop. Consider this function for real q, for
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which there are actual states of the scalar field – timelike qµ, with q0 > m. The real

part of Σ shifts the mass. But what does it mean if this function has an imaginary

part?

Claim: ImΣ/m is a decay rate.

It moves the energy of the particle off of the real axis from m (in its rest frame) to√
m2 + iImΣ(m2)

small ImΣ ∼ g2

' m+ i
ImΣ(m2)

2m
.

The fourier transform to real time is an amplitude for propagation in time of a state

with complex energy E : its wavefunction evolves like ψ(t) ∼ e−iEt and has norm

||ψ(t) ||2 ∼ ||e−i(E−i 1
2

Γ)t ||2 = e−Γt.

In our case, we have Γ ∼ ImΣ(m2)/m (I’ll be more precise below), and we interpret

that as the rate of decay of the norm of the single-particle state. There is a nonzero

probability that the state turns into something else as a result of time evolution in

the QFT: the single particle must decay into some other state – generally, multiple

particles. (We will see next how to figure out into what it decays.)

The absolute value of the Fourier transform of this quantity ψ(t) is the kind of

thing you would measure in a scattering experiment. This is

F (ω) =

∫
dt e−iωtψ(t) =

∫ ∞
0

dt e−iωtei(M− 1
2
iΓ)t =

1

i (ω −M)− 1
2
Γ

||F (ω) ||2 =
1

(ω −M)2 + 1
4
Γ2

is a Lorentzian in ω with width Γ. So Γ is sometimes called a width.

[End of Lecture 15]

So: what is ImΣ1 loop in this example?

We will use

1

k2 −m2 + iε
= P 1

k2 −m2
− iπδ(k2 −m2) ≡ P − i∆

where P denotes ‘principal part’. Then

ImΣ1 loop(q) = −1

2
g2

∫
dΦ (P1P2 −∆1∆2)

with dΦ =d̄Dk1d̄
Dk2(2π)DδD(k1 + k2 − q).
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This next trick, to get rid of the principal part bit, is from Zee’s book (the second

edition on p.214; he also does the calculation by brute force in the appendix to that

section). We can find a representation for the 1-loop self-energy in terms of real-space

propagators: it’s the fourier transform of the amplitude to create two φ excitations at

the origin at time zero with a single φ field (this is −ig), to propagate them both from

0 to x (this is (iD(x))2) and then destroy them both with a single φ field (this is −ig
again). Altogether:

iΣ(q) =
1

2

∫
ddx eiqx (−ig)2 iD(x)iD(x)

=
1

2
g2

∫
dΦ

1

k2
1 −m2

1 + iε

1

k2
2 −m2

2 + iε
(5.7)

In the bottom expression, the iεs are designed to produce the time-ordered D(x)s.

Consider instead the strange combination

0 =
1

2

∫
ddx eiqx (ig)2 iDadv(x)iDret(x)

=
1

2
g2

∫
dΦ

1

k2
1 −m2

1 − σ1iε

1

k2
2 −m2

2+σ2iε
(5.8)

where σ1,2 ≡ sign(k0
1,2). This expression vanishes because the integrand is identically

zero: there is no value of t for which both the advanced and retarded propagators are

nonzero (one has a θ(t) and the other has a θ(−t), and this is what’s accomplished by

the red σs). Therefore, we can add the imaginary part of zero

Im(0) =
1

2
g2

∫
dΦ (P1P2 + σ1σ2∆1∆2)

to our expression for ImΣ1-loop to cancel the annoying principal part bits:

ImΣ1-loop =
1

2
g2

∫
dΦ ((1 + σ1σ2) ∆1∆2) .

The quantity (1 + σ1σ2) is only nonzero (equal to 2) when k0
1 and k0

2 have the same

sign; but in dΦ is a delta function which sets q0 = k0
1 + k0

2. WLOG we can take q0 > 0

since we only care about the propagation of positive-energy states. Therefore both k0
1

and k0
2 must be positive.

The result is that the only values of k on the RHS that contribute are ones with
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positive energy, which satisfy all the momentum conservation constraints:

ImΣ =
1

2
g2

∫
dΦ2θ(k0

1)θ(k0
2)∆1∆2 =

1

2
g22

∫
dΦθ(k0

1)θ(k0
2)πδ(k2

1 −m2)πδ(k2
2 −m2)

=
g2

2

1

2

∫
d̄D−1~k1

2ω~k1

d̄D−1~k2

2ω~k2

(2π)DδD(k1 + k2 − q) .

In the last step we used the identity θ(k0)δ(k2−m2) = θ(k0) δ(k
0−ωk)
2ωk

. But this is exactly

(half) the density of actual final states into which the thing can decay! In summary:

ImΣ =
1

2

∑
actual states n of 2 particles

into which φ can decay

||Aφ→n ||2 = mΓ. (5.9)

In this example the decay amplitude A is just ig. And the 1
2

symmetry factor matches

the factor that accounts for identical particles in the final state. (The other factor of

two is part of the optical theorem, as we’ll see next.) In the last step we compared to

our expression for the decay rate (p. 94 of my 215A notes).

This result is generalized by the Cutkosky cutting rules

for finding the imaginary part of a feynman diagram de-

scribing a physical process. The rough rules are the fol-

lowing. Assume the diagram is amputated – leave out the

external propagators. Then any line drawn through the di-

agram which separates initial and final states (as at right)

will ‘cut’ through some number of internal propagators; re-

place each of the cut propagators by θ(p0)2πδ(p2−m2) = θ(p0)2πδ(p0−εp)

2εp
. As Tony Zee

says: the amplitude becomes imaginary when the intermediate particles become real

(as opposed to virtual), aka ‘go on-shell’. This is a place where the iεs are crucial.

There is a small but important problem with the preceding discussion (pointed out

by Brian Campbell-Deem): a single φ particle of mass m cannot decay into two φ

particles each of mass m – the kinematics of this example do not allow any final state

phase space. But we can make the example viable (without changing the calculation

at all) by thinking about a theory of two scalar fields, one light φ, one heavy Φ with

lagrangian

L =
1

2

(
(∂Φ)2 −M2Φ2 + (∂φ)2 −m2φ2 − gφ2Φ

)
and thinking about the self-energy for the (unstable) heavy particle.

The general form of (5.9) is a general consequence of unitarity. Recall that the

S-matrix is

Sfi = 〈f | e−iHT |i〉 ≡ (1 + iT )fi .
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H = H† =⇒ 1 = SS† =⇒ 2ImT ≡ i
(
T † − T

) 1=SS†
= T †T .

This is called the optical theorem and it is the same as the one taught in some QM

classes. In terms of matrix elements:

2ImTfi =
∑
n

T †fnTni

Here we’ve inserted a resolution of the identity (again on the QFT Hilbert space, the

same scary sum) in between the two T operators. In the one-loop approximation, in

the φ3 theory here, the intermediate states which can contribute to
∑

n are two-particle

states, so that
∑

n will turn into
∫

d̄~k1

2ωk1

d̄~k2

2ωk2
, the two-particle density of states.

A bit more explicitly, introducing a basis of scattering states

〈f | T |i〉 = Tfi = /δ
4
(pf − pi)Mfi, T †fi = /δ

4
(pf − pi)M?

if , (recall that /δ
d ≡ (2π)dδd)

we have

〈F | T †1T |I〉 =
∑
n

〈F | T †
∑
n

n∏
f=1

∫
d̄3qf
2Ef
|{qf}〉 〈{qf}| T |I〉

=
∑
n

n∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf )M?
{qf}F

/δ
4
(pI −

∑
f

qf )M{qf}I

Now notice that we have a /δ
4
(pF − pI) on both sides, and

n∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf ) =

∫
dΠn

is the final-state phase space of the n particles. Therefore, the optical theorem says

i (M?
IF −MFI) =

∑
n

∫
dΠnM?

{qf}FM{qf}I .

Now consider forward scattering, I = F (notice that here it is crucial that M is the

transition matrix, S = 1 + iT = 1 + i/δ(pT )M):

2ImMII =
∑
n

∫
dΠn|M{qf}I |

2.

For the special case of 2-particle scattering, we can relate the RHS to the total cross

section for 2→ anything:

ImM(k1, k2 ← k1, k2) = 2Ecmpcmσ(anything← k1, k2).
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Recall that for real x the imaginary part of a function of one variable with a branch

cut, (like Im(x+ iε)ν = 1
2

((x+ iε)ν − (x− iε)ν)) is equal to (half) the discontinuity of

the function ((x)ν) across the branch cut.

In more complicated examples (such as a box diagram contributing to 2-2 scatter-

ing), there can be more than one way to cut the diagram. Different ways of cutting

the diagram correspond to discontinuities in different kinematical variables. To get the

whole imaginary part, we have to add these up. A physical cut is a way of separating

all initial-state particles from all final-state particles by cutting only internal lines. So

for example, a t-channel tree-level diagram (like ) never has any imaginary

part; this makes sense because the momentum of the exchanged particle is spacelike.

Resonances. A place where this technology is useful is when we want to study

short-lived particles. In our formula for transition rates and cross sections we as-

sumed plane waves for our external states. Some particles don’t live long enough for

separately producing them: and then watching them decay: ;

instead we must find them as resonances in scattering amplitudes of other particles:

Im

( )
.

So, consider the case iM = 〈F | iT |I〉 where both I and F are one-particle states.

A special case of the LSZ formula says

M = −
(√

Z
)2

Σ = −ZΣ (5.10)

where −iΣ is the amputated 1-1 amplitude, that is, the self-energy, sum of all connected

and amputated diagrams with one particle in and one particle out. Let Σ(p) = A(p2)+

iB(p2) (not standard notation), so that near the pole in question, the propagator looks

like

G̃(2)(p) =
i

p2 −m2
0 − Σ(p)

' i

(p2 −m2) (1− ∂p2A|m2)︸ ︷︷ ︸
=Z−1

−iB
=

iZ

(p2 −m2)− iBZ
.

(5.11)

In terms of the particle width Γw ≡ −ZB(m2)/m, this is

G̃(2)(p) =
iZ

(p2 −m2) + imΓw
.
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So, if we can make the particle whose propagator we’re dis-

cussing in the s-channel, the cross-section will be propor-

tional to∣∣∣G̃(2)(p)
∣∣∣2 =

∣∣∣∣ iZ

(p2 −m2)− imΓw

∣∣∣∣2 =
Z2

(p2 −m2)2 +m2Γ2
w

a Lorentzian or Breit-Wigner distribution: In the COM

frame, p2 = 4E2, and the cross section σ(E) has a reso-

nance peak at 2E = m, with width Γw. It is the width

in the sense that the function is half its maximum when

E = E± =
√

m(m±Γw)
4

' m
2
± Γ

4
.

This width is the same as the decay rate, because of the optical theorem:

Γw = −BZ
m

(5.10)
= − 1

m
(−ImM1→1)

optical
=

1

m

1

2

∑
n

∫
f

dΠn|M{qf}1|
2 = Γ

the last equation of which is exactly our formula for the decay rate. If it is not the

case that Γ� m, i.e. if the resonance is too broad, the Taylor expansion of the inverse

propagator we did in (5.11) may not be such a good idea.

Unitarity and high-energy physics. Two comments: (1) there had better not

be any cutoff dependence in the imaginary part. If there is, we’ll have trouble cancelling

it by adding counterterms – an imaginary part of the action will destroy unitarity. This

is elaborated a bit in Zee’s discussion.

(2) Being bounded by 1, probabilities can’t get too big. Cross sections are also

bounded: there exist precise bounds from unitarity on the growth of cross sections

with energy, such as the Froissart bound, σtotal(s) ≤ C ln2 s for a constant C. Xi Yin’s

notes describe a proof.

On the other hand, consider an interaction whose coupling G has mass dimension

k. The cross section to which G contributes has dimensions of area, and comes from

squaring an amplitude proportional to G, so comes with at least two powers of G. At

E � anything else, these dimensions must be made up with powers of E:

σ(E � ...) ∼ G2E−2−2k. (5.12)

This means that if k ≤ −1, the cross section grows at high energy. In such a case,

something else must happen to ‘restore unitarity’. One example is Fermi’s theory of

Weak interactions, which involves a 4-fermion coupling GF ∼ M−2
W . Here we know

what happens, namely the electroweak theory, about which more soon. In gravity,

GN ∼M−2
Pl , we can’t say yet.
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5.3 How to study hadrons with perturbative QCD

[Peskin §18.4] Here is a powerful physics application of both the optical theorem and the

spectral representation. Consider the total inclusive cross section for e+e− scattering

at energies s = (k + k+)2 � m2
e:

σanything←e+e− optical thm
=

1

2s
ImM(e+e− ← e+e−) (5.13)

where on the RHS,M is the forward scattering amplitude (meaning that the initial and

final electrons have the same momenta). We’ve learned a bit about the contributions

of electrons and muons to the BHS of this expression, what about QCD? To leading

order in α (small), but to all orders in the strong coupling αs (big at low energies), the

contributions of QCD look like

iMh = = (−ie)2ū(k)γµv(k+)
−i

s
iΠµν

h (q)
−i

s
v̄(k+)γνu(k)

with

= iΠµν
h (q)

Ward
= i(q2ηµν − qµqν)Πh(q

2)

the hadronic contribution to the vacuum polarization. We can pick out the contribution

of the strong interactions by just keeping these bits on the BHS of (5.13):

σhadrons←e+e− =
1

4

∑
spins

ImMh

2s
= −4πα

s
ImΠh(s). (5.14)

(The initial and final spins are equal and we average over initial spins. We can ignore the

longitudinal term qµqν by the Ward identity. The spinor trace is
∑

spins ū(k)γµv(k+)v̄(k+)γµu(k) =

−2k · k+ = −s.) As a reality check, consider the contribution from one loop of a heavy

lepton of mass M2 � m2
e:

ImΠL(s+ iε) = −α
3
F (M2/s)

and

σL
+L−←e+e− =

4π

3

α2

s
F (M2/s)

with

F (M2/s) =

0, s < (2M)2√
1− 4M2

s

(
1 + 2M2

s

)
= 1 +O (M2/s) , s > (2M)2

.
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In perturbative QCD, the leading order result is the

same from each quark with small enough mass:

σquarks←e+e−
0 = 3︸︷︷︸

colors

∑
flavors, f

Q2
f

4π

3

α2

s
F (m2

f/s).

This actually does remarkably well as a crude ap-

proximation to the measured σ(hadrons ← e+e−) –

see Fig. 5.3 of Peskin, at right. (This figure does

not appear in the paper Peskin cites, I’m not sure

of the correct provenance. The key point is that

the ratio of the hadronic cross section to that for

muons in the final state jumps at E = 2mf for each

new quark flavor (you can see mc ∼ 1.3 GeV and

mb ∼ 4.5 GeV in the figure). See Peskin pp 139-141

for more.
[End of Lecture 16]

But Q: why is a perturbative analysis of QCD relevant here? You might think

asymptotic freedom means QCD perturbation theory is good at high energy or short

distances, and that seems to be borne out by noticing that Πh is a two-point function

of the quark contributions to the EM current:

iΠµν
h (q) = −e2

∫
d4x e−iq·x 〈Ω| T Jµ(x)Jν(0) |Ω〉 , Jµ(x) ≡

∑
f

Qf q̄f (x)γµqf (x).

(Here, the quark fields qf are Dirac spinors, with Lagrangian Lq =
∑

f q̄f
(
i /D −mf

)
qf , Dµ =

∂µ − iQfAµ + ..., where the ... is the coupling to the gluon field which we’ll discuss

next chapter. They have a color index which runs from 1 to 3 which I’ve suppressed.)

Maybe it looks like we are taking x → 0 and therefore studying short distances. But

if we are interested in large timelike qµ here, that means that dominant contributions

to the x integral are when the two points are timelike separated, and in the resolution

of the identity in between the two Js includes physical states of QCD with lots of real

hadrons. In contrast, the limit where we can do (maybe later we will learn how) per-

turbative QCD is when q2 = −Q2
0 < 0 is spacelike. (Preview: We can use the operator

product expansion of the two currents.)

How can we use this knowledge to find the answer in the physical regime of q2 > 0?

The fact that Πh is a two-point function means that it has a spectral representation.

It is analytic in the complex q2 plane except for a branch cut on the positive real axis

coming from production of real intermediate states, exactly where we want to know the
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answer. One way to encode the information we know is to package it into moments:

In ≡ −4πα

∮
CQ0

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

n!
(∂q2)n Πh|q2=−Q2

0
.

The idea here is that the RHS can be computed by perturbative QCD. On the other

hand, we know from the (appropriate generalization to currents of the) spectral repre-

sentation sum rule (5.6) that Πh(q
2)
|q|�...
<∼ log(q2), so for n ≥ 1, the contour at infinity

can be ignored.

Therefore

In = −4πα

∮
Pacman

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

∫
dq2

4πi

DiscΠh

(q2 +Q2
0)n+1

(5.14)
=

1

π

∫ ∞
sthreshhold

ds
s

(s+Q2
0)n+1

σhadrons←e+e−(s).

On the RHS is (moments of) the measurable (indeed, measured) cross-section, and on

the LHS is things we can calculate (later). If the convergence of these integrals were

uniform in n, we could invert this relation and directly try to predict the cross sec-

tion to hadrons. But it is not, and the correct cross section varies about the leading

QCD answer more and more at lower energies, culminating at various Breit-Wigner

resonance peaks at q̄q boundstates.
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6 Gauge theory

6.1 Massive vector fields as gauge fields

Consider a massive vector field Bµ with Lagrangian density

LB = − 1

4e2
(dB)µν(dB)µν+

1

2
m2BµB

µ

where (dB)µν ≡ ∂µBν − ∂νBµ. (Note the funny-looking sign of the mass term which

comes from BµBµ = B2
0 − B2

i .) The mass term is not invariant under Bµ → Bµ +

∂µλ, the would-be gauge transformation. We can understand the connection between

massive vector fields and gauge theory by the ‘Stueckelberg trick’ of pretending that

the gauge parameter is a field: Let Bµ ≡ Aµ− ∂µθ where θ is a new degree of freedom.

Since B is invariant under the transformation

Aµ(x)→ Aµ(x) + ∂µλ(x), θ(x)→ θ(x) + λ(x),

so is any functional of B. Notice that the fake new field θ transforms non-linearly

(i.e. its transformation is affine). This was just a book-keeping step, but something

nice happens:

(dB)µν = ∂µAν − ∂νAµ = Fµν

is the field strength of A. The mass term becomes

BµB
µ = (Aµ − ∂µθ)(Aµ − ∂µθ).

This contains a kinetic term for θ. We can think of this term as (energetically) setting

θ equal to the longitudinal bit of the gauge field. One nice thing about this reshuffling

is that the m → 0 limit decouples the longitudinal bits. Furthermore, if we couple a

conserved current (∂µjµ = 0) to B, then∫
dDx jµB

µ =

∫
dDxjµA

µ

it is the same as coupling to Aµ.

Who is θ? Our previous point of view was that it is fake and we can just choose the

gauge parameter λ(x) to get rid of it, and set θ(x) = 0. This is called unitary gauge,

and gives us back the Proca theory of B = A. Alternatively, consider the following

slightly bigger (more dofs) theory:

Lh ≡ −
1

4e2
FµνF

µν +
1

2
|DµΦ|2 − V (|Φ|)
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where Φ is a complex, charged scalar field whose covariant derivative is DµΦ =

(∂µ − iAµ) Φ, and let’s take

V (|Φ|) = κ(|Φ|2 − v2)2

for some couplings κ, v. This is called an Abelian Higgs

model. This potential has a U(1) symmetry Φ → eiαΦ,

and a circle of minima at |Φ|2 = v2 (if v2 > 0, which

we’ll assume).

In polar coordinates in field space, Φ ≡ ρeiθ, the Lagrangian is

Lh = − 1

4e2
FµνF

µν +
1

2
ρ2(Aµ − ∂µθ)2 + (∂ρ)2 − V (ρ).

This differs from the action for B written in terms of A, θ only in the addition of the

Higgs mode ρ. Again we can go to unitary gauge and set θ = 0. We find a massive

gauge field A, plus a massive scalar ρ whose mass (expanding V (ρ) about ρ = v) is

∂2
ρV |ρ=v = m2

ρ = 8κv2 κ�1
� m2

A = 〈ρ〉2 = v2.

That is: in the limit of large κ, the excitations of ρ are hard to make, and we get back

LB. For any value of κ, we can say that the gauge field eats the would-be Goldstone

boson θ and becomes heavy, in a manner consistent with gauge invariance50. This is

the Anderson-Higgs mechanism.

The description of massive gauge fields in terms of Lh via the Anderson-Higgs

mechanism is more useful than LB for thinking about the renormalization of massive

gauge fields: for example it is renormalizible, even if we couple A to other charged

fields (e.g. Dirac fermions). This mechanism also works in the case of non-Abelian

gauge fields and is an important ingredient in the (electroweak sector of the) Standard

Model.

It is also a description of what happens to the EM field in a superconductor: the

photon gets a mass; the resulting expulsion of magnetic flux is called the Meissner

effect. For example, if we immerse a region x > 0 with Φ = v in an external constant

magnetic field B0, 0 = ∂µF
µν−m2Aν =⇒ B(x) = Be−mx. Another consequence of the

mass is that if we do manage to sneak some magnetic flux into a superconductor, the

flux lines will bunch up into a localized string, as you’ll show on the homework. This

is called a vortex (or vortex string in 3d) because of what Φ does in this configuration:

its phase winds around the defect. In a superconductor, the role of Φ is played by

50You can check that the mixing with θ is exactly what’s required to make Π(q) singular enough at

q = 0 to give A a mass consistent with the Ward identity, as in our discussion at (4.39).
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the Cooper pair field (which has electric charge two). On the homework, you’ll see a

consequence of the charge of Φ for the flux quantization of vortices. I hope to say more

about its origins in terms of electrons later in §9.8.1.

I mention here the Meissner effect and the resulting collimation of flux lines partly

because it will be helpful for developing a picture of confinement. In particular: think

about the energetics of a magnetic monopole (suppose we had one available51) in a

superconductor. If we try to insert it into a superconductor, it will trail behind it a

vortex string along which all of its exiting magnetic flux is localized. This string has

a finite tension (energy per unit length), as you’ll study on the homework. If we make

the superconducting region larger and larger, the energy of the monopole configuration

grows linearly in the size – it is not a finite energy object in the thermodynamic limit.

If monopoles were dynamical excitations of rest mass Mm, it would eventually become

energetically favorable to pop an antimonopole out of the vacuum, so that the flux

string connects the monopole to the antimonopole – this object can have finite energy

inside the superconductor.

6.2 Festival of gauge invariance

Consider a collection of N complex scalar fields (we could just as well consider spinors)

with, for definiteness, an action of the form

L =
N∑
α=1

∂µΦ?
α∂

µΦα − V (Φ?
αΦα) (6.1)

(or L = Ψ̄α∂µΨα). The model actually has an O(2N) symmetry except that for

kicks I grouped the scalars into pairs, and made the potential out of the combina-

tion
∑N

α=1 Φ?
αΦα.

Lighting review of Lie groups and Lie algebras. (6.1) is invariant under the

U(N) transformation

Φα 7→ ΛαβΦβ, Λ†Λ = 1. (6.2)

Any such U(N) matrix Λ can be parametrized as

Λ = Λ(λ) = ei
∑N2−1
A=1 λATAeiλ0

.

λ0 parametrizes a U(1) factor which commutes with everyone; we already know some-

thing about U(1) gauge theory from QED, so we won’t focus on that. We’ll focus on the

non-abelian part: the TA are the generators of SU(N), and are traceless, so SU(N) 3
51 Here is the paper about the only one that’s been detected by humans so far.
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Λ(λ0 = 0) has det Λ(λ0 = 0) = 1. Here the index A = 1 : N2 − 1 = dim(SU(N)); the

matrices TA (and hence also Λ) are N ×N , and satisfy the Lie algebra relations

[TA, TB] = ifABCT
C (6.3)

where fABC are the structure constants of the algebra. For the case of SU(2), TA =
1
2
σA, A = 1, 2, 3, and fABC = εABC . The infinitesimal version of (6.2), with Λ close to

the identity, is

Φα 7→ Φα + iλATAαβΦβ. (6.4)

The N×N representation is called the fundamental representation of SU(N). Other

representations of the group come from other sets of TAR s which satisfy the same algebra

(6.3), but can have other dimensions. For example, the structure constants themselves(
TBadj

)
AC
≡ −ifABC furnish the representation matrices for the adjoint representation.

Local invariance. The transformation above was global in the sense that the

parameter λ was independent of spacetime. This is an actual symmetry of the physical

system associated with (6.1). Let’s consider how we might change the model in (6.1)

to make it invariant under a local transformation, with λ = λ(x). In the Abelian case,

we have learned the recipe

Φ 7→ eiλ(x)Φ(x), Aµ 7→ Aµ + ∂µλ, ∂µΦ DµΦ = (∂µ − iAµ)Φ 7→ eiλ(x)DµΦ.

In words: by replacing partial derivatives with covariant derivatives, we can make

gauge-invariant Lagrangians. The same thing works in the non-abelian case:

(DµΦ)α ≡ ∂µΦα − iAAµT
A
αβΦβ

Φ 7→ Φ + iλA(x)TAΦ, AAµ 7→ AAµ + ∂µλ
A − fABCλBACµ (x). (6.5)

The difference is that there is a term depending on A in the shift of the gauge field A.

The following Yang-Mills Lagrangian density is a natural generalization of Maxwell:

LYM = − 1

4g2

∑
A

∂µAAν − ∂νAAµ + fABCA
B
µA

C
ν︸ ︷︷ ︸

=FAµν=−FAνµ


2

= − 1

4g2
trFµνF

µν . (6.6)

The field strength

FA
µν 7→ FA

µν + fABCλ
BFC

µν = FA
µν + iλB

(
TBadj

)
AC

FC
µν (6.7)

is designed so that it transforms in the adjoint representation, and therefore SYM is

gauge-invariant. (Regarding F as an N × N matrix F = FATA, the finite version of

(6.7) is F 7→ ΛFΛ−1 (compare (6.4)), which makes it manifest that trF 2 is invariant.)
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6.3 Interlude on differential forms (and algebraic topology)

[Zee section IV.4] We interrupt this physics discussion with a message from our math-

ematical underpinnings. This is nothing fancy, mostly just some book-keeping. It’s

some notation that we’ll find useful, which I would find it rather inhibiting not to be

able to use in the next section. As a small payoff we can define some simple topological

invariants of smooth manifolds.

Suppose we are given a smooth manifold X on which we can do calculus. For now,

we don’t even need a metric on X. Suppose xµ are some local coordinates on X.

A p-form on X is a completely antisymmetric p-index tensor,

A ≡ 1

p!
Am1...mpdx

m1 ∧ ... ∧ dxmp .

The coordinate one-forms are fermionic objects in the sense that dxm1∧dxm2 = −dxm2∧
dxm1 and (dx)2 = 0. The point in life of a p-form is that it can be integrated over

a p-dimensional space. The order of its indices keeps track of the orientation (and it

saves us the trouble of writing them). It is a geometric object, in the sense that it is

something that can be (wants to be) integrated over a p-dimensional subspace of X,

and its integral will only depend on the subspace, not on the coordinates we use to

describe it.

Familiar examples include the gauge potential A = Aµdxµ, and its field strength

F = 1
2
Fµνdx

µ ∧ dxν . Given a curve C in X parameterized as xµ(s), we have∫
C

A ≡
∫
C

dxµAµ(x) =

∫
ds
dxµ

ds
Aµ(x(s))

and this would be the same if we chose some other parameterization or some other

local coordinates.

The wedge product of a p-form A and a q-form B is a p+ q form

A ∧B = Am1..mpBmp+1...mp+qdx
m1 ∧ ... ∧ dxmp+q ,

52 The space of p-forms on a manifold X is sometimes denoted Ωp(X), especially when

it is to be regarded as a vector space (let’s say over R).

52The components of A ∧B are then

(A ∧B)m1...mp+q =
(p+ q)!

p!q!
A[m1...mp

Bmp+1...mp+q ]

where [..] means sum over permutations with a −1 for odd permutations. Try not to get caught up in

the numerical prefactors. In my expression below for the exterior derivative also there is an annoying

combinatorial prefactor.
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The exterior derivative d acts on forms as

d : Ωp(X) → Ωp+1(X)

A 7→ dA

by

dA =
1

p!
∂m1 (A)m2...mp+1

dxm1 ∧ ... ∧ dxmp+1 .

You can check that

d2 = 0

basically because derivatives commute. Notice that F = dA in the example above.

Denoting the boundary of a region D by ∂D, Stokes’ theorem is∫
D

dα =

∫
∂D

α.

[End of Lecture 17]

And notice that Ωp>dim(X)(X) = 0 – there are no forms of rank larger than the

dimension of the space.

A form ωp is closed if it is killed by d: dωp = 0. ωp closed means that
∫
Cp
ωp depends

only on the topology of Cp, in the sense that∫
Cp

ωp −
∫
C′p

ωp =

∫
Cp−C′p

ωp =

∫
∂Rp+1

ωp
Stokes

=

∫
Rp+1

dωp = 0.

A form ωp is exact if it is d of something: ωp = dαp−1. That something must

be a (p − 1)-form. ωp is exact means it is a total derivative, a boundary term, so∫
Cp
ωp

Stokes
=

∫
∂Cp

αp−1 vanishes if Cp doesn’t have a boundary.

Because of the property d2 = 0, it is possible to define cohomology – the image of

one d : Ωp → Ωp+1 is in the kernel of the next d : Ωp+1 → Ωp+2 (i.e. the Ωps form a

chain complex). The pth de Rham cohomology group of the space X is defined to be

Hp(X) ≡ closed p-forms on X

exact p-forms on X
=

ker (d) ∈ Ωp

Im (d) ∈ Ωp
.

That is, two closed p-forms are equivalent in cohomology if they differ by an exact

form:

[ωp]− [ωp + dαp−1] = 0 ∈ Hp(X),

where [ωp] denotes the equivalence class. The dimension of this group is bp ≡ dimHp(X)

called the pth betti number and is a topological invariant of X. The euler characteristic
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of X, which you can also get by triangulating X and counting edges and faces and stuff,

is

χ(X) =

d=dim(X)∑
p=0

(−1)pbp(X).

Here’s a very simple example, where X = S1 is a circle. x ' x+ 2π is a coordinate;

the radius will not matter since it can be varied continuously. An element of Ω0(S1) is

a smooth periodic function of x. An element of Ω1(S1) is of the form A1(x)dx where

A1 is a smooth periodic function. Every such element is closed because there are no

2-forms on a 1d space. The exterior derivative on a 0-form is

dA0(x) = A′0dx

Which 1-forms can we make this way? The only one we can’t make is dx itself, because

x is not a periodic function. Which 0-forms are closed? A′0 = 0 means A0 is a constant.

Therefore b0(S1) = b1(S1) = 1.

Now suppose we have a volume element on X, i.e. a way of integrating d-forms.

This is guaranteed if we have a metric, since then we can integrate
∫ √

det g..., but is

less structure. Given a volume form, we can define the Hodge star operation ? which

maps a p-form into a (d− p)-form:

? : Ωp → Ωd−p

by (
?A(p)

)
µ1...µd−p

≡ εµ1...µdA
(p) µd−p+1...µd

An application: consider the Maxwell action, 1
4
FµνF

µν . You can show that this is

the same as S[A] =
∫
F ∧ ?F . (Don’t trust my numerical prefactor.) You can derive

the Maxwell EOM by 0 = δS
δA

.
∫
F ∧F is the θ term; notice that it doesn’t involve the

metric at all. The magnetic dual field strength is F̃ = ?F . Many generalizations of

duality can be written naturally using the Hodge ? operation.

As you can see from the Maxwell example, the Hodge star gives an inner product

on Ωp: for two p-forms α, β (α, β) =
∫
α ∧ ?β, (α, α) ≥ 0. We can define the adjoint

of d with respect to this inner product by∫
d†α ∧ ?β = (d†α, β) ≡ (α, dβ) =

∫
α ∧ ?dβ
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Combining this relation with integration by parts, we find d† = ± ? d?.

We can make a Laplacian on forms by

∆ = dd† + d†d.

This is a supersymmetry algebra, in the sense that d, d† are grassmann operators.

Any cohomology class [ω] has a harmonic representative, [ω] = [ω̃] where in addition

to being closed dω = dω̃ = 0, it is co-closed, 0 = d†ω̃, and hence harmonic ∆ω̃ = 0.

An application of this is Poincare duality: bp(X) = bd−p(X) if X has a volume form.

This follows because the map Hp → Hd−p which takes [ωp] 7→ [?ωp] is an isomorphism.

(Choose the harmonic representative, it has d ? ω̃p = 0.)

The de Rham complex of X can be realized as the groundstates of a physical system,

namely the supersymmetric nonlinear sigma model with target space X. The fermions

play the role of the dxµs. The states are of the form

|A〉 =
d∑
p=1

Aµ1···µp(x)ψµ1ψµ2 · · ·ψµp |0〉

where ψ are some fermion creation operators. This shows that the hilbert space is the

space of forms on X, that is H ' Ω(X) = ⊕pΩp(X). The supercharges act like d and

d† and therefore the supersymmetric groundstates are (harmonic representatives of)

cohomology classes.

The machinery of differential forms is very useful.

6.4 Gauge fields as connections

The formulae in §6.2 are not too hard to verify, but where did they come from? Suppose

we wanted to attach an N -dimensional complex vector space to each point in spacetime;

on each vector space we have an action of SU(N), by Φα(x) 7→ Λαβ(x)Φ(x). Suppose

we would like to do physics in a way which is independent of the choice of basis for this

space, at each point. We would like to be able to compare Φ(x) and Φ(y) (for example

to make kinetic energy terms) in a way which respects these independent rotations. To

do this, we need more structure: we need a connection (or comparator) Wxy, an object

which transforms like Wxy 7→ Λ(x)WxyΛ
−1(y), so that Φ†(x)WxyΦ(y) is invariant. The

connection between two points Wxy may depend on how we get from x to y. We

demand that W (∅) = 1, W (C2 ◦ C1) = W (C2)W (C1) and W (−C) = W−1(C), where

−C is the path C taken in the opposite direction.
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But if we have a Wxy for any two points, you can’t stop me from considering nearby

points and defining

DµΦ(x) ≡ lim
∆x→0

W (x, x+ ∆x)Φ(x+ ∆x)− Φ(x)

∆xµ
7→ Λ(x)DµΦ(x) . (6.8)

Expanding near ∆x→ 0, we can let

W (x, x+ ∆x) = 1 − ie∆xµAµ(x) +O(∆x2) (6.9)

this defines the gauge field Aµ (sometimes also called the connection). To make the

gauge transformation of the non-abelian connection field A 7→ AΛ obvious, just re-

member that the covariant derivative of a field is designed to transform like the field:

DµΦ 7→ DAΛ

µ (ΛΦ)
!

= Λ
(
DA
µΦ
)

which means AΛ
µ = ΛAµΛ−1− (∂µΛ) Λ−1. (This formula

also works in the abelian case Λ = eiλ, and knows about the global structure of the

group λ ' λ+ 2π.)

The equation (6.9) can be integrated: Wxy
?
= e

−ie
∫
Cxy

Aµ(x̃)dx̃µ
where Cxy is a path in

spacetime from x to y. What if G is not abelian? Then I need to tell you the ordering

in the exponent. We know from Dyson’s equation that the solution is

Wxy = Pe−ie
∫
Cxy

Aµ(x̃)dx̃µ

where P indicates path-ordering along the path Cxy, just like the time-ordered expo-

nential we encountered in interaction-picture perturbation theory.

To what extent does Wxy depend on the path? In the abelian

case,

WC = WC′e
ie
∮
C−C′ A

Stokes
= WC′e

ie
∫
R Fµνdx

µdxν

where ∂R = C −C ′ is a 2d surface whose boundary is the differ-

ence of paths.
53

Imagine inserting an infinitesimal rectangle to the path which

moves by dxµ then by dxν and then back and back. The difference

in the action on Φ is

dxµdxν [Dµ, Dν ]Φ = −iedxµdxνFµνΦ.

The commutator of covariant derivatives is not an operator, but a function [Dµ, Dν ] =

53Which 2d surface? Let me speak about the abelian case for the rest of this footnote. The difference

in phase between two possible choices is eie
∫
R−R′ F

Stokes
= eie

∫
V
dF where ∂V = R−R′ is the 3-volume

whose boundary is the difference of the two regions. The integrand vanishes by the Bianchi identity,

which is actually an identity if F = dA and A is smooth. You might think this prevents magnetic

sources, which appear on the RHS of the Maxwell equation dF = ?jm. But actually
∫
V
dF only

appears in the combination eie
∫
V
dF , so magnetic sources are perfectly consistent with independence

of the choice of R, as long as their charge q ≡
∫
V
dF =

∮
∂V

F is quantized ge ∈ 2πZ. This is Dirac

quantization.
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−ieFµν . (Note that this same maneuver defines the Riemann tensor in terms of deriva-

tives covariant with respect to coordinate changes.) This same relation holds in the

non-abelian case:

Fµν =
i

e
[Dµ, Dν ] = ∂µAν − ∂νAµ − ie[Aµ, Aν ].

This object is Lie-algebra-valued, so can be expanded in a basis: Fµν = FA
µνT

A, so

more explicitly,

FA
µν = ∂µA

A
ν − ∂νAAµ − iefABCA

B
µA

C
ν .

Since it is made from products of covariant derivatives, [D,D]Φ 7→ Λ[D,D]Φ, it must

transform in the adjoint representation, F 7→ ΛFΛ−1, which in infinitesimal form

returns us to (6.7)

FA
µν 7→ FA

µν − fABCλBFC
µν .

6.5 Actions for gauge fields

The Yang-Mills (YM) action (6.6) is a gauge invariant and Lorentz invariant local

functional of A. If the gauge field is to appear in D = ∂ + A it must have the same

dimension as ∂, so LYM has naive scaling dimension 4, like the Maxwell term, so it

is marginal in D = 4. Notice that unlike the Maxwell term, LYM is not quadratic in

A: it contains cubic and quartic terms in A, whose form is determined by the gauge

algebra fABC . Non-abelian gauge fields interact with themselves in a very definite way.

In even spacetime dimensions, another gauge invariant, Lorentz invariant local func-

tional of A is the total-derivative term Sθ = θ
∫

tr F
2π
∧ ... ∧ F

2π
with D/2 factors of

F . Because it is exact, this doesn’t affect the equations of motion or perturbation

theory (e.g. in D = 4, in the abelian case, F ∧ F = d(A ∧ F ), or in components,

εµνρσFµνFρσ = 2∂µ (εµνρσAνFρσ)) but it does matter non-perturbatively. We’ll see

(when we study anomalies) that for smooth gauge field configurations in a closed space-

time, this functional is an integer. This coupling θ violates CP symmetry (notice that

F ∧ F has one time derivative and three spatial derivatives). In QCD, this coupling

of the gluons is constrained to be very small because it would give an electric dipole

moment to the neutron, which the neutron doesn’t seem to have; this mystery is called

the strong CP problem.

In odd spacetime dimensions, we should consider the Chern-Simons term (the

D = 2 + 1 version of which we just encountered) which in the abelian case looks like

SCS[A]
abelian

=
∫
A∧ F

2π
∧ ...∧ F

2π
with (D− 1)/2 factors of F . (In the non-Abelian case,

there is an extra term: in 3d, SCS[A] ∝
∫

tr
(
A ∧ F + 2

3
A ∧ A ∧ A

)
.) This term does

affect the equations of motion. It breaks parity symmetry. Notice that in D = 2 + 1

152



it is more relevant than the Maxwell or Yang-Mills term. It is important in quantum

Hall physics in D = 2 + 1, where it gives the gauge field fluctuations a mass.

In general dimension, we can make more couplings out of just A if we take more

derivatives, but they will have higher dimension.

We can couple YM gauge fields to matter by returning to our starting point: e.g. if

ψ(x) 7→ ΛRψ(x) is a Dirac field transforming in some representation R of the gauge

group, then Dµψ =
(
∂µ − iTARA

A
µ

)
ψ also transforms in representation R, so

ψ̄γµDµψ + V (ψ̄ψ)

is a gauge-invariant lagrangian density. The lowest-dimension couplings of A to matter

are determined by the representation matrices TAR , which generalize the electric charge.

You might expect that we would starting doing perturbation theory in g now. There

is lots of physics there, but it takes a little while to get there. Given how limited our

time is this quarter, we will instead think about how we might define the thing non-

perturbatively and see what we learn from that. [End of Lecture 18]

6.6 Fermion path integrals

We’ll need these for our discussion of anomalies, and they are extremely useful for

doing perturbative gauge theory for QCD (which differs from Yang-Mills theory by the

addition of fermionic quarks), and even for pure Yang-Mills theory.

[e.g. Schwartz §14.6] Canonical fermion operators satisfy anticommutation relations

like {ψ(x), ψ̄(y)} = i~δd(x − y). If we consider ~ → 0, the fermi fields are a bunch

of objects which anticommute and square to zero. Such things are called Grassmann

numbers

θiθj = −θjθi , i = 1..n

and the set of objects we get by multiplying and adding them (with coefficients in

C) is a Grassmann algebra. For n = 1, the most general element of the algebra is

g(θ) = a+ bθ. For n = 2, it is

g(θ1, θ2) = a+ bθ1 + cθ2 + dθ1θ2. (6.10)

A Grassmann algebra has an even part (made of products of even numbers of thetas,

which therefore commute) and an odd part. I’ve named the object in (6.10) g(θ1, θ2) as

if it is a function of the Grassmann variables. This doesn’t really mean anything, but if

we go along with it, then (6.10) is actually Taylor’s theorem for Grassmann variables.
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It’s very simple, there are only two terms in the expansion for each variable, 2n terms

altogether. A realization of Grassmann algebra that we’ve already seen is differential

forms.

Integration is just as easy and in fact is the same as taking derivatives:∫
ψdψ = 1,

∫
1dψ = 0.

With more than one grassmann we have to worry about the order:

1 =

∫
ψ̄ψdψdψ̄ = −

∫
ψ̄ψdψ̄dψ.

So ∫
dψ1 · · · dψnX = ∂ψ1 · · · ∂ψnX.

Notice that there are no limits of integration. All Grassmann integrals are like the

analog of ∫ ∞
−∞

dxf(x) =

∫ ∞
−∞

dxf(x+ a), if ∂xa = 0.

In fact the analogous condition is true:∫
(A+Bθ)dθ =

∫
dθ(A+B(θ + α)) if ∂xα = 0.

The only integral, really, is the gaussian integral:∫
e−aψ̄ψ︸ ︷︷ ︸

=1−aψ̄ψ

dψ̄dψ = a.

Many of these give∫
e−ψ̄iAij ·ψj

M∏
i=1

dψ̄i

M∏
i=1

dψi =

∫ M∏
i=1

dψ̄i

M∏
i=1

dψi

(
1− ψ̄Aψ +

1

2
ψ̄Aψψ̄Aψ + · · ·

)
(6.11)

=
1

n!

∑
perms,σ

(−1)σA1σ1A2σ2 · · ·AMσM (6.12)

= detA. (6.13)

Here ψ̄ ·A ·ψ ≡
(
ψ̄1, · · · , ψ̄M

)
A11 A12 · · ·
A21

. . . · · ·
...

...
. . .


 ψ1

...

ψM

. Another way to get this expres-

sion is to change variables to diagonalize the matrix A. Notice that∫
e−ψ̄·A·ψdψ̄dψ = detA = e+tr logA
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involves a sign in the exponent relative to the bosonic answer∫
e−φ

?·A·φdφ?dφ =
1

detA
= e−tr logA.

This is the same sign as the minus sign associated to fermion loops.

Correlation functions look like:〈
ψ̄ψ
〉
≡
∫
ψ̄ψe−aψ̄ψdψ̄dψ∫
e−aψ̄ψdψ̄dψ

= −1

a
= −

〈
ψψ̄
〉
.

If for many grassman variables we use the action S =
∑

i aiψ̄iψi (diagonalize A

above) then 〈
ψ̄iψj

〉
=
δij
ai
≡ 〈̄ij〉 (6.14)

or, in a general basis, 〈
ψ̄iψj

〉
= A−1

ij .

Wick’s theorem here is 〈
ψ̄iψ̄jψkψl

〉
= 〈̄il〉 〈j̄k〉 − 〈̄ik〉 〈j̄l〉 .

With sources, the general gaussian integral is∫
e−ψ̄iAij ·ψj+η̄iψi+ψ̄iηi

M∏
i=1

dψ̄i

M∏
i=1

dψi = eη̄A
−1η

∫ ∏
dψ̄dψe−(θ−ηA−1)A(θ−A−1η) = eη̄A

−1η detA.

Now we can take a continuum limit: ψi  ψ(x), f(θ)  f [ψ]. The partition

function for a free fermion field is

Z[η̄, η] =

∫
[Dψ̄Dψ]ei

∫
dDx(ψ̄(i/∂−m)ψ+η̄ψ+ψ̄η+iεψ̄ψ) (6.15)

= det
(
i/∂ −m

)
ei
∫
dDx

∫
dDyη̄(y)(i/∂−m+iε)

−1
η(x). (6.16)

If we couple ψ minimally to a gauge field, the determinant (which here is an irrelevant

constant) becomes an effective potential for the gauge field.

6.7 Lattice gauge theory

The following beautiful construction was found by Wegner and Wilson and Polyakov;

a good review is this one by Kogut.

Consider discretizing euclidean spacetime into a hypercubic lattice (for simplicity).

On each link xy of the lattice we place a G-valued matrix Uab
xy. We demand that

Uyx = U−1
xy , as we did for the comparator in (6.9). Three good examples to keep in

mind (in decreasing order of difficulty) are:
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1. G = U(N), in which case each U is a complex N ×N matrix with UU † = 1. Here

a, b = 1..N .

2. G = U(1), in which case U is just a phase (a 1×1 matrix) Uxy = eiθxy , θxy ∈ [0, 2π).

3. G = Zn, in which case U = e2πi`/n, ` = 1, · · ·n, is a phase with Un = 1. For

n = 2, this is a classical spin.

Please think of Uxy = Pei
∫ y
x Aµ(r)drµ as the comparator (or Wilson line) along the link

(except that there is no such thing as Aµ(r) at other values of r). As such, we impose

the gauge equivalence relation Uxy 7→ g†xUxygy, where gx ∈ G for each x. We will

accomplish this by two steps: by writing an action S[U ] which has this invariance, and

by integrating over {U} with an invariant measure:

Z =

∫ ∏
`

dU`e
−S[U ].

Here
∫
dU is the G-invariant (Haar) measure on G, which can be defined by the desider-

ata ∫
G

dU = 1,

∫
G

dUf(U) =

∫
G

dUf(V U) =

∫
G

dUf(UV ),∀V ∈ G .

For G = U(1), it is just
∫ 2π

0
d̄ϕ; for G = Zn, it just

∑n
`=1. You can figure out what it is

for SU(2) (locally, it’s the round measure on S3). Notice the following lovely advantage

of these conditions: there is no need to gauge fix anything.

This is a statistical mechanics problem of the thermodynamics of a bunch of classical

rotors (slightly fancy ones in the SU(N) case). The review by Kogut does a great job

of highlighting the fact that this class of problems is susceptible to all the tools of

statistical mechanics.

What action should we use? Here is a good way to make something invariant under

the gauge group: Consider the comparator for a closed path Cxx which starts at x and

ends at x:

W (Cxx) = Pe−i
∫
Cxx

A.

How does this transform? W (Cxx) 7→ g−1
x W (Cxx)gx, but, for non-abelian G, it’s still a

matrix! A gauge-invariant object is

W (C) ≡ trW (Cxx) = trPe−i
∫
Cxx

A

where the gx and g−1
x can eat each other by cylicity of the trace. We can make something

gauge invariant and as local as possible by considering a path C which goes around a

single plaquette of the lattice: C = ∂2. This is Wilson’s action:

S[U ] =
1

2f 2

∑
2

S2, S2 ≡ ReW (∂2) = Retr
∏
`∈∂2

U` = Retr (Ux,x+dxUx+dx,x+dx+dyUx+dx+dy,x+dyUx+dy,x) .
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Now let’s focus on he G = SU(N) case, and take seriously the idea that Ux,x+dx =

e−i
∫ x+dx
x Aµdxµ , where Aµ(x) is an element of the Lie algebra su(N). An application of

the CBH54 formula esAesB = esA+sB+ s2

2
[A,B]+O(s3) shows that for a plaquette oriented

in the µν plane 2µν , with lattice spacing a,

S2µν
CBH
=

1

2f 2
Retr

(
e−ia2Fµν +O(a3)

)
=

1

2f 2
Retr

(
1 − ia2Fµν −

1

2
a4FµνFµν +O(a5)

)
=

1

2f 2

(
tr1 − a4

2
trFµνFµν + ...

)
= LYM(2) + const.

The coupling g is related to f in some way that can be figured out. So it is plausible

that this model has a continuum limit governed by the Yang-Mills action. Realizing

this possibility requires that the model defined by Z have a correlation length much

larger than the lattice spacing, which is a physics question.

Before examining the partition sum, how would we add charged matter? If we

place fundamentals qx 7→ gxqx at each site, we can make gauge invariants of the form

q†xUxyUyzUzwqw, or most simply, we can make a kinetic term for q by

Sq =
1

a#

∑
x,`

q†xUx,x+`qx+` '
∫
dDx q†(x)

(
/D −m

)
q(x) + ...

where Dµ = ∂µ − iAµ is the covariant derivative, and we used its definition (6.8). The

expression I’ve written is for a grassmann, spinor field; for bosonic fields the second-

order terms are the leading terms which aren’t a total derivative. There is some drama

about the number of components of the spinor field one gets. It is not hard to get a

massive Dirac fermion charged under a U(1) gauge field, like in QED. It is impossible

to get a chiral spectrum, like a single Weyl fermion, from a gaussian, local lattice

action; this is called the Nielsen-Ninomiya theorem. You might think ‘oh that’s not a

problem, because in the Standard Model there is the same number of L and R Weyl

fermions,’ but it is still a problem because they carry different representations under

the electroweak gauge group. The word ‘gaussian’ is a real loophole, but not an easy

one.

How do we get physics from the lattice gauge theory path integral Z? We need to

find some gauge-invariant observables (since anything we stick in the integrand that

isn’t gauge-invariant will average to zero). In the pure YM theory, a good one is

our friend the Wilson loop W (C) = tr
(∏

`∈C U`
)
' trPei

∮
C A. What physics does it

encode? Recall what happened when we added an external source to measure the force

54Charlie-Baker-Hotel? Campbell-Baker-Hausdorff.
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mediated by various fields, for example in the Maxwell theory:

lim
T→∞

Z−1

∫
DA eiSMaxwell[A]+i

∫
AµJµ = e−iV (R)T .

Here we took Jµ(x) = ηµ0
(
δd(~x)− δd(~x− (R, 0, 0))

)
for t in an interval of duration T ,

and zero before and after, two charges are held at distance R for a time T . V (R) is the

energy of the resulting configuration of (here, electromagnetic) fields, i.e. the Coulomb

potential. If instead we let the charge and anticharge annihilate at t = 0 and t = T ,

this is a single charge moving along a rectangular loop CR×T in spacetime, with sides

R and T , and the result is just the expectation value of the associated Wilson loop.

Going back to Euclidean spacetime, this is

〈W (CR×T )〉 = Z−1

∫ ∏
dU e

− 1
2f2

∑
2 ReS2W (CR×T )

T�R' e−V (R)T ,

where the LHS is the expectation value of a gauge invariant operator. There can be

some funny business associated with the corners and the spacelike segments, and this

is the reason that we look for the bit of the free energy which is extensive in T . [End

of Lecture 19]

In the case of the Maxwell theory in the continuum, this is a gaussian integral,

which we can do (see the homework), and log
〈
e

i
∮
CR×T

A
〉
' −E(R)T − f(T )R with

E(R) ∼ 1
R

, goes something like the perimeter of the loop C. In the case of a short-

ranged interaction, from a massive gauge field, the perimeter law would be more literally

satisfied.

In contrast, a confining force between the charges would obtain if 〈W (CR×T )〉 T�R'
e−V (R)T with instead

V (R) = σR =⇒ F = −∂V
∂R

= −σ .

This is a distance-independent attractive force between the charges. In this case

log 〈W 〉 ∼ RT goes like the area of the (inside of the) loop, so confinement is as-

sociated with an area law for Wilson loops. A constant force means a linear potential,

so it is as if the charges are connected by a string of constant tension (energy per unit

length) σ.

A small warning about the area law: in general, the existence of an area law may

depend on the representation in which we put the external charges:

W (C,R) = trRPei
∮
C A

ATAR

where TAR are the generators of G in some representation R; this is the phase associated

with a (very heavy and hence non-dynamical) particle in representation R. For some
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choices of R, it might be possible and energetically favorable for the vacuum to pop

out dynamical charges which then screen the force between the two external charges

(by forming singlets with them). G = SU(N) has a center ZN ⊂ SU(N) under which

the adjoint is neutral, so a Wilson loop in a representation carrying ZN charge (such as

the fundamental, in which it acts by ZN phases times the identity) cannot be screened

by pure glue. QCD, which has dynamical fundamentals, is more subtle.

This point, however, motivates the study of the dynamics of lattice gauge theories

to address the present question: Where might such an area law come from? I’ll give

two hints for how to think about it.

Hint 1: Strong coupling expansion. In thinking about an integral of the form∫
DU eβ

∑
2 S2W (C)

it is hard to resist trying to expand the exponential in β.

Unlike the perturbation series we’ve been talking about for months, this series

has a finite radius of convergence. To understand this, it is useful to recognize that

this expansion is structurally identical to the high-temperature expansion of a thermal

partition function. For each configuration C, the function e−βh(C) is analytic in β about

β = 0 (notice that e−
1
T is analytic about T =∞!). The only way to get a singularity at

β = 0 would be if the sum over configurations (in the thermodynamic limit) did it; this

would be a phase transition at T = ∞; that doesn’t happen because the correlation

length inevitably goes to zero at T =∞: every site is so busy being buffeted by thermal

fluctuations that it doesn’t care about the other sites at all.55

In the non-abelian case, we get to do all kinds of fun stuff with characters of the

group. For simplicity, let’s focus on an abelian example, which will have a similar

structure (though different large-β (weak coupling) physics). So take U` = eiθ` ∈ U(1),

in which case

S2µν [U ] = − (1− cos θµν) , θµν(x) = θµ(x+ν)−θµ(x)−θν(x+µ)+θν(x) ≡ ∆νθµ−∆µθν(x).

First let’s consider the case where the world is a single plaquette. Then, using the

identity
∫ 2π

0
d̄θ einθ = δn,0,

〈W (2)〉 =

∫ ∏
`

dU` U1U2U3U4

(
1 + β(S2 + S†2) +

1

2
β2
(
S + S†

)2
+

1

3!
β3
(
S + S†

)3
+ · · ·

)
= β 〈S2S−2〉︸ ︷︷ ︸

=1

+
β3

2
〈S22S−22〉+O(β5) = βA(2)

(
1 +O(β2)

)
= e−f(β)Area (6.17)

55For a much more formal and, I think, less illuminating proof, see for example J-M Drouffe and

J-B Zuber, Physics Reports 102 (1983) section 3.1.2. Thanks to Tarun Grover for framing the above

argument.
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with f(β) = | ln β| in this crude approximation. Here the area of the loop was just 1.

I’ve written S22 = S2
2, which is only true in abelian cases.

If instead we consider a loop which encloses many plaquettes, we

must pull down at least one factor of βS†2 for each plaquette,

in order to cancel the link factors in the integrand. We can get

more factors of beta if we pull down more cancelling pairs of

βnSn2S
n
−2, but these terms are subleading at small β. The leading

contribution is 〈W (C)〉 = e−f(β)Area (1 +O(β2)), an area law.

Since the series converges, this conclusion can be made completely rigorous. In

what sense is confinement a mystery then? Well, a hint is that our argument applies

equally well (and in fact the calculation we did was) for abelian gauge theory! But

QED doesn’t confine – we calculated the Wilson loop at weak coupling and found a

perimeter law – what gives?

The answer is that there is a phase transition in between weak and

strong coupling, so weak coupling is not an analytic continuation

of the strong coupling series answer. Ruling out this possibility

in Yang-Mills theory would be lucrative.

In fact, though, the Wilson loop expectation itself can exhibit a phase transition,

even if other observables don’t. I’ve drawn the pictures above as if the world were two-

dimensional, in which case we just cover every plaquette inside the loop. In D > 2, we

have to choose a surface whose boundary is the loop. Rather, 〈W 〉 is a statistical sum

over such surfaces, weighted by βarea. Such surface models often exhibit a roughening

transition as β becomes larger and floppy surfaces are not suppressed.

By the way, the same technology can be used to study the spectrum of excitations

of the gauge theory, by considering correlations like〈
SR(t)S†R(0)

〉
c

=
∑
α

|cRα |2e−mα(R)t

where SR is the trace of a Wilson loop in representation R, around a single

plaquette, and the two loops in question are separated only in time and

are parallel. The subscript c means connected.

The right hand side is a sum over intermediate, gauge invariant states with the right

quantum numbers, and mα(R) are their masses. This is obtained by inserting a com-

plete set of energy eigenstates.
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In strong coupling expansion, we get a sum over discretized tubes of pla-

quettes, with one boundary at each loop (the connected condition prevents

disconnected surfaces), the minimal number of plaquettes for a hypercubic

lattice is 4t,

giving 〈
SR(t)S†R(0)

〉
c
∼ Aβ4t

(
1 +O(β2)

)
and the smallest glueball mass becomes m0 ∼ 4| ln β|, similar to the scale of the

string tension. Actually, the corrections exponentiate to give something of the form

m0(R) = −4 ln β +
∑

kmk(R)βk.

Hint 2: monopole condensation and dual Meissner effect.

[Banks’ book has a very nice discussion of this.] Recall that a single magnetic

monopole is not a finite energy situation inside an infinite superconductor, because it

has a tensionful Abrikosov flux string attached to it. A monopole and an antimonopole

are linearly confined, with a constant force equal to the string tension.

On the other hand, electric-magnetic duality is a familiar invariance of Maxwell’s

equations:

∂µFµν = J (e)
ν , ∂µF̃µν = J (m)

ν (6.18)

is invariant under the replacements

Fµν → F̃µν ≡
1

2
εµνρσF

ρσ, J (e)
ν → J (m)

ν .

In doing a weak-coupling expansion (e.g. as we did in QED), we make a choice (having

not seen magnetic charges, they must be heavy) to solve the second equation of (6.18)

by introducing a smooth vector potential Aµ via

Fµν(x) = ∂µAν − ∂νAµ +
1

2
εµνρσ

∫
d4yJ (m)(y)σfρ(x− y)

with ∂ρf
ρ(x) = δ4(x). Here we are treating the magnetic sources as fixed, e.g. because

they are heavy. The support of the function fρ is called the Dirac string. A monopole

is placed at the end of a long and infinitely thin solenoid, which carries away its mag-

netic flux
∫

sphere around monopole
B =

∫
cross-section of solenoid

B = g, and is invisible classically.

Quantumly, it could be detected by Aharonov-Bohm effect of a charged particle going

around it eie
∮
A = eie

∫
B = eieg unless eg ∈ 2πZ, Dirac quantization again. (For par-

ticles with both electric and magnetic charge (they are called dyons), the condition is

q1m2 − q2m1 ∈ 2πZ.)
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So, the duality interchanges electric and magnetic things. So, if condensation of

electric charge (meaning 〈|Φ|〉 = v for some electrically charged field Φ) means that

Aµ is massive (Anderson-Higgs effect) and that monopoles are confined by tensionful

magnetic flux tubes, then we can just replace the relevant words to learn that: Conden-

sation of magnetic charge 〈|Φm|〉 6= 0 means that some dual photon (Ãµ with dÃ = F̃ )

is massive, and that electric charges are linearly confined by tensionful electric flux

tubes.

This was pointed out by Mandelstam and ’t Hooft in 1974. In 1994 Seiberg and Wit-

ten (hep-th/9407087) showed in detail that this happens in a highly supersymmetric

example. In abelian lattice models, we can actually implement the duality transforma-

tion explicitly by various path integral tricks. One path through this story (found in

1978 by Banks, Myerson, Kogut and also Peskin) is described in Banks’ book. Along

the way, one encounters dualities with many familiar statistical mechanical models,

such as the XY model.
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7 Non-abelian gauge fields in perturbation theory

7.1 Gauge fixing and Feynman rules

Gauge fixing. [Peskin §16.2, Scwhartz §25] Consider the partition function for Yang-

Mills theory (it will be easy to add the quarks later):

Z ≡ 1

vol(G)

∫
[DA]eiS[A].

We assume that S[A] is some gauge-invariant functional of A, such as the Yang-Mills

action. The integral over [DA] goes over all configurations of the gauge field A. Here

vol(G) is the volume of the gauge group – a copy of G for each point in space. We divide

by it to cancel out the contributions from gauge-equivalent configurations of A. We

would like to make this cancellation (which is ∞/∞) more explicit by fixing a gauge,

G(A) = 0. Perhaps surprisingly, this will be an application of fermion path integrals.

Note that the gauge-fixing function G(A) must be a function of A which is not gauge

invariant, such as ∂µAµ. To do so, we will insert the following form of the number 1:

1 = ∆[A]

∫
[Dα]δ[G(Aα)]. (7.1)

Here

Aαµ = (Aαµ)aT a = eiα·T
(
Aµ +

i

g
∂µ

)
e−iα·T (7.2)

=

(
Aaµ +

1

g
∂µα

a + fabcAbµα
c

)
T a +O(α2) (7.3)

=

(
Aaµ +

1

g
Dµα

a

)
T a +O(α2) (7.4)

is the gauge-image of A under a gauge transformation with parameter αA(x) – at the

last step D is the covariant derivative on a field in the adjoint representation. The

(Fadeev-Popov) determinant ∆ defined by (7.1) is a Jacobian ∆[A] = det
(
δG(Aα)
δα

)
. A

crucial property of ∆ is that it is gauge invariant:

∆[Aα1 ]−1 (7.1)
=

∫
[Dα]δ[G(Aα+α1)] =

∫
[D (α + α1)]δ[G(Aα+α1)] = ∆[A]−1. (7.5)

(Here we used the fact that the measure on the group is invariant, [Dα] = [D (α + α1)].)
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Inserting this form of 1 (7.1) into Z (and changing the order of integration) gives:

Z =
1

vol(G)

∫
[Dα]

∫
[DA]δ[G(Aα)]∆[A]eiS[A] (7.6)

=
1

vol(G)

∫
[Dα]

∫
[DAα]δ[G(Aα)]∆[Aα]eiS[Aα] (7.7)

Ã≡Aα
=

(
1

vol(G)

∫
[Dα]

)
︸ ︷︷ ︸

=1

∫
[DÃ]δ[G(Ã)]∆[Ã]eiS[Ã] . (7.8)

In the first step we use the fact that
∫

[DA] =
∫

[DAα], S[A] = S[Aα] and (7.5). In the

second step we change integration variables to Aα ≡ Ã, and promptly drop the tilde.

So we’ve cancelled the offending volume of the gauge group, and inserted a gauge-fixing

delta function in the path integral.

The only price is the FP determinant ∆ that we’ve acquired. What is it? It depends

on the choice of gauge fixing function. Let’s choose

G[A] = ∂µAAµ (x)− ωA(x).

Rather than picking a particular ω, let’s average over all possibilities with gaussian

measure:

1 = N(ξ)

∫
[Dω]e−i

∫
dDx

ω2(x)
2ξ .

The normalization factor is just a constant which we can forget. Therefore

Z = N(ξ)

∫
[DA]

∫
[Dω]δ[∂ · A− ω]︸ ︷︷ ︸

=1

e−i
∫
ω2

2ξ ∆[A]eiS[A] (7.9)

= N(ξ)

∫
[DA]∆[A]e

i

(
S[A]−

∫ (∂·A)2

2ξ

)
. (7.10)

Finally we must figure out what is ∆[A]. Comparing to (7.4) (and remembering that

there is a factor of δ[G] multiplying everything), ∆ is the determinant of the operator

δG[Aα]

δα
=

1

g
∂µDµ.

Notice that in the abelian case, this is independent of A (the covariant derivative D

acting on the adjoint representation of U(1) is just ∂) and we can forget about it; that’s

why we didn’t bother doing this for QED.

∆ = det

(
1

g
∂µDµ

)
=

∫
[DcDc̄]ei

∫
dDxc̄(−∂µDµ)c.
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At the last step we used the integration formula for gaussian grassmann integrals (and

absorbed a factor of g into the definition of c, and ignored a constant factor). c here is

a new complex scalar field in the theory (c̄ ≡ c†). Since D is the covariant derivative in

the adjoint, it’s a field in the adjoint of the gauge group. There’s just one weird thing

about it – it’s a fermionic field with second-order kinetic terms, a ghost!

We saw all kinds of bad things about fermions with second-order kinetic terms in

our discussion of spin-statistics. But those bad things only happen if the particles

occur in external states. One purpose of a lot of the fancy stuff on this subject (such as

BRST symmetry) is guaranteeing that we’ll never make ghost particles while scattering

the real particles. The loops of the ghosts, though, are crucial for getting correct

and unitary answers. In particular, the optical theorem relates scattering states to

particles appearing in loops. The contributions to the imaginary part of loops from the

ghosts are required to cancel the unitarity-violating contributions from the unphysical

polarization states of the gluons. (For the details of what is being cancelled see Peskin

pp. 508-511, and for the cancellation itself, see 515-516.)

Altogether,

Z =

∫
[DADcDc̄]e

i

(
S[A]−

∫ (∂·A)2

2ξ
+
∫
c̄(−∂µDµ)c

)
. (7.11)

More generally, the ghosts are negative degrees of freedom whose role in life is to cancel

the unphysical contributions of the timelike and longitudinal components of the gluon

field. For example, in the free (g = 0) path integral in Feynman gauge, we have

Z =
(

det
(
−∂2

)−D/2
det
(
−∂2

)+1
)dim(G)

.

The contribution of the ghosts cancels two components’ worth of the contribution from

the gluons.

Feynman rules. More explicitly, the ghost action is

Lghost = c̄a
(
−∂2δab − g~∂µfabcAcµ

)
cb.

The ghost propagator is then:〈
ca(x)c̄b(y)

〉
=

∫
d̄4k e−ik(x−y) −i

k2 + iε
δab.

Let us use the lovely Yang-Mills action, S[A] =
∫
LYM

LYM = −1

4
F a
µνF

aµν , F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν .
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The resulting gluon propagator is〈
Aaµ(x)Abν(y)

〉
=

∫
d̄4k e−ik(x−y) −i

k2 + iε
δab
(
ηµν − (1− ξ)kµkν

k2

)
The gluon propagator is just like the photon one, times a δab which conserves the color.

ξ = 1 is Feynman gauge, which I’ll use everywhere below.

The new Feynman rules are

=
−i

k2
, = −gfabckµ,

= gfabc (ηµν(k1 − k2)λ + ηνλ(k2 − k3)µ + ηλµ(k3 − k1)ν) ,

= −ig2
(
fabef cde (ηµληνρ − ηµρηνλ) + fadef cbe (ηµληνρ − ηµνηρλ) + facef bde (ηµνηλρ − ηµρηνλ)

)
.

(Patterns: in the cubic coupling, the three terms cyclically permute the color and

kinematic indices. In the quartic coupling, the second term is obtained from the first

by the interchange (b, ν)↔ (d, ρ), and the third is obtained from the first by (b, ν)↔
(c, λ).)

Including quarks doesn’t mess with the gauge-fixing stuff. We’ll take

Lquarks = q̄
(
i /D −m

)
q = q̄i

(
γµ
(
i∂µδij + gAaµt

a
ij

)
−mδij

)
qj

Here i, j are color indices. For QCD, i, j = 1..3 and and taij are the generators of

SU(3) in the fundamental representation (a good basis of which are called Gell-Mann

matrices). Then there’s also a quark propagator, and the qqg vertex, = igγµta.

We’ll also need to add some counterterms

= −i
(
k2ηµν − kµkν

)
δabδ3 ←

= i/kδ2 ←

= igtaγµδ1 ← + .

On the right, I’ve indicated which one-loop diagrams require us to add these respective

counterterms.
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7.2 QCD beta function

We’re going to calculate the beta function for the QCD coupling g. We’ll use dim reg,

so the beta function is defined as β(gR) = µ∂µgR, where µ is the scale that appears

when we replace 4-dimensional integrals with D-dimensional integrals, and where gR
is the renormalized coupling. Here is a good device for working out the beta function

in dim reg. Very explicitly, the whole Lagrangian is

L = −1

4
Z3(∂A)2 + Z2q̄

(
i/∂ − ZmmR

)
q − Z3cc̄

a2ca (7.12)

− µε/2gRZA3fabc(∂µA
a
ν)A

µbAνc − 1

4
µεg2

RZA4

(
fabcAbµA

c
ν

) (
fadeAµdAνe

)
(7.13)

+ µε/2gRZ1A
a
µq̄γ

µtaq + µε/2gRZ1cf
abc∂µc̄

aAbµc
c (7.14)

Here I’ve written the counterterms in terms of Z = 1 − δ. Notice that there are

four counterterms (Z1, ZA3 , ZA4 , Z3c) all of which describe corrections to g – they are

related by gauge invariance, just like how in QED the vertex correction and the electron

self-energy were related.56

The bare fields are the ones whose quadratic terms are just (∂A0)2 and q0i/∂q0,

i.e. A0
µ =
√
Z3Aµ, q

0 =
√
Z2q, c

0 =
√
Z3cc. The bare coupling is the coefficient of the

interaction written in terms of the bare fields, e.g.

Lqqg = µ
4−D

2 gRZ1Z
−1/2
3 Z−1

2︸ ︷︷ ︸
=g0

A0a
µ q̄

0γµtaq0.

Now here comes the trick: the bare coupling doesn’t know anything about our choice

of µ.57 Therefore

0 = µ∂µg0 = µ∂µ

(
µ
ε
2 gRZ1Z

−1/2
3 Z−1

2 Z1

)
= g0

 ε

2
+

1

gR
µ∂µgR︸ ︷︷ ︸
=β(gR)

+µ∂µ

(
δ1 −

1

2
δ3 − δ2

)
Now the counterterms δ will depend on µ through gR(µ), so we can use the chain rule:

µ∂µδ = µ
dgR
dµ

∂

∂gR
δ = β(gR)

∂δ

∂gR
.

56Note that I also include the dimensional-analysis-restoring dim reg factor of µε/2 explicitly in L.

We can see that this is the right thing to do by rescaling Ã = gA so that the coupling appears only in

− 1
4g2 trF 2. In that case, the action and the coupling g are both dimensionless in D = 4− ε dimensions

if we write S = −
∫
dDxµ

D−4

4g2 trF 2. This is the same as replacing g → µε/2g.
57This is a different perspective than we have when the scale introduced in the renormalization

scheme is a UV cutoff. There, if we hold fixed the physical coupling we must vary the bare coupling

with the UV cutoff, and in fact its variation defines the beta function, as in §4.2 The two perspec-

tives are related to each other like active and passive transformations; the object under study is the

transformation itself which here is encoded in the beta function.

167



So we have

β(gR) = − ε
2
gR − gRµ∂µ

(
δ1 −

1

2
δ3 − δ2

)
(7.15)

= − ε
2
gR − gR β(gR)︸ ︷︷ ︸

=− ε
2
gR+O(g2

R)

∂gR

(
δ1 −

1

2
δ3 − δ2

)
(7.16)

= − ε
2
gR +

ε

2
g2
R∂gR

(
δ1 −

1

2
δ3 − δ2

)
+O(g4

R). (7.17)

At the last step we solved the equation perturbatively. So we need to know how the

counterterms δ1,2,3 depend on the coupling. We could have chosen a different term to

focus on, which would have required knowing a different set of the counterterms; we’d

have to get the same answer.

Gluon vacuum polarization. The Ward identity in QCD still implies that the

gluon self-energy is transverse:

iΠµν
ab (q) = −iΠab

(
q2ηµν − qµqν

)
= + + + +

≡Mq +M3 +M4 +Mghost − i
(
k2ηµν − kµkν

)
δabδ3

through one loop. In Feynman gauge, we have

iMµνab
q (q) = = −trF (tatb) (ig)2 µ̄4−D

∫
d̄Dk

i

(q − k)2 −m2

i

k2 −m2
tr
[
γµ
(
/k − /q +m

)
γν (/k +m)

]
.

There are no surprises here – it looks just like the electron loop contribution to the

photon vacuum polarization. The color trace is trF (tatb) = TF δ
ab = 1

2
δab for the

fundamental representation. Since we’re interested in the UV singular structure, we

can simplify our lives by setting the quark masses to zero. Using exactly the same

tricks as for QED, the answer is then, near D = 4− ε,

iMµνab
q (q) = NfTF

(
q2ηµν − qµqν

)
δab

g2

16π2

(
−8

3

1

ε
− 20

9
− 4

3
ln

µ2

−q2
+O(ε)

)
(7.18)

where Nf is the number of flavors of quarks (e.g. up, down...), counting Dirac multi-

plets,

More novel are the gluon and ghost loops:

iMµνab
ghost = = (−1)(−g)2

∫
d̄Dk

i

(k − q)2

i

k2
f cadkµfdbc(k − q)ν

(7.19)
= g2 µ̄4−D

(4π)D/2
δabC2(G)

∫ 1

0

dx

(
1

∆

)2−D/2(
ηµν
(

1

2
Γ

(
2− D

2

)
∆

)
+ qµqν

(
x(1− x)Γ

(
2− D

2

)))
.
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The big (−1) is because the ghosts are fermionic. To get to the second line, we used

Feynman parameters and completed the square and did the integral over ` ≡ k + xq.

∆ ≡ x(x− 1)q2. The new ingredient is the color stuff.

Quadratic Casimir. Recall that the total angular momentum J2 = j(j+ 1)1 has

[J2, ~J ] = 0 – it’s a Casimir for SU(2), proportional to the identity on each irrep. This

works for any Lie algebra:

T 2 ≡ T aT a satisfies [T b, T 2] = 0,∀b.

In any representation r then we have T ar T
a
r = C2(r)1d(r)×d(r). In particular, for the

adjoint rep,

T aadjT
a
adj = (fa)bc(f

a)cd = fabcfacd ≡ C2(G)δbd. (7.19)

C2(r) is related to the normalization of the generators: trT ar T
b
r = c(r)δab (remember,

we chose c(fundamental) = 1
2
). Contracting with δab gives d(r)C2(r) = d(G)c(r). For

the SU(N), c2(G) = N . See Peskin page 502 for a derivation.

iMµνab
3 = =

g2

2
µ̄4−D

∫
d̄Dk
−i

k2

−i

(k − q)2
facdf bcdNµν (7.20)

= −g
2

2

µ̄4−D

(4π)D/2
δabC2(G)

∫ 1

0

dx

(
1

∆

)2−D/2 (
ηµνA+ qµqνB + ηµνq2C

)
. (7.21)

The 1
2

is a symmetry factor, since gluons are real, the two internal gluon lines can be

exchanged. ∆ = x(x− 1)q2 is the same as before.

A = 3(D−1)Γ

(
1− D

2

)
∆, B = (6(x2−x+1)−D(1−2x)2)Γ

(
2− D

2

)
, C = (−2x2+2x−5)Γ

(
2− D

2

)
.

The term with A represents a would-be-quadratic divergence. In dim reg this shows

up as a pole at D = 2.

In the diagram which uses the quartic coupling, too, we find a quadratic divergence

M4 ∼
∫

d̄4k
k2 ∼ Λ2:

iMµνab
4 = =

ig2

2
µ̄4−D

∫
d̄Dk
−i

k2
ηρλδcd

(
fabef cde

(
δµλδ

ν
ρ − δµρ δνλ

)
+fadef cbe

(
δµλδ

ν
ρ − ηµνηρλ

)
+ facef bde

(
ηµνηλρ − δµρ δνλ

))
= −g2δabηµνC2(G)(D − 1)µ̄4−D

∫
d̄Dk

k2

(q − k)2

(q − k)2

= −g2δabηµνC2(G)(D − 1)µ̄4−D
∫ 1

0

dx

(
1

∆

)2−D/2(
−D

2
Γ

(
1− D

2

)
∆ + (1− x)2q2Γ

(
2− D

2

))
.

(7.22)
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The monstrosity in the first line is just the quartic vertex. The first term vanishes by

antisymmetry δcdf cde = 0. At the second line we multipled by 1 = (q−k)2

(q−k)2 in order to

put the integral into the same form as the other terms. 58

The glue contributions to the gluon vacuum polarization (not including quarks yet,

since those are optional) are then

Mµνab
glue (q) = (M3 +M4 +Mghost)

µνab = δabC2(G)g2 µ̄4−D

(4π)D/2

∫ 1

0

dx

(
1

∆

)2−D/2

·ηµνΓ
(

1− D

2

)
∆

−1

2
+

3(D − 1)

2
− D(D − 1)

2︸ ︷︷ ︸
=− 1

2
(D−2)2

+ qµqνΓ

(
2− D

2

)
a + ηµνq2Γ

(
2− D

2

)
b


Here a = −3(x2−x+ 1) + D

2
(1− 2x)2 +x(1−x) and b = x2−x+ 5

2
− (1−x)2(D− 1).

The coefficient of Γ
(
1− D

2

)
has a factor of D − 2, which cancels the pole at D = 2.

Then using Γ
(
1− D

2

)
(D − 2) = −2Γ

(
2− D

2

)
, this term combines with the other two.

After some boiling using the x↔ 1− x symmetry, this is

Mµνab
glue (q) = δabC2(G)g2 µ̄4−D

(4π)D/2

∫ 1

0

dx

(
1

∆

)2−D/2

(ηµν − qµqν) Γ

(
2− D

2

)((
1− D

2

)
(1− 2x)2 + 2

)
D=4−ε

= C2(G) (ηµν − qµqν) δab g2

(4π)2

(
10

3

1

ε
+

31

9
+

5

3
ln

µ2

−q2
+O(ε)

)
.

Notice that compared to (7.18), the coefficient of the log (and of the pole in ε) has

the opposite sign. From this we conclude that to cancel the ε−1 pole in the vacuum

polarization we must take

δ3 =
1

ε

g2

16π2

(
10

3
C2(G)− 8

3
NfTF

)
.

We’re almost there. To get the beta function we also need δ1 and δ2.

Quark self-energy. This determines δ2 and δm (the latter we won’t need). The

UV bit doesn’t care about the mass, so let’s set m = 0. Again it is just like QED

except for the color factors. The one-loop correction to the quark self-energy is

iΣij
2 (/p) =

∫
d̄Dktaikγ

µ i/kδkl

k2 + iε
tbljγµ

−iδab

(k − p)2 + iε

58Actually, there is a sense in which this contribution is zero in dim reg. After the rewriting, it’s

still zero, but only after doing the x integral. How can it affect anything then? The difference after

the rewriting is merely that the cancellation of the pole at D = 2 happens in the integrand of the x

integral, rather than only after integration.
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The color factors are

taikt
b
ljδ

abδkl =
∑
a

(tata)ij = C2(F )δij

where C2(F ) is the quadratic Casimir in the fundamental representation, which for

SU(N) is C2(F ) = N2−1
2N

. The momentum integral is the same as in QED and we find

Σij
2 (/p) =

g2

8π2
δijC2(F )

1

ε
/p+ finite . (7.23)

The quark wavefunction renormalization counterterm δ2 contributes as Σij = ...+ δ2/p,

so we must set

δ2 =
1

ε

g2

16π2
(−2C2(F )) .

Vertex correction. The vertex correction gets two contributions at one loop.

= ig(tctatb)ijδ
bcΓµQED

where

ΓµQED = F1(p2)γµ +
iσµν

2m
pνF2(p2)

is identical to the QED answer (notice that it’s useful to keep the quark mass around

for a bit here) and the color factors are

tctatbδbc = tbtatb = tbtbta + tb[ta, tb] = C2(F )T a + ifabctbtc.

By antisymmetry of fabc, the second term is

ifabctbtc = ifabc
1

2
[tb, tc] = −1

2
fabcf bcdtd = −1

2
C2(G)ta.

Altogether, the divergent bit of this diagram is

= ig

(
C2(F )− 1

2
C2(G)

)
taijγ

µ g2

16π2

(
2

ε
+ ln

µ2

−p2
+ finite

)
.

The other diagram is new:

= igfabc(tctb)ijΓ
µ
new
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with

−igΓµnew(p2) = (ig)2gµ̄4−D
∫

d̄Dkγρ
i

/k
γν

−i

(q + k)2

−i

(q′ − k)2
·(

ηµν (2q + q′ + k)
ρ

+ ηνρ (−q + q′ − 2k)
µ

+ ηρµ (k − 2q′ − q)ν
)

(I find the opposite sign from Schwartz here. This sign cancels against the one in

(7.24).) The horrible numerator comes from the 3-gluon vertex, but in computing the

UV divergence we can set the external momenta to zero. This gives

−Γµnew(0) = g2µ̄4−D
∫

d̄Dk
γρ/kγν
k6

(ηµνkρ − 2ηνρkµ + ηρµkν)

= g2µ̄4−D
∫

d̄Dk

k6

(
2k2γµ − 2γρ/kγ

ρkµ
)

= g2

(
4− 4

D

)
γµµ̄4−D

∫
d̄Dk

k4
γργ

νγρ = (2−D)γν ,

∫
kµkν ... =

∫
k2

D
ηµν ...

= g2iγµ
g2

16π2

(
6

ε
+ 3 log

µ2

−p2
+ finite

)
where at the last step we put back the gluon momentum to make up the dimensions.

Finally the color factor is

fabc(tctb) =
1

2
ifabcf cbdtd = −i

1

2
C2(G)ta. (7.24)

Altogether, the divergent part of the qqg vertex at one loop is then

1

ε
igtaijγ

µ

((
2

(
C2(F )− 1

2
C2(G)

)
+ 3C2(G)

)
g2

16π2
+ δ1ε

)
=⇒ δ1 =

1

ε

g2

16π2
(−2C2(F )− 2C2(G)) .

Combining all of this information using (7.17), the QCD beta function is (dropping

the R subscripts on gR)

β(g) = − ε
2
g +

ε

2
g2∂g

(
δ1 −

1

2
δ3 − δ2

)
+O(g4)

D→4
=

g3

16π2

(
−2C2(F )− 2C2(G)− 1

2

(
10

3
C2(G)− 8

3
NfTF

)
− (−2C2(F ))

)
+O(g4)

= − g3

16π2

(
11

3
C2(G)− 4

3
NfTF

)
SU(N) with fundamental quarks

= − g3

16π2

(
11

3
N − 2

3
Nf

)
.

If there are not too many species of quarks (Nf < 6N = 18, which is true in the SM),

β is negative, in which case such a non-Abelian gauge theory is asymptotically free, as
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promised many times. Defining a running coupling as in (4.47), we find a crucial plus

sign relative to (4.47)

g2
eff(q2) =

g2

1 + g2

16π2C log
(
|q2|
M2

) , C ≡ 11

3
N − 2

3
Nf

and the coupling grows as q decreases, and shrinks at large q. Actually it is a bit tricky

to define the effective coupling in QCD, but (a more precise version of) this curve has

been measured (see Peskin fig. 17.23 and Schwartz §26.3).

Qualitative picture of asymptotic freedom. [Peskin §16.7] The sign of the

beta function in QED can be understood as charge screening by the vacuum – electron-

positron pairs fluctuate into existence, and respond to the presence of a source in such

a way as to decrease its field at long distance.

How does non-Abelian gauge theory manage to produce antiscreening? There is

certainly still screening from the quarks, and since the gluons are charged, they will

also produce screening. So it makes sense that too many quarks will spoil the soup.

But whence the terms of the opposite sign in the beta function?

Following Peskin §16.7, consider pure (no quarks) SU(2) gauge theory, in Coulomb

gauge ∂iA
ia = 0. In this gauge, we sacrifice Lorentz covariance for more manifest uni-

tarity – no ghosts, and no longitudinal and timelike polarization states. The equation

of motion for A0a is the Gauss law (in terms of Eia ≡ F 0ia):

gρa = DiE
ia = ∂iE

ia + gfabcAbiE
ic,

where ρ is the charge density (e.g. the number density of quarks if we included them in

the theory), and for SU(2), the structure constants are fabc = εabc. Instead of dynamical

quarks, let’s consider a static color source particle: ρa(x) = δ(3)(~x)δa1 pointing in a

particular color direction, so the equation we wish to solve is

∂iE
ia = gδ(3)(~x)δa1 + gfabcAbiEic. (7.25)

Let’s solve this perturbatively in g in several steps.

1. At leading order, the source produces a Coulomb field:

~Ea(x) = gδ1ax̌
x2 . So far, this is just classical physics.
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2. The quantum mechanics comes in here:

consider a fluctuation of the vector potential in the 2d

color direction Ab=2,i(~x), with support localized some-

where, call it x0, away from the origin. Suppose it points

in some direction, somewhat aligned with ~x, its displace-

ment from the source.

3. Here comes the iteration.

The second term on the RHS of (7.25) is then gεabc ~Ab ·
~Ec ∝ −δc3 ~A2 · ~E1, a sink for the color-electric field in the

3rd color direction.

4.
This produces a new Coulomb field ~E3(~x) ∼ − ~x−~x0

|x−x0|3

pointing towards x0.

5. Now look at the second term on the RHS of (7.25) again:

~∇ · ~E1 = ...+ gε123 ~A2 · ~E3

it is a source (sink) for the color field in direction 1 where
~A2 and ~E3 are parallel (antiparallel).

But if the fluctuation ~A2 points away from the source,

then in the region closer to the source, ~A2 · ~E3 > 0,

and farther from the source they are anti-aligned. This

produces a dipole source for ~E1 which points toward the

original charge, and therefore anti-screens its field.

Warning: on the other hand, if the fluctuation ~A2 points toward the original source

then this process produces a dipole pointing away from the original source, which

contributes to screening. I’m not sure if this picture can be made quantitative.

Disclaimer. This discussion just scratches the surface of the physics of QCD!

Many measurable phenomena can be calculated using the machinery we’ve set up.

Please see Peskin §17 and Schwartz §32.
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8 Anomalies and fermion path integrals

8.1 Coherent state path integrals for fermions

[Peskin, §95, Shankar, Principles of QM, path integrals revisited. In this chapter of

his great QM textbook, Shankar sneaks in lots of insights useful for modern condensed

matter physics.]

Consider the algebra of a single fermion mode operator59:

{c, c} = 0, {c†, c†} = 0, {c, c†} = 1 .

With a single mode, the general Hamiltonian is

H = c†c (ω0 − µ)

(ω0 and µ are (redundant when there is only one mode) constants). This algebra is

represented on a two-state system |1〉 = c† |0〉. We might be interested in its thermal

partition function

Z = tr e−
H
T .

(In this example, it happens to equal Z = 1 + e−
ω0−µ
T , as you can see by computing

the trace in the eigenbasis of n = c†c. But never mind that; the one mode is a proxy

for many, where it’s not quite so easy to sum.) How do we write this trace as a

path integral? We can do this by insertion lots of resolutions of the identity (this is

sometimes called ‘Trotterizing’), using any resolution of the identity on H, so there can

be many very-different-looking answers to this question.

Let’s define coherent states for fermionic operators:

c |ψ〉 = ψ |ψ〉 . (8.1)

Here ψ is a c-number (not an operator), but acting twice with c we see that we must

have ψ2 = 0. So ψ is a grassmann number. These satisfy

ψ1ψ2 = −ψ2ψ1, ψc = −cψ (8.2)

– they anticommute with each other and with fermionic operators, and commute with

ordinary numbers and bosons. They seem weird but they are easy. We’ll need to

consider multiple grassmann numbers when we have more than one fermion mode,

59For many modes,

{ci, cj} = 0, {c†i , c
†
j} = 0, {ci, c†j} = 1δij .
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where {c1, c2} = 0 will require that they anticommute {ψ1, ψ2} = 0 (as in the definition

(8.2)); note that we will be simultaneously diagonalizing operators which anticommute.

The solution to equation (8.1) is very simple:

|ψ〉 = |0〉 − ψ |1〉

where as above |0〉 is the empty state (c |0〉 = 0) and |1〉 = c† |0〉 is the filled state.

(Check: c |ψ〉 = c |0〉 − cψ |1〉 = +ψc |1〉 = ψ |0〉 = ψ |ψ〉 .)

Similarly, the left-eigenvector of the creation operator is〈
ψ̄
∣∣ c† =

〈
ψ̄
∣∣ ψ̄, 〈

ψ̄
∣∣ = 〈0| − 〈1| ψ̄ = 〈0|+ ψ̄ 〈1| .

Notice that these states are weird in that they are elements of an enlarged hilbert space

with grassmann coefficients (usually we just allow complex numbers). Also, ψ̄ is not

the complex conjugate of ψ and
〈
ψ̄
∣∣ is not the adjoint of |ψ〉. Rather, their overlap is〈

ψ̄|ψ
〉

= 1 + ψ̄ψ = eψ̄ψ.

Grassmann calculus summary. In the last expression we have seen an example

of the amazing simplicity of Taylor’s theorem for grassmann functions:

f(ψ) = f0 + f1ψ .

Integration is just as easy and in fact is the same as taking derivatives:∫
ψdψ = 1,

∫
1dψ = 0.

With more than one grassmann we have to worry about the order:

1 =

∫
ψ̄ψdψdψ̄ = −

∫
ψ̄ψdψ̄dψ.

The only integral, really, is the gaussian integral:∫
e−aψ̄ψdψ̄dψ = a.

Many of these give ∫
e−ψ̄·A·ψdψ̄dψ = detA.

Here ψ̄ ·A · ψ ≡
(
ψ̄1, · · · , ψ̄M

)
A11 A12 · · ·
A21

. . . · · ·
...

...
. . .


 ψ1

...

ψM

. One way to get this expression

is to change variables to diagonalize the matrix A. Notice that∫
e−ψ̄·A·ψdψ̄dψ = detA = e+tr logA
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involves a sign in the exponent relative to the bosonic answer∫
e−φ

?·A·φdφ?dφ =
−1

detA = e−tr logA.

This is the same sign as the minus sign associated to fermion loops.

〈
ψ̄ψ
〉
≡
∫
ψ̄ψe−aψ̄ψdψ̄dψ∫
e−aψ̄ψdψ̄dψ

= −1

a
= −

〈
ψψ̄
〉
.

If for many grassman variables we use the action S =
∑

i aiψ̄iψi (diagonalize A

above) then 〈
ψ̄iψj

〉
=
δij
ai
≡ 〈̄ij〉 (8.3)

and Wick’s theorem here is〈
ψ̄iψ̄jψkψl

〉
= 〈̄il〉 〈j̄k〉 − 〈̄ik〉 〈j̄l〉 .

Back to quantum mechanics: The resolution of 1 in this basis is

1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉

〈
ψ̄
∣∣ (8.4)

And if A is a bosonic operator (made of an even number of grassmann operators),

trA =

∫
dψ̄dψ e−ψ̄ψ

〈
−ψ̄
∣∣A |ψ〉 .

(Note the minus sign; it will lead to a deep statement.) So the partition function is:

Z =

∫
dψ̄0dψ0 e

−ψ̄0ψ0
〈
−ψ̄0

∣∣ e−
H
T︸︷︷︸

=(1−∆τH) · · · (1−∆τH)︸ ︷︷ ︸
M times

|ψ0〉

Now insert (8.4) in between each pair of Trotter factors to get

Z =

∫ M−1∏
l=0

dψ̄ldψle
−ψ̄lψl

〈
ψ̄l+1

∣∣ (1−∆τH) |ψl〉 .

Because of the −ψ̄ in (8.4), to get this nice expression we had to define an extra letter

ψ̄M = −ψ̄0, ψM = −ψ0 (8.5)
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so we could replace
〈
−ψ̄0

∣∣ =
〈
ψ̄M
∣∣.

Now we use the coherent state property to turn the matrix elements into grassmann-

valued functions:〈
ψ̄l+1

∣∣ (1−∆τH(c†, c)
)
|ψl〉 =

〈
ψ̄l+1

∣∣ (1−∆τH(ψ̄l+1, ψl)
)
|ψl〉

∆τ→0
= eψ̄l+1ψle−∆τH(ψ̄l+1,ψl).

It was important that in H all cs were to the right of all c†s, i.e. that H was normal

ordered.)

So we have

Z =

∫ M−1∏
l=0

dψ̄ldψle
−ψ̄lψleψ̄l+1ψle−∆τH(ψ̄l+1,ψl)

=

∫ M−1∏
l=0

dψ̄ldψl exp

∆τ

 ψ̄l+1 − ψ̄l
∆τ︸ ︷︷ ︸

=∂τ ψ̄

ψl −H(ψ̄l+1, ψl)




'
∫

[Dψ̄Dψ] exp

(∫ 1/T

0

dτ ψ̄(τ) (−∂τ − ω0 + µ)ψ(τ)

)
=

∫
[Dψ̄Dψ]e−S[ψ̄,ψ]. (8.6)

Points to note:

• In the penultimate step we defined, as usual, continuum fields

ψ(τl = ∆τ l) ≡ ψl, ψ̄(τl = ∆τ l) ≡ ψ̄l.

• We elided the difference H(ψ̄l+1, ψl) = H(ψ̄l, ψl) +O(∆τ) in the last expression.

This difference is usually negligible and sometimes helpful (an example where it’s

helpful is the discussion of the number density below).

• The APBCs (8.5) on ψ(τ + 1
T

) = −ψ(τ) mean that in its fourier representation60

ψ(τ) = T
∑
n

ψ(ω)e−iωnτ , ψ̄(τ) = T
∑
n

ψ̄(ω)eiωnτ (8.7)

the Matsubara frequencies

ωn = (2n+ 1)πT, n ∈ Z

are odd multiples of πT .

• The measure [Dψ̄Dψ] is defined by this equation, just as in the bosonic path

integral.

60ψ̄ is still not the complex conjugate of ψ but the relative sign is convenient.
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• The derivative of a grassmann function is also defined by this equation; note that

ψl+1 − ψl is not ‘small’ in any sense.

• In the last step we integrated by parts, i.e. relabeled terms in the sum, so∑
l

(
ψ̄l+1 − ψ̄l

)
ψl =

∑
l

ψ̄l+1ψl−
∑
l

ψ̄lψl =
∑
l′=l−1

ψ̄l′ψl−1−
∑
l

ψ̄lψl = −
∑
l

ψ̄l (ψl − ψl−1) .

Note that no grassmanns were moved through each other in this process.

The punchline of this discussion for now is that the euclidean action is

S[ψ̄, ψ] =

∫
dτ
(
ψ̄∂τψ +H(ψ̄, ψ)

)
.

The first-order kinetic term we’ve found ψ̄∂τψ is sometimes called a ‘Berry phase term’.

Note the funny-looking sign.

Continuum limit warning (about the red ' in (8.6)). The Berry phase term is

actually
N−1∑
l=0

ψ̄l+1 (ψl+1 − ψl) = T
∑
ωn

ψ̄(ωn)
(
1− eiωnτ

)
ψ(ωn)

and in (8.6) we have kept only the leading nonzero term:(
1− eiωnτ

)
→ iωnτ.

Clearly this replacement is just fine if

ωnτ � 1

for all ωn which matter. Which ωn contribute? I claim that if we use a reasonable

H = Hquadratic+Hint, reasonable quantities like Z,
〈
O†O

〉
, are dominated by ωn � τ−1.

There’s more we can learn from what we’ve done here that I don’t want to pass up.

Let’s use this formalism to compute the fermion density at T = 0:

〈N〉 =
1

Z
tre−H/Tc†c.

This is an example where the annoying ∆τs in the path integral not only matter, but

are extremely friendly to us.

Frequency space, T → 0.
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Let’s change variables to frequency-space fields, which diagonalize S. The Jacobian

is 1 (since fourier transform is unitary):

Dψ̄(τ)Dψ(τ) =
∏
n

dψ̄(ωn)dψ(ωn)
T→0→ Dψ̄(ω)Dψ(ω).

The partition function is

Z =

∫
Dψ̄(ω)Dψ(ω) exp

(
T
∑
ωn

ψ̄(ωn) (iωn − ω0 + µ)ψ(ωn)

)
.

Notice that in the zero-temperature limit

T
∑
ωn

7→
∫
dω

2π
≡
∫

d̄ω.

(This is the same fact as V
∑

k 7→
∫

d̄dk in the thermodynamic limit.) So the zero-

temperature partition function is

Z
T→0
=

∫
Dψ̄(ω)Dψ(ω) exp

(∫ ∞
−∞

d̄ωψ̄(ω) (iω − ω0 + µ)ψ(ω)

)
.

Using the gaussian-integral formula (8.3) you can see that the propagator for ψ is

〈
ψ̄(ω1)ψ(ω2)

〉
=

δω1,ω2

T︸ ︷︷ ︸
T→0→ δ(ω1−ω2)

2π

iω1 − ω0 + µ
. (8.8)

In particular
〈
ψ̄(ω)ψ(ω)

〉
= 2π/T

iω−ω0+µ
. δ(ω = 0) = 1/T is the ‘volume’ of the time

direction.

Back to the number density. Using the same strategy as above, we have

〈N〉 =
1

Z

∫ M−1+1∏
l=0

(
dψ̄ldψle

−ψ̄lψl
)M−1∏

l=1

〈
ψ̄l+1|(1−∆τH(c†c))|ψl

〉 〈
ψ̄N+1

∣∣ c†c |ψN〉︸ ︷︷ ︸
=ψ̄N+1ψN=ψ̄(τN+∆τ)ψ(τN )

,

where τN is any of the time steps. This formula has a built-in point-splitting of the

operators!

〈N〉 =
1

Z

∫
Dψ̄Dψ e−S[ψ̄,ψ]ψ̄(τN + ∆τ)ψ(τN)

=

∫ ∞
−∞

d̄ω
eiω∆τ

iω − ω0 + µ
= θ(µ− ω0). (8.9)
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Which is the right answer: the mode is occupied in the groundstate only if ω0 < µ.

In the last step we used the fact that ∆τ > 0 to close the contour in the UHP; so

we only pick up the pole if it is in the UHP. Notice that this quantity is very UV

sensitive: if we put a frequency cutoff on the integral,
∫ Λ dω

ω
∼ log Λ, the integral

diverges logarithmically. For most calculations the ∆τ can be ignored, but here it told

us the right way to treat the divergence. 61

8.2 Anomalies

[Zee §IV.7; Polyakov, Gauge Fields and Strings, §6.3; K. Fujikawa, Phys. Rev. Lett. 42

(1979) 1195; Argyres, 1996 lectures on supersymmetry §14.3; Peskin, chapter 19]

Topology means the study of quantities which can’t vary smoothly, but can only

jump. Like quantities which must be integers. Anomalies are an example of a topo-

logical phenomenon in QFT, which is therefore robust against any change in the QFT

which can be made continuously (like varying masses or couplings, or the cutoff or the

resolution of our description, i.e. a renormalization group transformation).

Suppose we have in our hands a classical field theory in the continuum which

has some symmetry. Is there a well-defined QFT whose classical limit produces this

classical field theory and preserves that symmetry? The path integral construction of

QFT offers some insight here. The path integral involves two ingredients: (1) an action,

which is shared with the classical field theory, and (2) a path integral measure. It is

possible that the action is invariant but the measure is not. This is called an anomaly.

It means that the symmetry is broken, and its current conservation is violated by a

known amount, and this often has many other consequences that can be understood

by humans.

Notice that here I am speaking about actual, global symmetries. I am not talking

about gauge redundancies. If you think that two field configurations are equivalent

but the path integral tells you that they would give different contributions, you are

doing something wrong. Such a ‘gauge anomaly’ means that the system has more

degrees of freedom than you thought. (In particular, it does not mean that the world

is inconsistent. For a clear discussion of this, please see Preskill, 1990.)

61The calculation between the first and second lines of (8.9) is familiar to us – it is a single Wick

contraction, and can be described as a feynman diagram with one line between the two insertions.

More prosaically, it is

〈
ψ̄(τN + ∆τ)ψ(τN )

〉 (8.7)
= T 2

∑
nm

ei(ωn−ωm)τ+iωn∆τ
〈
ψ̄(ωn)ψ(ωm)

〉 (8.8)
= T

∑
m

eiωn∆τ

iωn − ω0 + µ

T→0→
∫

d̄ω
eiω∆τ

iω − ω0 + µ
.
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You could say that we have already seen a dramatic example of an anomaly: the

violation of classical scale invariance (e.g. in massless φ4 theory, or in massless QED)

by quantum effects.

Notice that the name ‘anomaly’ betrays the bias that we imagine constructing a

QFT by starting with a continuum action for a classical field theory; you would never

imagine that e.g. scale invariance was an exact symmetry if you instead started from

a well-defined quantum lattice model.

The example we will focus on here is the chiral anomaly. This is an equation for the

violation of the chiral (aka axial) current for fermions coupled to a background gauge

field. The chiral anomaly was first discovered in perturbation theory, by computing

a certain Feynman diagram with a triangle; the calculation was motivated by the

experimental observation of the process π0 → γγ, which would not happen if the chiral

current were conserved. (The relationship between the chiral current and the pion is

explained in §9.7.)

I will outline a derivation of this effect (using the fermionic path integral) which is

more illuminating than the triangle diagram. It shows that the one-loop result is exact

– there are no other corrections. It shows that the quantity on the right hand side of

the continuity equation for the would-be current integrates to an integer. It gives a

proof of the index theorem, relating numbers of solutions to the Dirac equation in a

background field configuration to a certain integral of field strengths. It butters your

toast.

8.2.1 Chiral anomaly

Chiral symmetries. In even-dimensional spacetimes, the Dirac representation of

SO(D − 1, 1) is reducible. This is because

γ5 ≡
D−1∏
µ=0

γµ 6= 1, satisfies {γ5, γµ} = 0, ∀µ

which means that γ5 commutes with the Lorentz generators

[γ5,Σµν ] = 0, Σµν ≡ 1

2
[γµ, γν ].

A left- or right-handed Weyl spinor is an irreducible representation of SO(D − 1, 1),

ψL/R ≡ 1
2

(1± γ5)ψ. This allows the possibility that the L and R spinors can transform

differently under a symmetry; such a symmetry is a chiral symmetry.

Note that in D = 4k dimensions, if ψL is a left-handed spinor in representation r

of some group G, then its image under CPT, ψCPTL (t, ~x) ≡ iγ0 (ψL(−t,−~x))?, is right-

handed and transforms in representation r̄ of G. Therefore chiral symmetries arise
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when the Weyl fermions transform in complex representations of the symmetry group,

where r̄ 6= r. (In D = 4k + 2, CPT maps left-handed fields to left-handed fields. For

more detail on discrete symmetries and Dirac fields, see Peskin §3.6.)

Some more explicit words (of review) about chiral fermions in D = 3 + 1, mostly

notation. Recall Peskin’s Weyl basis of gamma matrices in 3+1 dimensions, in which

γ5 is diagonal:

γµ =

(
0 σ̄µ

σµ 0

)
, σµ ≡ (1, ~σ)µ, σ̄µ ≡ (1,−~σ)µ, γ5 =

(
1 0

0 −1

)
.

This makes the reducibility of the Dirac representation of SO(3, 1) manifest, since the

Lorentz generators are ∝ [γµ, γν ] block diagonal in this basis. The gammas are a map

from the (1,2R) representation to the (2L,1) representation. It is sometimes useful to

denote the 2R indices by α, β = 1, 2 and the 2L indices by α̇, β̇ = 1, 2. Then we can

define two-component Weyl spinors ψL/R = PL/Rψ ≡ 1
2

(1± γ5)ψ by simply forgetting

about the other two components. The conjugate of a L spinor χ = ψL (L means

γ5χ = χ) is right-handed:

χ̄ = χ†γ0, χ̄γ5 = χ†γ0γ5 = −χ†γ5γ0 = −χ†γ0 = −χ̄.

We can represent any system of Dirac fermions in terms of a collection of twice as many

Weyl fermions.

For a continuous symmetry G, we can be more explicit about the meaning of a

complex representation. The statement that ψ is in representation r means that its

transformation law is

δψa = iεA
(
tAr
)
ab
ψb

where tA, A = 1.. dimG are generators of G in representation r; for a compact lie group

G, we may take the tA to be Hermitian. The conjugate representation, by definition,

is one with which you can make a singlet of G – it’s the way ψ?T transforms:

δψ?Ta = −iεA
(
tAr
)T
ab
ψ?Tb .

So:

tAr̄ = −
(
tAr
)T
.

The condition for a complex representation is that this is different from tAr (actually

we have to allow for relabelling of the generators and the basis). The simplest case is

G = U(1), where t is just a number indicating the charge. In that case, any nonzero

charge gives a complex representation.
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Consider the effective action produced by integrating out Dirac fermions coupled

to a background gauge field (the gauge field is just going to sit there for this whole

calculation):

eiSeff[A] ≡
∫

[DψDψ̄] eiS[ψ,ψ̄,A] .

We must specify how the fermions coupled to the gauge field. The simplest example is

if A is a U(1) gauge field and ψ is minimally coupled:

S[ψ, ψ̄, A] =

∫
dDxψ̄i /Dψ, /Dψ ≡ γµ (∂µ + iAµ)ψ.

We will focus on this example, but you could imagine instead that Aµ is a non-

Abelian gauge field for the group G, and ψ is in a representation R, with gauge gener-

ators TA(R) (A = 1...dimG), so the coupling would be

ψ̄i /Dψ = ψ̄aγ
µ
(
∂µδab + iAAµT

A(R)ab
)
ψb . (8.10)

Much of the discussion below applies for any even D.

In the absence of a mass term, the action (in the Weyl basis) involves no coupling

between L and R:

S[ψ, ψ̄, A] =

∫
dDx

(
ψ†LiσµDµψL + ψ†Riσ̄µDµψR

)
and therefore is invariant under the global chiral rotation

ψ → eiαγ5

ψ, ψ† → ψ†e−iαγ5

, ψ̄ → ψ̄e+iαγ5

. That is: ψL → eiαψL, ψR → e−iαψR.

(The mass term couples the two components

Lm = ψ̄
(
Rem+ Immγ5

)
ψ = mψ†LψR + h.c.;

notice that the mass parameter is complex.) The associated Noether current is j5
µ =

ψ̄γ5γµψ, and it seems like we should have ∂µj5
µ

?
= 0. This follows from the massless

(classical) Dirac equation 0 = γµ∂µψ. (With the mass term, we would have instead

∂µj5
µ

?
= 2iψ̄ (Remγ5 + Imm)ψ. )

Notice that there is another current jµ = ψ̄γµψ. jµ is the current which is coupled

to the gauge field, L 3 Aµj
µ. The conservation of this current is required for gauge

invariance of the effective action

Seff[Aµ]
!

= Seff[Aµ + ∂µλ] ∼ log
〈
ei
∫
λ(x)∂µjµ

〉
+ Seff[Aµ].
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No matter what happens we can’t find an anomaly in jµ. The anomalous one is the

other one, the axial current.

To derive the conservation law we can use the Noether method. This amounts to

substituting ψ′(x) ≡ eiα(x)γ5
ψ(x) into the action:

SF [ψ′] =

∫
dDxψ̄e+iαγ5

i /Deiαγ5

ψ =

∫
dDx

(
ψ̄i /Dψ + ψ̄iγ5 (/∂α)ψ

) IBP
= SF [ψ]−i

∫
α(x)∂µtrψ̄γ5γµψ.

Then we can completely get rid of α(x) if we can change integration variables, i.e. if

[Dψ′]
?
= [Dψ]. Usually this is true, but here we pick up an interesting Jacobian.

Claim:

eiSeff[A] =

∫
[Dψ′Dψ̄′]eiSF [ψ′] =

∫
[DψDψ̄]eiSF [ψ]+

∫
dDxα(x)(∂µjµ5−A(x))

where

A(x) =
∑
n

trξ̄nγ
5ξn (8.11)

where ξn are a basis of eigenspinors of the Dirac operator. The contribution to A can

be attributed to zeromodes of the Dirac operator.

The expression above is actually independent of α, since the path integral is in-

variant under a change of variables. For a conserved current, α would multiply the

divergence of the current and this demand would imply current conservation. Here

this implies that instead of current conservation we have a specific violation of the

current:

∂µj5
µ = A(x).

What is the anomaly A? [Polyakov §6.3] An alternative useful (perhaps more

efficient) perspective is that the anomaly arises from trying to define the axial current

operator, which after all is a composite operator. Thus we should try to compute

〈∂µjµ5 〉 = ∂µ
〈
ψ̄(x)γµγ5ψ(x)

〉
– the coincident operators on the RHS need to be regulated.

The classical (massless) Dirac equation immediately implies that the axial current

is conserved

∂µ
(
ψ̄γµγ5ψ

) ?
= 0.

Consider, on the other hand, the (Euclidean vacuum) expectation value

J5
µ ≡

〈
ψ̄(x)γµγ

5ψ(x)
〉
≡ Z−1[A]

∫
[DψDψ̄]e−SF [ψ]j5

µ(x)
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=

= −Tr γγµγ
5G[A](x, x) (8.12)

where G is the Green’s function of the Dirac operator in the gauge field background

(and the figure is from Polyakov’s book). We can construct it out of eigenfunctions of

i /D:

i /Dξn(x) = εnξn(x), ξ̄n(x)iγµ
(
−
←
∂ µ + iAµ

)
= εnξ̄n (8.13)

in terms of which62

G(x, x′) =
∑
n

1

εn
ξn(x)ξ̄n(x′). (8.14)

(I am suppressing spinor indices all over the place, note that here we are taking the

outer product of the spinors.)

We want to define the coincidence limit, as x′ → x. The problem with this limit

arises from the large |εn| eigenvalues; the contributions of such short-wavelength modes

are local and most of them can be absorbed in renormalization of couplings. It should

not (and does not) matter how we regulate them, but we must pick a regulator. A

convenient choice here is heat-kernel regulator:

Gs(x, x
′) ≡

∑
n

e−sε
2
n

1

εn
ξn(x)ξ̄n(x′)

and

J5
µ(x) =

∑
n

e−sε
2
n

1

εn
ξ̄n(x)γ5γµξn(x) .

The anomaly is

∂µJ5
µ = ∂µ

〈
j5
µ

〉
=
∑
n

i∂µ
(
ξ̄nγµγ

5ξn
) e−sε2n

εn
.

The definition (8.13) says

i∂µ
(
ξ̄nγ

5γµξn
)

= 2εnξ̄nγ5ξn

using {γ5, γµ} = 0. (Notice that the story would deviate dramatically here if we were

studying the vector current which lacks the γ5.) This gives

∂µJ5
µ = 2Tr γ5e

−s
(
i /D
)2

62Actually, this step is full of danger. (Polyakov has done it to me again. Thanks to Sridip Pal for

discussions of this point.) See §8.2.2 below.

186



with

(i /D)2 = − (γµ (∂µ + iAµ))2 = − (∂µ + Aµ)2 − i

2
ΣµνF

µν

where Σµν ≡ 1
2
[γµ, γν ] is the spin Lorentz generator. This is (8.11), now better defined

by the heat kernel regulator. We’ve shown that in any even dimension,

∂µ
〈
j5
µ(x)

〉
= 2Tr αγ

5es /D2

(8.15)

This can now be expanded in small s, which amounts to an expansion in powers of

A,F . If there is no background field, A = 0, we get〈
x|e−s

(
i/∂
)2

|x
〉

=

∫
d̄Dp e−sp

2

= KD︸︷︷︸
=

ΩD−1

(2π)D
as before

1

sD/2
D=4
=

1

16π2s2
. (8.16)

This term will renormalize the charge density

ρ(x) =
〈
ψ†ψ(x)

〉
= trγ0G(x, x),

for which we must add a counterterm (in fact, it is accounted for by the counterterm

for the gauge field kinetic term, i.e. the running of the gauge coupling). But it will not

affect the axial current conservation which is proportional to

tr
(
γ5G(x, x)

)
|A=0 ∝ trγ5 = 0.

Similarly, bringing down more powers of (∂ + A)2 doesn’t give something nonzero

since the γ5 remains.

In D = 4, the first term from expanding ΣµνF
µν is still zero from the spinor trace.

(Not so in D = 2.) The first nonzero term comes from the next term:

tr

(
γ5e
−s
(
i /D
)2
)
xx

=
〈
x|e−s(iD)2

|x
〉

︸ ︷︷ ︸
(8.16)

= 1
16π2s2

+O(s−1)

·s
2

8
· (i2) tr

(
γ5ΣµνΣρλ

)︸ ︷︷ ︸
=4εµνρλ

· trc︸︷︷︸
color

(FµνFρλ) +O(s1) .

In the abelian case, just ignore the trace over color indices, trc. The terms that go like

positive powers of s go away in the continuum limit. Therefore

∂µJ
µ
5 = −2 · 1

16π2s2
· s

2

8
· 4εµνρλtrcFµνFρλ +O(s1) = − 1

8π2
trFµν (?F )µν . (8.17)

(Here (?F )µν ≡ 1
8
εµνρλFρλ.) This is the chiral anomaly formula. It can also be usefully

written as:

∂µJ
µ
5 = − 1

8π2
trF ∧ F = − 1

32π2
~E · ~B.
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• This object on the RHS is a total derivative. In the abelian case it is

F ∧ F = d (A ∧ F ) .

Its integral over spacetime is a topological (in fact 16π2 times an integer) char-

acterizing the gauge field configuration. How do I know it is an integer? The

anomaly formula! The change in the number of left-handed fermions minus the

number of right-handed fermions during some time interval is:

∆QA ≡ ∆ (NL −NR) =

∫
dt∂tJ

5
0 =

∫
M4

∂µJ5
µ = 2

∫
M4

F ∧ F
16π2

where M4 is the spacetime region under consideration. If nothing is going on at

the boundaries of this spacetime region (i.e. the fields go to the vacuum, or there

is no boundary, so that no fermions are entering or leaving), we can conclude

that the RHS is an integer.

• Look back at the diagrams in (8.12). Which term in that expansion gave the

nonzero contribution to the axial current violation? In D = 4 it is the diagram

with three current insertions, the ABJ triangle diagram. So in fact we did end

up computing the triangle diagram. But this calculation also shows that nothing

else contributes, even non-perturbatively.

• We chose a particular regulator above. The answer we got did not depend on the

cutoff; in fact, whatever regulator we used, we would get this answer.

• Consider what happens if we redo this calculation in other dimensions. We only

consider even dimensions because in odd dimensions there is no analog of γ5

– the Dirac spinor representation is irreducible. In 2n dimensions, we need n

powers of F to soak up the indices on the epsilon tensor. Actually there is an

analogous phenomenon in odd dimensions (sometimes called parity anomaly) of

an effect that is independent of the masses of the fields which you’ll study on the

homework. Instead of F n, the thing that appears is the Chern-Simons term.

• If we had kept the non-abelian structure in (8.10) through the whole calculation,

the only difference is that the trace in (8.17) would have included a trace over

representations of the gauge group; and we could have considered also a non-

abelian flavor transformation

ψI →
(
eiγ5gaτa

)
IJ
ψJ

for some flavor rotation generator τa. Then we would have found:

∂µj5a
µ =

1

16π2
εµνρλFA

µνF
B
ρλtrc,a

(
TATBτa

)
.
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A similar statement applies to the case of multiple species of fermion fields: their

contributions to the anomaly add. Sometimes they can cancel; the Electroweak

gauge interactions are an example of this.

8.2.2 Zeromodes of the Dirac operator

Do you see now why I said that the step involving the fermion Green’s function was full

of danger? The danger arises because the Dirac operator (whose inverse is the Green’s

function) can have zeromodes, eigenspinors with eigenvalue εn = 0. In that case, i /D is

not invertible, and the expression (8.14) for G is ambiguous. This factor of εn is about

to be cancelled when we compute the divergence of the current and arrive at (8.11).

Usually this kind of thing is not a problem because we can lift the zeromodes a little

and put them back at the end. But here it is actually hiding something important. The

zeromodes cannot just be lifted. This is true because nonzero modes of i /D must come

in left-right pairs: this is because {γ5, i /D} = 0, so i /D and γ5 cannot be simultaneously

diagonalized in general. That is: if i /Dξ = εξ then (γ5ξ) is also an eigenvector of i /Dξ,

with eigenvalue −ε. Only for ε = 0 does this fail, so zeromodes can come by themselves.

So you can’t just smoothly change the eigenvalue of some ξ0 from zero unless it has a

partner with whom to pair up. By taking linear combinations

χL/Rn =
1

2

(
1± γ5

)
ξn

these two partners can be arranged into a pair of simultaneous eigenvectors of (i /D)2

(with eigenvalue ε2n) and of γ5 with γ5 = ± respectively.

This leads us to a deep fact, called the (Atiyah-Singer) index theorem: only zero-

modes can contribute to the anomaly. Any mode ξn with nonzero eigenvalue has a

partner (with the same eigenvalue of (i /D)2) with the opposite sign of γ5; hence they

cancel exactly in

trγ5e−s(i /D)2

=
∑
n,L/R

χ̄L/Rn γ5χL/Rn e−sε
2
n + zeromodes .

So the anomaly equation tells us that the number of zeromodes of the Dirac operator,

weighted by handedness (i.e. with a + for L and - for R) is equal to

NL −NR =

∫
dDxA(x) =

∫
1

16π2
F ∧ F.

A practical consequence for us is that it makes manifest that the result is indepen-

dent of the regulator s.
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8.2.3 The physics of the anomaly

[Polyakov, page 102; Kaplan 0912.2560 §2.1; Alvarez-Gaumé] Consider non-relativistic

free (i.e. no 4-fermion interactions) fermions in 1+1 dimensions, e.g. with 1-particle

dispersion ωk = 1
2m
~k2. The groundstate of N such fermions is described by filling the

N lowest-energy single particle levels, up the Fermi momentum: |k| ≤ kF are filled.

We must introduce an infrared regulator so that the levels are discrete – put them in a

box of length L, so that kn = 2πn
L

. (In Figure 3, the red circles are possible 1-particle

states, and the green ones are the occupied ones.) The lowest-energy excitations of

this groundstate come from taking a fermion just below the Fermi level k = |kF − k1|
and putting it just above, k = |kF + k2|; the energy cost is

Ek1−k2 =
1

2m
(kF + k1)2 − 1

2m
(kF − k2)2 ' kF

m
(k1 − k2)

The energy – we get relativistic dispersion with velocity vF = kF
m

. The fields near these

Fermi points in k-space satisfy the Dirac equation63:

(ω − vF δk)ψL = 0, (ω + vF δk)ψR = 0

where δk ≡ k − kF .

63This example is worthwhile for us also because we see the relativistic Dirac equation is emerging

from a non-relativistic model; in fact we could have started from an even more distant starting point

– e.g. from a lattice model, like

H = −t
∑
n

c†ncn+1 + h.c.

where the dispersion would be ωk = −2t (cos ka− 1) ∼ 1
2mk

2 +O(k4) with 1
2m = ta2.
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Figure 3: Green dots represent oc-

cupied 1-particle states. Top: In the

groundstate. Bottom: After applying

Ex(t).

It would therefore seem to imply a conserved

axial current – the number of left moving fermions

minus the number of right moving fermions. But

the fields ψL and ψR are not independent; with

high-enough energy excitations, you reach the bot-

tom of the band (near k = 0 here) and you can’t

tell the difference. This means that the numbers

are not separately conserved.

We can do better in this 1+1d example and

show that the amount by which the axial current

is violated is given by the anomaly formula. Con-

sider subjecting our poor 1+1d free fermions to an

electric field Ex(t) which is constant in space and

slowly varies in time. Suppose we gradually turn

it on and then turn it off; here gradually means

slowly enough that the process is adiabatic. Then

each particle experiences a force ∂tp = eEx and its

net change in momentum is

∆p = e

∫
dtEx(t).

This means that the electric field puts the fermions in a state where the Fermi surface

k = kF has shifted to the right by ∆p, as in the figure. Notice that the total number

of fermions is of course the same – charge is conserved.

Now consider the point of view of the low-energy theory at the Fermi points. This

theory has the action

S[ψ] =

∫
dxdtψ̄ (iγµ∂µ)ψ ,

where γµ are 2 × 2 and the upper/lower component of ψ creates fermions near the

left/right Fermi point. In the process above, we have added NR right-moving particles

and taken away NL left-moving particles, that is added NL left-moving holes (aka anti-

particles). The axial charge of the state has changed by

∆QA = ∆(NL−NR) = 2
∆p

2π/L
=
L

π
∆p =

L

π
e

∫
dtEx(t) =

e

π

∫
dtdxEx =

e

2π

∫
εµνF

µν

On the other hand, the LHS is ∆QA =
∫
∂µJAµ . We can infer a local version of this

equation by letting E vary slowly in space as well, and we conclude that

∂µJ
µ
A =

e

2π
εµνF

µν .

This agrees exactly with the anomaly equation in D = 1+1 produced by the calculation

above in (8.15) (see the homework).
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9 Effective field theory

9.1 A parable on integrating out degrees of freedom

Here’s a second parable from QM which gives some useful perspective on renormaliza-

tion in QFT and on the notion of effective field theory.

[Banks p. 138] Consider a system of two coupled harmonic oscillators. We will as-

sume one of the springs is much stiffer than the other: let’s call their natural frequencies

ω0,Ω, with ω0 � Ω. The euclidean-time action is

S[Q, q] =

∫
dt

[
1

2

(
q̇2 + ω2

0q
2
)

+
1

2

(
Q̇2 + Ω2Q2

)
+ gQq2

]
≡ Sω0 [q]+SΩ[Q]+Sint[Q, q].

(The particular form of the q2Q coupling is chosen for convenience. Don’t take too

seriously the physics at negative Q.) We can construct physical observables in this

model by studying the path integral:

Z =

∫
[dQdq]e−S[Q,q].

Since I put a minus sign rather than an i in the exponent (and the potential terms in

the action have + signs), this is a euclidean path integral.

Let’s consider what happens if we do the path integral over the heavy mode Q, and

postpone doing the path integral over q. This step, naturally, is called integrating out

Q, and we will see below why this is a good idea. The result just depends on q; we can

think of it as an effective action for q:

e−Seff[q] :=

∫
[dQ]e−S[q,Q]

= e−Sω0 [q]
〈
e−Sint[Q,q]

〉
Q

Here 〈...〉Q indicates the expectation value of ... in the (free) theory of Q, with the

action SΩ[Q]. It is a gaussian integral (because of our choice of Sint:〈
e−Sint[Q,q]

〉
Q

=

∫
[dQ]e−SΩ[Q]−

∫
dsJ(s)Q(s) = N e

1
4

∫
dsdtJ(s)G(s,t)J(t) .

This last equality is an application of the ‘fundamental theorem of path integrals,’

i.e. the gaussian integral. Here J(s) ≡ gq(s)2. The normalization factor N is indepen-

dent of J and hence of q. And G(s, t) is the inverse of the linear operator appearing in

SΩ, the euclidean Green’s function:

SΩ[Q] =

∫
dsdtQ(s)G−1(s, t)Q(t).
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More usefully, G satisfies (
−∂2

s + Ω2
)
G(s, t) = δ(s− t)

The fact that our system is time-translation invariant means G(s, t) = G(s − t). We

can solve this equation in fourier space: G(s) =
∫

d̄ωe−iωsGω makes it algebraic:

Gω =
1

ω2 + Ω2

and we have

G(s) =

∫
d̄ωe−iωs 1

ω2 + Ω2
. (9.1)

So we have:

e−Seff[q] = e−Sω0 [q]e−
∫
dtds g

2

2
q(s)2G(s,t)q(t)2

or taking logs

Seff[q] = Sω0 [q] +

∫
dtds

g2

2
q(s)2G(s, t)q(t)2 . (9.2)

Q mediates an interaction of four qs, an anharmonic term, a

self-interaction of q. In Feynman diagrams, the leading inter-

action between q’s mediated by Q comes from the diagram

at left.
And the whole thing comes from exponentiating disconnected copies of this diagram.

There are no other diagrams: once we make a Q from two qs what can it do besides

turn back into two qs? Nothing. And no internal q lines are allowed, they are just

sources, for the purposes of the Q integral.

But it is non-local: we have two integrals over the time in the new quartic term.

This is unfamiliar, and bad: e.g. classically we don’t know how to pose an initial value

problem using this action.

But now suppose we are interested in times much longer than 1/Ω, say times com-

parable to the period of oscillation of the less-stiff spring 2π/ω. We can accomplish

this by Taylor expanding under the integrand in (9.1):

G(s)
s�1/Ω
'

∫
d̄ωe−iωs 1

Ω2

1

1 + ω2

Ω2︸ ︷︷ ︸
=
∑
n(−1)n

(
ω2

Ω2

)n
' 1

Ω2
δ(s) +

1

Ω4
∂2
sδ(s) + ...

Plug this back into (9.2):

Seff[q] = Sω0 [q] +

∫
dt

g2

2Ω2
q(t)4 +

∫
dt

g2

2Ω4
q̇2q2 + ...
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The effects of the heavy mode Q are now organized in a derivative expansion, with

terms involving more derivatives suppressed by more powers of the high energy scale

Ω.

+ · · · (9.3)

A useful mnemonic for integrating out the effects of the heavy field in terms of Feynman

diagrams: to picture Q as propagating for only a short time (compared to the external

time t−s), we can contract its propagator to a point. The first term on the RHS shifts

the q4 term, the second shifts the kinetic term, the third involves four factors of q̇...

On the RHS of this equation, we have various interactions involving four qs, which

involve increasingly many derivatives. The first term is a quartic potential term for

q: ∆V = g
Ω2 q

4; the leading effect of the fluctuations of Q is to shift the quartic self-

coupling of q by a finite amount (note that we could have included a bare λ0q
4 potential

term).

Notice that if we keep going in this expansion, we get terms with more than two

derivatives of q. This is OK. We’ve just derived the right way to think about such

terms: we treat them as a perturbation, and they are part of a never-ending series of

terms which become less and less important for low-energy questions. If we want to

ask questions about x at energies of order ω, we can get answers that are correct up

to effects of order
(
ω
Ω

)2n
by keeping the nth term in this expansion.

Conversely if we are doing an experiment with precision ∆ at energy ω, we can

measure the effects of up to the nth term, with(ω
Ω

)2n

∼ ∆.

Another important lesson: Seff[q] contains couplings with negative dimensions of

energy ∑
n

cn (∂nt q)
2 q2, with cn ∼

1

Ω2n
,

exactly the situation where the S-matrix grows too fast at high energies that we dis-

cussed at (5.12). In this case we know exactly where the probability is going: if we

have enough energy to see the problem E ∼ Ω, we have enough energy to kick the

heavy mode Q out of its groundstate.
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9.1.1 Attempt to consolidate understanding

We’ve just done some coarse graining: focusing on the dofs we care about (q), and

actively ignoring the dofs we don’t care about (Q), except to the extent that they

affect those we do (e.g. the self-interactions of q).

Above, we did a calculation in a QM model with two SHOs. This is a paradigm

of QFT in many ways. For one thing, free quantum fields are bunches of harmonic

oscillators with natural frequency depending on k, Ω =
√
~k2 +m2. Here we kept just

two of these modes (one with large k, one with small k) for clarity. Perhaps more

importantly, QM is just QFT in 0+1d. The more general QFT path integral just

involves more integration variables. The idea of the Wilsonian RG (for continuum

field theory) is essentially to do the integrals over the modes in descending order of

wavenumber, and at each stage make the expansion described above to get a local

action. And notice that basically all possible terms are generated, consistent with the

symmetries (here for example, there is a Z2 symmetry under which q → −q, so there

are no odd powers of q). Alas, this is all I’ll say about it until Physics 217 in Fall 2018.

The result of that calculation was that fluctuations of Q mediate various q4 inter-

actions. It adds to the action for q the following: ∆Seff[q] ∼
∫
dtdsq2(t)G(t− s)q2(s),

as in Fig. 9.3.

If we have the hubris to care about the exact answer, it’s nonlocal in time. But

if we want exact answers then we’ll have to do the integral over q, too. On the other

hand, the hierarchy of scales ω0 � Ω is useful if we ask questions about energies of

order ω0, e.g.

〈q(t)q(0)〉 with t ∼ 1

ω0

� Ω

Then we can Taylor expand the function G(t − s), and we find a series of corrections

in powers of 1
tΩ

(or more accurately, powers of ∂t
Ω

).

(Notice that it’s not so useful to integrate out light degrees of freedom to get an

action for the heavy degrees of freedom; that would necessarily be nonlocal and stay

nonlocal and we wouldn’t be able to treat it using ordinary techniques.)

The crucial point is that the scary non-locality of the effective action that we saw

only extends a distance of order 1
Ω

; the kernel G(s − t) looks like this:

The mechanism we’ve just discussed is

an essential ingredient in getting any physics

done at all. Why can we do physics despite

the fact that we do not understand the the-
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ory of quantum gravity which governs Planck-

ian distances? We happily do lots of physics

without worrying about this! This is because

the effect of those Planckian quantum gravity

fluctuations – whatever they are, call them Q – on the degrees of freedom we do care

about (e.g. the Standard Model, or an atom, or the sandwich you made this morning,

call them collectively q) are encoded in terms in the effective action of q which are

suppressed by powers of the high energy scale MPlanck, whose role in the toy model is

played by Ω. And the natural energy scale of your sandwich is much less than MPlanck.

I picked the Planck scale as the scale to ignore here for rhetorical drama, and

because we really are ignorant of what physics goes on there. But this idea is equally

relevant for e.g. being able to describe water waves by hydrodynamics (a classical

field theory) without worrying about atomic physics, or to understand the physics of

atoms without needing to understand nuclear physics, or to understand the nuclear

interactions without knowing about the Higgs boson, and so on deeper into the onion

of physics.

This wonderful situation, which makes physics possible, has a price: since physics

at low energies is so insensitive to high energy physics, it makes it hard to learn about

high energy physics! People have been very clever and have learned a lot in spite of

this vexing property of the RG called decoupling. We can hope that will continue.

(Cosmological inflation plays a similar role in hiding the physics of the early universe.

It’s like whoever designed this game is trying to hide this stuff from us.)

The explicit functional form of G(s) (the inverse of the (euclidean) kinetic operator

for Q) is:

G(s) =

∫
d̄ω

e−iωs

ω2 + Ω2
= e−Ω|s| 1

2Ω
. (9.4)

Do it by residues: the integrand has poles at ω = ±iΩ. The absolute value of |s| is

crucial, and comes from the fact that the contour at infinity converges in the upper

(lower) half plane for s < 0 (s > 0).

Next, some comments about ingredients in this discussion, which provide a useful

opportunity to review/introduce some important QFT technology:

• Please don’t be confused by the formal similarity of the above manipulations with

the construction of the generating functional of correlation functions of Q:

Z[J ] ≡
〈
e
∫
dtQ(t)J(t)

〉
Q
, 〈Q(t1)Q(t2)...〉Q =

δ

δJ(t1)

δ

δJ(t2)
... logZ[J ]
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It’s true that what we did above amounts precisely to constructing Z[J ], and

plugging in J = g0q
2. But the motivation is different: in the above q is also a

dynamical variable, so we don’t get to pick q and differentiate with respect to it;

we are merely postponing doing the path integral over q until later.

• Having said that, what is this quantity G(s) above? It is the (euclidean) two-

point function of Q:

G(s, t) = 〈Q(s)Q(t)〉Q =
δ

δJ(t)

δ

δJ(s)
logZ[J ].

The middle expression makes it clearer that G(s, t) = G(s − t) since nobody

has chosen the origin of the time axis in this problem. This euclidean Green’s

function, the inverse of −∂2
τ + Ω2, is unique, once we demand that it falls off at

large separation (unlike the real-time Green’s function).

• Adding more labels. Quantum mechanics is quantum field theory in 0+1

dimensions. Except for our ability to do all the integrals, everything we are

doing here generalizes to quantum field theory in more dimensions: quantum

field theory is quantum mechanics (with infinitely many degrees of freedom).

With more spatial dimensions, we’ll want to use the variable x for the spatial

coordinates (which are just labels on the fields!) and it was in anticipation of

this step that I used q instead of x for my oscillator position variables.

9.2 Introduction to effective field theory

[Some nice lecture notes on effective field theory can be found here: J. Polchinski,

A. Manohar, I. Rothstein, D. B. Kaplan, H. Georgi. Aneesh Manohar has written an

excellent and provocative new set of lectures from last year’s Les Houches school which

should appear on the arXiv sometime soon.]

Diatribe about ‘renormalizability’. Taking the example of the previous subsec-

tion to its logical conclusion, we are led to the idea of an effective field theory (EFT).

(The Wilsonian perspective on renormalization – namely that we should include all

possible operators consistent with symmetries and let dimensional analysis and the

dynamics decide which are important at low energies – makes this idea even more

inevitable.) There is no reason to demand that a field theory that we have found to

describe physics in some regime should be a valid description of the world to arbitrarily

short (or long!) distances. This is a happy statement: there can always be new physics

that has been so far hidden from us. Rather, an EFT comes with a regime of validity,

and with necessary cutoffs. As we will discuss, in a useful implementation of an EFT,
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the cutoff implies a small parameter in which we can expand (and hence compute). (In

the example of Seff[q] of the previous subsection, the small parameter is ω/Ω.)

Caring about renormalizibility is pretending to know about physics at arbitrarily

short distances. Which you don’t.

Even when theories are renormalizable, this apparent victory is often false. For

example, QED requires only two independent counterterms (for the mass and for the

fine structure constant), and is therefore by the old-fashioned definition renormalizable,

but it is superseded by the electroweak theory above 80GeV. Also: the coupling in QED

actually increases logarithmically at shorter distances, and ultimately reaches a Landau

pole at SOME RIDICULOUSLY HIGH ENERGY (of order e+ c
α where α ∼ 1

137
is the

fine structure constant (e.g. at the scale of atomic physics) and c is some numerical

number. Plugging in numbers gives something like 10330 GeV, which is quite a bit

larger than the Planck scale). This is of course completely irrelevant for physics and

even in principle because of the previous remark about electroweak unification. And

if not because of that, because of the Planck scale. A heartbreaking historical fact is

that Landau and many other smart people gave up on QFT as a whole because of this

silly fantasy about QED in an unphysical regime.

We will see below that even in QFTs which are non-renormalizable in the strict

sense, there is a more useful notion of renormalizability: effective field theories come

with a small parameter (often some ratio of mass scales), in which we may expand the

action. A useful EFT requires a finite number of counterterms at each order in the

expansion.

Furthermore, I claim that this is always the definition of renormalizability that

we are using, even if we are using a theory which is renormalizable in the traditional

sense, which allows us to pretend that there is no cutoff. That is, there could always

be corrections of order
(

E
Enew

)n
where E is some energy scale of physics that we are

doing and Enew is some UV scale where new physics might come in; for large enough

n, this is too small for us to have seen. The property of renormalizibility that actually

matters is that we need a finite number of counterterms at each order in the expansion

in E
Enew

.

Renormalizable QFTs are in some sense less powerful than non-renormalizable ones

– the latter have the decency to tell us when they are giving the wrong answer! That

is, they tell us at what energy new physics must come in; with a renormalizable theory

we may blithely pretend that it is valid in some ridiculously inappropriate regime like

10330 GeV.

Notions of EFT. There is a dichotomy in the way EFTs are used. Sometimes one

knows a lot about the UV theory (e.g.

198



• electroweak gauge theory,

• QCD,

• electrons in a solid,

• water molecules

...) but it is complicated and unwieldy for the questions one wants to answer, so instead

one develops an effective field theory involving just the appropriate and important dofs

(e.g., respectively,

• Fermi theory of weak interactions,

• chiral lagrangian (or HQET or SCET or ...),

• Landau Fermi liquid theory (or the Hubbard model or a topological field theory

or ...),

• hydrodynamics (or some theory of phonons in ice or ...)

...). As you can see from the preceding lists of examples, even a single UV theory

can have many different IR EFTs depending on what phase it is in, and depending on

what question one wants to ask. The relationship between the pairs of theories above

is always coarse-graining from the UV to the IR, though exactly what plays the role

of the RG parameter can vary wildly. For example, in the example of the Fermi liquid

theory, the scaling is ω → 0, and momenta scale towards the Fermi surface, not ~k = 0.

A second situation is when one knows a description of some low-energy physics up

to some UV scale, and wants to try to infer what the UV theory might be. This is a

common situation in physics! Prominent examples include: the Standard Model, and

quantized Einstein gravity. Occasionally we (humans) actually learn some physics and

an example of an EFT from the second category moves to the first category.

Instructions for EFT. Answer the following questions:

1. what are the dofs?

2. what are the symmetries?

3. where is the cutoff on its validity?

Then write down all interactions between the dofs which preserve the symmetry in an

expansion in derivatives, with higher-dimension operators suppressed by more powers

of the UV scale.
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I must also emphasize two distinct usages of the term ‘effective field theory’ which

are common, and which the discussion above is guilty of conflating (this (often slip-

pery) distinction is emphasized in the review article by Georgi linked at the beginning

of this subsection). The Wilsonian perspective advocated above produces a low-energy

description of the physics which is really just a way of solving (if you can) the original

model; very reductively, it’s just a physically well-motivated order for doing the inte-

grals. If you really integrate out the high energy modes exactly, you will get a non-local

action for the low energy modes. This is to be contrasted with the local actions one

uses in practice, by truncating the derivative expansion. It is the latter which is really

the action of the effective field theory, as opposed to the full theory, with some of the

integrals done already. The latter will give correct answers for physics below the cutoff

scale, and it will give them much more easily.

Some interesting and/or important examples where EFT has been useful (most of

which we will not discuss explicitly) and where you can learn about them:

• Hydrodynamics [Kovtun]

• Fermi liquid theory [J. Polchinski, R. Shankar, Rev. Mod. Phys. 66 (1994) 129]

• chiral perturbation theory [D. B. Kaplan, §4]

• heavy quark effective theory [D. B. Kaplan, §1.3, Manohar and Wise, Heavy

Quark Physics]

• random surface growth (KPZ) [Zee, chapter VI]

• color superconductors [D. B. Kaplan, §5]

• gravitational radiation from binary mergers [Goldberger, Rothstein, Porto]

• soft collinear effective theory [Becher, Stewart]

• magnets [Zee, chapter VI.5, hep-ph/9311264v1]

• effective field theory of cosmological inflation [Senatore et al, Cheung et al, Porto]

• effective field theory of dark matter direct detection [Fitzpatrick et al]

There are many others, the length of this list was limited by how long I was willing to

spend digging up references.
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9.3 Fermi theory of Weak Interactions

[from §5 of A. Manohar’s EFT lectures] As a first example, let’s think about part of

the Standard Model.

LEW 3 −
1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW−µ)+MWW

+
µ W

−µ (9.5)

− ig√
2
ψ̄iγ

µPLψjW
+
µ Vij + terms involving Z bosons

Some things intermediate, off-shell W bosons can do: µ decay, ∆S = 1 processes,

neutron decay

If we are asking questions with external momenta less than MW , we can integrate

out W and make our lives simpler:

δSeff ∼
(

ig√
2

)2

VijV
?
k`

∫
d̄Dp

−igµν
p2 −M2

W

(
ψ̄iγ

µPLψj
)

(p)
(
ψ̄kγ

νPLψ`
)

(−p)

(I am lying a little bit about the W propagator in that I am not explicitly projecting

out the fourth polarization with the negative residue. Also hidden in my notation is

the fact that the W carries electric charge, so the charges of ψ̄i and ψj in (9.5) must

differ by one.) This is non-local at scales p >∼MW (recall the discussion of the previous

subsection). But for p2 �M2
W ,

1

p2 −M2
W

p2�M2
W' − 1

M2
W

1 +
p2

M2
W

+
p4

M4
W

+ ...︸ ︷︷ ︸
derivative couplings

 (9.6)

SF = −4GF√
2
VijV

?
kl

∫
d4x

(
ψ̄iγ

µPLψj
)

(x)
(
ψ̄kγµPLψ`

)
(x)+O

(
1

M2
W

)
+kinetic terms for fermions

(9.7)

where GF/
√

2 ≡ g2

8M2
W

is the Fermi coupling. We can use this (Fermi’s) theory to

compute the amplitudes above, and it is much simpler than the full electroweak theory
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(for example I don’t have to lie about the form of the propagator of the W-boson like I

did above). It was discovered first and used quite effectively long before the existence

of W s was suspected.

On the other hand, this theory is not the same as the electroweak theory; for

example it is not renormalizable, while the EW theory is. Its point in life is to help

facilitate the expansion in 1/MW . There is something about the expression (9.7) that

should make you nervous, namely the big red 1 in the 1/M2
W corrections: what makes

up the dimensions? This becomes an issue when we ask about ...

9.4 Loops in EFT

I skipped this subsection in lecture. Skip to §9.5. Suppose we try to define the Fermi

theory SF with a euclidean momentum cutoff |kE| < Λ. We expect that we’ll have to

set Λ ∼ MW . A simple example which shows that this is problematic is to ask about

radiative corrections in the 4-Fermi theory to the coupling between the fermions and

the Z (or the photon).

We are just trying to estimate the magnitude of this correction, so don’t worry

about the factors and the gamma matrices:

∼ I ≡ 1

M2
W︸︷︷︸

∝GF

∫ Λ

d̄4k
1

k

1

k
tr (γ...)︸ ︷︷ ︸

∼
∫ Λ kdk∼Λ2∼M2

W

∼ O(1).

Even worse, consider what happens if we use the vertex coming from the
(

p2

M2
W

)`
correction in (9.6)

∼ I` ≡
1

M2
W

∫ Λ

d̄4k
1

k2

(
k2

M2
W

)`
∼ O(1)

– it’s also unsuppressed by powers of ... well, anything. This is a problem.

Fix: A way to fix this is to use a “mass-independent subtraction scheme”, such as

dimensional regularization and minimal subtraction (MS). The crucial feature is that

the dimensionful cutoff parameter appears only inside logarithms (log µ), and not as

free-standing powers (µ2).
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With such a scheme, we’d get instead

I ∼ m2

M2
W

log µ I` ∼
(
m2

M2
W

)`+1

log µ

where m is some mass scale other than the RG scale µ (like a fermion mass parameter,

or an external momentum, or a dynamical scale like ΛQCD).

We will give a more detailed example next. The point is that in a mass-independent

scheme, the regulator doesn’t produce new dimensionful things that can cancel out the

factors of MW in the denominator. It respects the ‘power counting’: if you see 2`

powers of 1/MW in the coefficient of some term in the action, that’s how many powers

will suppress its contributions to amplitudes. This means that the EFT is like a

renormalizable theory at each order in the expansion (here in 1/MW ), in that there is

only a finite number of allowed vertices that contribute at each order (counterterms

for which need to be fixed by a renormalization condition). The insatiable appetite for

counterterms is still insatiable, but it eats only a finite number at each order in the

expansion. Eventually you’ll get to an order in the expansion that’s too small to care

about, at which point the EFT will have eaten only a finite number of counterterms.

There is a price for these wonderful features of mass-independent schemes, which

has two aspects:

• Heavy particles (of mass m) don’t decouple when µ < m. For example, in a

mass-independent scheme for a gauge theory, heavy charged particles contribute

to the beta function for the gauge coupling even at µ� m.

• Perturbation theory will break down at low energies, when µ < m; in the example

just mentioned this happens because the coupling keeps running.

We will show both these properties very explicitly in the next subsection. The solution

of both these problems is to integrate out the heavy particles by hand at µ = m, and

make a new EFT for µ < m which simply omits that field. Processes for which we

should set µ < m don’t have enough energy to make the heavy particles in external

states anyway. (For some situations where you should still worry about them, see

Aneesh Manohar’s notes linked above.)

9.4.1 Comparison of schemes, case study

The case study we will make is the contribution of a charged fermion of mass m to the

running of the QED gauge coupling.
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Recall that the QED Lagrangian is

−1

4
FµνF

µν − ψ̄ (i /D −m)ψ

with Dµ = ∂µ − ieAµ. By redefining the field Fµν = ∂µAν − ∂νAµ by a constant factor

we can move around where the e appears, i.e. by writing Ã = eA, we can make the

gauge kinetic term look like 1
4e2
F̃µνF̃

µν . This means that the charge renormalization

can be seen either in the vacuum polarization, the correction to the photon propagator:

. I will call this diagram iΠµν .

So the information about the running of the coupling is encoded in the gauge field

two-point function:

Πµν ≡ 〈Aµ(p)Aν(q)〉 =
(
pµpν − p2gµν

)
/δ(p+ q)Π(p2) .

The factor Pµν ≡ pµpν − p2gµν is guaranteed to be the polarization structure by the

gauge invariance Ward identity: pµ 〈Aµ(p)Aν(q)〉 = 0. That is: pµPµν = 0, and there

is no other symmetric tensor made from pµ which satisfies this. This determines the

correlator up to a function of p2, which we have called Π(p2).

The choice of scheme shows up in our choice of renormalization condition to impose

on Π(p2):

Mass-dependent scheme: subtract the value of the graph at p2 = −M2 (a very

off-shell, euclidean, momentum). That is, we impose a renormalization condition which

says

Π(p2 = −M2)
!

= 1 (9.8)

(which is the tree-level answer with the normalization above).

The contribution of a fermion of massm and charge e is (factoring out the momentum-

conserving delta function):

p,µ p,ν = −
∫

d̄Dktr

(
(−ieγµ)

−i (/k +m)

k2 −m2
(−ieγν)

−i
(
/p+ /k +m

)
(p+ k)2 −m2

)

The minus sign out front is from the fermion loop. Some boiling, which you can find

in Peskin (page 247) or Zee (§III.7), reduces this to something manageable. The steps

involved are: (1) a trick to combine the denominators, like the Feynman trick 1
AB

=∫ 1

0
dx
(

1
(1−x)A+xB

)2

. (2) some Dirac algebra, to turn the numerator into a polynomial
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in k, p. As Zee says, our job in this course is not to train to be professional integrators.

The result of this boiling can be written

iΠµν = −e2

∫
d̄D`

∫ 1

0

dx
Nµν

(`2 −∆)2

with ` = k+xp is a new integration variable, ∆ ≡ m2−x(1−x)p2, and the numerator

is

Nµν = 2`µ`ν − gµν`2 − 2x(1− x)pµpν + gµν
(
m2 + x(1− x)p2

)
+ terms linear in `µ .

In dim reg, the one-loop vacuum polarization correction satisfies the gauge in-

varaince Ward identity Πµν = P µνδΠ2 (unlike the euclidean momentum cutoff which

is not gauge invariant). A peek at the tables of dim reg integrals shows that δΠ2 is:

δΠ2(p2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

))
(9.9)

where we have introduced the heralded µ:

µ2 ≡ 4πµ̄2e−γE

where γE is the Euler-Mascheroni constant. In the second line of (9.9), we expanded

the Γ-function about D = 4; there are other singularities at other integer dimensions.

Mass-dependent scheme: Now back to our discussion of schemes. I remind you

that in a mass-independent scheme, we demand that the counterterm cancels δΠ2 when

we set the external momentum to p2 = −M2, so that the whole contribution at order

e2 is :

0
(9.8)!
= Π

(M)
2 (p2 = −M2) = δ

(M)

F 2︸︷︷︸
counterterm coefficient for 1

4
FµνFµν

+δΠ2

=⇒ Π
(M)
2 (p2) =

e2

2π2

∫
dxx(1− x) log

(
m2 − x(1− x)p2

m2 + x(1− x)M2

)
.

Notice that the µs go away in this scheme.

Mass-Independent scheme: This is to be contrasted with what we get in a mass-

independent scheme, such as MS, in which Π is defined by the rule that we subtract

the 1/ε pole. This means that the counterterm is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

.
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(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction

between µ̄ and µ.) The resulting vacuum polarization function is

Π
(MS)
2 (p2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)p2

µ2

)
.

Next we will talk about beta functions, and verify the claim above about the failure

of decoupling. First let me say some words about what is failing. What is failing – the

price we are paying for our power counting – is the basic principle of the RG, namely

that physics at low energies shouldn’t care about physics at high energies, except for

small corrections to couplings. An informal version of this statement is: you don’t need

to know about nuclear physics to make toast. A more formal version is the Appelquist-

Carazzone Decoupling Theorem, which I will not state (Phys. Rev. D11, 28565 (1975)).

So it’s something we must and will fix.

Beta functions. M : First in the mass-dependent scheme. Demanding that

physics is independent of our made-up RG scale, we find

0 = M
d

dM
Π

(M)
2 (p2) =

(
M

∂

∂M
+ β(M)

e e
∂

∂e

)
Π

(M)
2 (p2) =

(
M

∂

∂M
+ β(M)

e ·2︸︷︷︸
to this order

)
Π

(M)
2 (p2)

where I made the high-energy physics definition of the beta function64:

β(M)
e ≡ 1

e
(M∂Me) = −∂`e

e
, M ≡ e−`M0 .

Here ` is the RG time again, it grows toward the IR. So we find

β(M)
e = −1

2

(
e2

2π

)∫ 1

0

dxx(1− x)

(
−2M2x(1− x)

m2 +M2x(1− x)

)
+O(e3)

m�M' e2

2π2

∫ 1

0
dxx(1− x) = e2

12π2

m�M' e2

2π2

∫ 1

0
dxx(1− x)M

2x(1−x)
m2 = e2

60π2
M2

m2

. (9.10)

MS : 0 = µ
d

dµ
Π

(MS)
2 (p2) =

(
µ
∂

∂µ
+ β(MS)

e e
∂

∂e

)
Π

(MS)
2 (p2) =

(
µ
∂

∂µ
+ β(MS)

e ·2︸︷︷︸
to this order

)
Π

(MS)
2 (p2)

64I’ve defined these beta functions to be dimensionless, i.e. they are ∂logM log(g); this convention

is not universally used.
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=⇒ β(MS)
e = −1

2

e2

2π2

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

µ∂µ log
m2 − p2x(1− x)

µ2︸ ︷︷ ︸
=−2

=
e2

12π2
. (9.11)

Figure 4: The blue curve is the mass-dependent-scheme beta function; at scales M � m, the mass

of the heavy fermion, the fermion sensibly stops screening the charge. The red line is the MS beta

function, which is just a constant, pinned at the UV value.

Also, the MS vacuum polarization behaves for small external momenta like

Π2(p2 � m2) ' − e2

2π2

∫ 1

0

dxx(1− x) log
m2

µ2︸ ︷︷ ︸
�1,for µ�m! bad!

As I mentioned, the resolution of both these prob-

lems is simply to define a new EFT for µ < m

which omits the heavy field. Then the strong cou-

pling problem goes away and the heavy fields do

decouple. The price is that we have to do this by

hand, and the beta function jumps at µ = m; the

coupling is continuous, though.

9.5 The Standard Model as an EFT.

The Standard Model. [Schwartz, §29]
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L =

(
νL
eL

)
eR νR Q =

(
uL
dL

)
uR dR H

SU(3) - - - 2 2 2 -

SU(2) 2 - - 2 - - 2
U(1)Y −1

2
−1 0 1

6
2
3
−1

3
1
2

Table 1: The Standard Model fields and their quantum numbers under the gauge group. 2 indicates

fundamental representation, - indicates singlet. Except for the Higgs, each column is copied three

times; each copy is called a generation. Except for the Higgs all the matter fields are Weyl fermions

of the indicated handedness. Gauge fields as implied by the gauge groups. (Some people might leave

out the right-handed neutrino, νR.)

Whence the values of the charges under the U(1) (“hypercharge”)? The condition

YL + 3YQ = 0 (where Y is the hypercharge) is required by anomaly cancellation. This

implies that electrons and protons p = εijkuiujdk have exactly opposite charges of the

same magnitude.

The Lagrangian is just all the terms which are invariant under the gauge group

SU(3) × SU(2) × U(1) with dimension less than or equal to four – all renormalizable

terms. This includes a potential for the Higgs, V (|H|) = m2
H |H|2 + λ|H|4, where it

turns out that m2
H ≤ 0. The resulting Higgs vacuum expectation value breaks the

Electroweak part of the gauge group

SU(2)× U(1)Y
〈H〉
 U(1)EM .

The broken gauge bosons get masses from the Higgs kinetic term

|DµH|2|
H=

 0

v/
√

2

 with DµH =

(
∂µ − igW a

µ τ
a − 1

2
ig′Yµ

)
H

where Yµ is the hypercharge gauge boson, and W a, a = 1, 2, 3 are the SU(2) gauge

bosons. There are two massive W -bosons with electric charge ±1 (as described in

§9.3), with MW = vg
2

. The photon and Z boson are the linear combinations of Y and

W 3 which diagonalize the remaining mass terms:(
Aµ
Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
W 3
µ

Yµ

)
.

Here tan θw ≡ g′

g
defines the Weinberg angle. The masses are Mγ = 0 and MZ =

MW

cos θw
< MW .

Fermion masses come from (dimension-four) Yukawa couplings

LYukawa = −Y `
ijL̄iHe

j
R − Y

u
ij Q̄

iHdjR − Y
d
ijQ̄

i
(
iτ 2H?

)
ujR + h.c.
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The contortion with the τ 2 is required to make a hypercharge invariant. Plugging in

the Higgs vev to e.g. the lepton terms gives −meēLeR+h.c. with me = yev/
√

2. There’s

lots of drama about the matrices Y which can mix the generations. the mass for the

νR (which maybe could not exist – it doesn’t have any charges at all) you’ll figure out

on the homework.

Here is a useful mnemonic for remembering the table of quantum numbers (possibly

it is more than that): There are larger simple Lie groups that contain the SM gauge

group as subgroups:

SU(3)× SU(2)× U(1)Y ⊂ SU(5) ⊂ SO(10)

one generation = 10⊕ 5̄⊕ 1 = 16

The singlet of SU(5) is the right-handed neutrino, but if we include it, one generation is

an irreducible (spinor) representation of SO(10). This idea is called grand unification.

It is easy to imagine that the gauge group is actually the larger groups on the right,

and another instance of the Higgs mechanism accomplishes the breaking down to the

Standard Model. (The running of the respective gauge couplings go in the right direc-

tion with approximately the right rate to unify to a single value at MGUT ∼ 1016GeV .)

Notice that this idea means leptons and quarks are in the same representations – they

can turn into each other. This predicts that the proton should not be perfectly stable.

Next we’ll say more about this.

Beyond the Standard Model with EFT. At what energy does the Standard

Model stop working? Because of the annoying feature of renormalizibility, it doesn’t

tell us. However, we have experimental evidence against a cutoff on the Standard

Model (SM) at energies less than something like 10 TeV. The evidence I have in mind

is the absence of interactions of the form

δL =
1

M2

(
ψ̄Aψ

)
·
(
ψ̄Bψ

)
(where ψ represent various SM fermion fields and A,B can be various gamma and

flavor matrices) with M <∼ 10 TeV. Notice that I am talking now about interactions

other than the electroweak interactions, which as we’ve just discussed, for energies

above MW ∼ 80GeV cannot be treated as contact interactions – you can see the W s

propagate!

If such operators were present, we would have found different answers for exper-

iments at LEP. But such operators would be present if we consider new physics in

addition to the Standard Model (in most ways of doing it) at energies less than 10

TeV. For example, many interesting ways of coupling in new particles with masses

that make them accessible at the LHC would have generated such operators.
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A little more explicitly: the Standard Model Lagrangian L0 contains all the renor-

malizable (i.e. engineering dimension ≤ 4) operators that you can make from its fields

(though the coefficients of the dimension 4 operators do vary through quite a large

range, and the coefficients of the two relevant operators – namely the identity operator

which has dimension zero, and the Higgs mass, which has engineering dimension two,

are strangely small, and so is the QCD θ angle).

To understand what lies beyond the Standard Model, we can use our knowledge

that whatever it is, it is probably heavy (it could also just be very weakly coupled,

which is a different story), with some intrinsic scale Λnew, so we can integrate it out

and include its effects by corrections to the Standard Model:

L = L0 +
1

Λnew

O(5) +
1

Λ2
new

∑
i

ciO(6)
i + · · ·

where theOs are made of SM fields, and have the indicated engineering dimensions, and

preserve the necessary symmetries of the SM (Lorentz symmetry and gauge invariance).

In fact there is only one kind of operator of dimension 5 meeting these demands:

O(5) = c5εij
(
L̄c
)i
HjεklL

kH l

where H i = (h+, h0)i is the SU(2)EW Higgs doublet and Li = (νL, eL)i is an SU(2)EW
doublet of left-handed leptons, and L̄c ≡ LTC where C is the charge conjugation

matrix. (I say ‘kind of operator’ because we can have various flavor matrices in here.)

On the problem set you get to see from whence such an operator might arise, and what

it does if you plug in the higgs vev 〈H〉 = (0, v). This term violates lepton number

symmetry (L→ eiαLL,Q→ Q,H → H).

At dimension 6, there are operators that directly violate baryon number, such as

εαβγ(ūR)cα(uR)β (ūR)cγ eR.

You should read the above tangle of symbols as ‘qqq`’ – it turns three quarks into a

lepton. The epsilon tensor makes a color SU(3) singlet; this thing εqqq has the quantum

numbers of a baryon, such as the proton and neutron. The long lifetime of the proton

(you can feel it in your bones – see Zee p. 413) then directly constrains the scale of

new physics appearing in front of this operator.

Two more comments about this:

• If we didn’t know about the Standard Model, (but after we knew about QM and

GR and EFT (the last of which people didn’t know before the SM for some rea-

son)) we should have made the estimate that dimension-5 Planck-scale-suppressed
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operators like 1
MPlanck

pO would cause proton decay (into whatever O makes). This

predicts Γp ∼
m3
p

M2
Planck

∼ 10−13s−1 which is not consistent with our bodies not glow-

ing. Actually it is a remarkable fact that there are no gauge-invariant operators

made of SM fields of dimension less than 6 that violate baryon number symmetry

(L → L,Q → eiαBQ,H → H). This is an emergent symmetry, expected to be

violated by the UV completion.

• Surely nothing can prevent ∆L ∼
(

1
MPlanck

)2

qqq`. Happily, this is consistent

with the observed proton lifetime.

There are ∼ 102 dimension 6 operators that preserve baryon number, and therefore

are not as tightly constrained65. (Those that induce flavor-changing processes in the

SM are more highly constrained and must have Λnew > 104 TeV.) Two such operators

are considered equivalent if they differ by something which vanishes by the tree-level

SM equations of motion. This is the right thing to do, even for off-shell calculations

(like green’s functions and for fields running in loops). You know this from a previous

problem set: the EOM are true as operator equations – Ward identities resulting from

being free to change integration variables in the path integral66.

65Recently, humans have gotten better at counting these operators. See this paper.
66There are a few meaningful subtleties here, as you might expect if you recall that the Ward identity

is only true up to contact terms. The measure in the path integral can produce a Jacobian which

renormalizes some of the couplings; the changes in source terms will drop out of S-matrix elements

(recall our discussion of changing field variables in the Consequences of Unitarity section.) but can

change the form of Green’s functions. For more information on the use of eom to eliminate redundant

operators in EFT, see Arzt, hep-ph/9304230 and Georgi, “On-Shell EFT”.
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9.6 The color of the sky

[from hep-ph/9606222 and nucl-th/0510023] Why is the sky blue? Basically, it’s be-

cause the blue light from the sun scatters in the atmosphere more than the red light,

and you (I hope) only look at the scattered light.

Here is an understanding of this fact using the EFT logic. Consider the scattering

of photons off atoms (in a gas) at low energies. Low energy means that the photon

does not have enough energy to probe the substructure of the atom – it can’t excite

the electrons or the nuclei. This means that the atom is just a particle, with some

mass M .

The dofs are just the photon field and the field that creates an atom.

The symmetries are Lorentz invariance and charge conjugation invariance and par-

ity. We’ll use the usual redundant description of the photon which has also gauge

invariance.

The cutoff is the energy ∆E that it takes to excite atomic energy levels we’ve left

out of the discussion. We allow no inelastic scattering. This means we require

Eγ � ∆E ∼ α

a0

� a−1
0 �Matom (9.12)

Because of this separation of scales, we can also ignore the recoil of the atom, and treat

it as infinitely heavy.

Since there are no charged objects in sight – atoms are neutral – gauge invariance

means the Lagrangian can depend on the field strength Fµν . Let’s call the field which

destroys an atom with velocity v φv. v
µvµ = 1 and vµ = (1, 0, 0, 0)µ in the atom’s rest

frame. The (Lorentz-singlet) Lagrangian can depend on vµ. We can write a Lagrangian

for the free atoms as

Latom = φ†viv
µ∂µφv .

This action is related by a boost to the statement that the atom at rest has zero energy

– in the rest frame of the atom, the eom is just ∂tφv=(1,~0) = 0. (If we didn’t define the

zero of energy to be at the rest mass, there would be an additional term Matomφ
†
vφv.)

Notice that the kinetic term φ†v
~∇2

2Matom
φv is a very small correction given our hierarchy

of scales (9.12).

So the Lagrangian density is

LMaxwell[A] + Latom[φv] + Lint[A, φv]

and we must determine Lint. It is made from local, Hermitian, gauge-invariant, Lorentz

invariant operators we can construct out of φv, Fµν , vµ, ∂µ (it can only depend on Fµν =
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∂µAν − ∂νAµ, and not Aµ directly, by gauge invariance, because the atom, and hence

φv, is neutral.). It should actually only depend on the combination φ†vφv since we will

not create and destroy atoms. (Notice that we didn’t have to specify the statistics of

the atoms or φv.) Therefore

Lint = c1φ
†
vφvFµνF

µν + c2φ
†
vφvv

σFσµvλF
λµ + c3φ

†
vφv
(
vλ∂λ

)
FµνF

µν + . . .

. . . indicates terms with more derivatives and more powers of velocity (i.e. an expansion

in ∂ · v). Which are the most important terms at low energies? Demanding that the

Maxwell term dominate, we get the power counting rules (so time and space should

scale the same way):

[∂µ] = 1, [Fµν ] = 2

This then implies [φv] = 3/2, [v] = 0 and therefore

[c1] = [c2] = −3, [c3] = −4 .

Terms with more partials are more irrelevant.

What makes up these dimensions? They must come from the length scales that we

have integrated out to get this description – the size of the atom a0 ∼ αme and the

energy gap between the ground state and the electronic excited states ∆E ∼ α2me.

For Eγ � ∆E, a−1
0 , we can just keep the two leading terms.

In the rest frame of the atom, these two leading terms c1,2 represent just the scat-

tering of E and B respectively. To determine their coefficients one would have to do

a matching calculation to a more complete theory (compute transition rates in a the-

ory that does include extra energy levels of the atom). But a reasonable guess is just

that the scale of new physics (in this case atomic physics) makes up the dimensions:

c1 ' c2 ' a3
0. (In fact the magnetic term c2 comes with extra factor of v/c which

suppresses it.) The scattering cross section then goes like σ ∼ c2
i ∼ a6

0; dimensional

analysis ([σ] = −2 is an area, [a6
0] = −6) then tells us that we have to make up four

powers with the only other scale around:

σ ∝ E4
γa

6
0.

(The factor of E2
γ in the amplitude arises from ~E ∝ ∂t ~A.) Blue light, which has about

twice the energy of red light, is therefore scattered 16 times as much.

The leading term that we left out is the one with coefficient c3. The size of this

coefficient determines when our approximations break down. We might expect this to

come from the next smallest of our neglected scales, namely ∆E. That is, we expect

σ ∝ E4
γa

6
0

(
1 +O

(
Eγ
∆E

))
.

The ratio in the correction terms is appreciable for UV light.
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9.7 Pions

[Schwartz §28.1] Below the scale of electroweak symmetry breaking, we can forget the

W and Z bosons. Besides the 4-Fermi interactions, the remaining drama is QCD and

electromagnetism:

LQCD2 = −1

4
F 2
µν + i

∑
α=L,R

∑
f

q̄αf /Dqαf − q̄Mq.

Here f is a sum over quark flavors, which includes the electroweak doublets, u and

d. Let’s focus on just these two lightest flavors, u and d. We can diagonalize the

mass matrix by a field redefinition (this is what makes the CKM matrix meaningful):

M =

(
mu 0

0 md

)
. If it were the case that mu = md, we would have isospin symmetry

(
u

d

)
→ U

(
u

d

)
, U ∈ SU(Nf = 2).

If, further, there were no masses m = 0, then L and R decouple and we also have chiral

symmetry, q → eiγ5αq, i.e.

qL → V qL, qR → V −1qR, V ∈ SU(Nf = 2).

Why do I restrict to SU(2) and not U(2)? The central bit of the axial symmetry U(1)A
is anomalous – its divergence is proportional to the gluon theta term operator F ∧ F ,

which has all kinds of nonzero matrix elements. It’s not a symmetry (see Peskin page

673 for more detail). The missing non-Goldstone boson is called the η′. The central

bit of the vectorlike transformation q → eiαq is baryon number, B. (Actually this is

anomalous under the full electroweak symmetry, but B − L is not).

The groundstate of QCD is mysterious, because of infrared slavery. Here’s one piece

of input from experiment and numerical simulation. Apparently it is the case that in

the groundstate

〈q̄fqf〉 = V 3 (9.13)

independent of flavor f . This condensate spontaneously breaks

SU(2)L × SU(2)R → SU(2)isospin, (9.14)

the diagonal combination.

(
u

d

)
is a doublet. Since p = uαuβdγεαβγ, n = uαdβdγεαβγ,

this means that

(
p

n

)
is also a doublet. This symmetry is (explicitly) weakly broken by
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the difference of the massesmd = 4.7MeV 6= mu = 2.15MeV and by the electromagnetic

interactions, since qd = −1/3 6= qu = 2/3.

This symmetry-breaking structure enormously constrains the dynamics of the color

singlets which are the low-energy excitations above the QCD vacuum (hadrons). Let

us use the EFT strategy. We know that the degrees of freedom must include (pseudo-

)Goldstone bosons for the symmetry breaking (9.14) (‘pseudo’ because of the weak

explicit breaking).

Effective field theory. Since QCD is strongly coupled in this regime, let’s use

the knowing-the-answer trick: the low energy theory must include some fields which

represent the breaking of the symmetry (9.14). One way to do this is to introduce a

field Σ which transforms like

SU(2)L × SU(2)R : Σ→ gLΣg†R, Σ† → gRΣ†g†L

(this will be called a linear sigma model, because Σ transforms linearly) – we have in

mind q̄αqβ ∼ Σαβ. We can make singlets (hence an action) out of ΣijΣ
†
ji = trΣΣ† ≡

|Σ|2:

L = |∂µΣ|2 +m2|Σ|2 − λ

4
|Σ|4 + · · · (9.15)

which is designed to have a minimum at 〈Σ〉 = V√
2

(
1 0

0 1

)
, with V = 2m/

√
λ (here V is

from (9.13)), which preserves SU(2)isospin (under which Σ→ gΣg†). We can parametrize

the fluctuations about this configuration as

Σ(x) =
V + σ(x)√

2
e

2iπa(x)τa

Fπ

where Fπ = V = 2m√
λ

is be chosen to give πa(x) canonical kinetic terms. The πa

parametrize the directions of field space in which the potential is flat (like the field θ

in the discussion of the Mexican hat in §6.1). Under gL/R = eiθL/Rτ
a
, the pion field

transforms as

πa → πa +
Fπ
2

(θaL − θaR)︸ ︷︷ ︸
nonlinear realization of SU(2)axial

− 1

2
fabc (θaL + θaR) πc︸ ︷︷ ︸

linear realiz’n (adj rep) of SU(2)isospin

.

The fields π±, π0 create pions, they transform in the adjoint representation of the

diagonal SU(2)isospin, and they shift under the broken symmetry. This shift symmetry

forbids mass terms π2. The radial excitation σ, on the other hand, is a fiction which

we’ve introduced in (9.15), and which has no excuse to stick around at low energies

(and does not). We can put it out of its misery by taking m → ∞, λ → ∞ fixing Fπ.
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In the limit, the useful field to use is

U(x) ≡
√

2

V
Σ(x)|σ=0 = e

2iπaτa

Fπ

which is unitary UU † = U †U = 1. This last identity means that all terms in an action

for U require derivatives, so (again) no mass for π. The most general Lagrangian for

U can be written as an expansion in derivatives, and is called the chiral Lagrangian:

Lχ =
F 2
π

4
trDµUD

µU †+L1tr
(
DµUD

µU †
)2

+L2trDµUDνU
†trDνU †DµU+L3trDµUD

µU †DνUD
νU †+· · ·

(9.16)

In terms of π, the leading term expands into

Lχ =
1

2
∂µπ

a∂µπa+
1

F 2
π

(
−1

3
π0π0Dµπ

+Dµπ− + · · ·
)

+
1

F 4
π

(
1

18

(
π−π+

)2
Dµπ

0Dµπ0 + · · ·
)

This fixes the relative coefficients of many irrelevant interactions, all with two deriva-

tives, suppressed by powers of Fπ. The expansion of the Li terms have four derivatives,

and are therefore suppressed by further powers of E/Fπ, the promised small parameter

of this EFT.

Pion masses. The pions aren’t actually massless: mπ± ∼ 140MeV. In terms

of quarks, one source for such a thing is the quark mass term LQCD 3 q̄Mq. This

explicitly breaks the isospin symmetry if the eigenvalues of M aren’t equal. But an

invariance of LQCD is

qL/R → gL/RqL/R, M → gLMg†R. (9.17)

Think of M as a background field (such a thing is sometimes called a spurion). If

M were an actual dynamical field, then (9.17) would be a symmetry. In the effective

action which summarizes all the drama of strong-coupling QCD in terms of pions, the

field M must still be there, and if we transform it as in (9.17), it should still be an

invariance. Maybe we’re going to do the path integral over M later. (This ‘spurion’

trick has applications all over physics.)

So the chiral lagrangian Lχ should depend on M and (9.17) should be an invariance.

This determines

∆Lχ =
V 3

2
tr
(
MU +M †U †

)
+ · · · = V 3(mu +md)−

V 3

2F 2
π

(mu +md)
∑
a

π2
a +O(π2).

The coefficient V 3 is chosen so that the first term matches 〈q̄Mq〉 = V 3(mu+md). The

second term then gives

m2
π '

V 3

F 2
π

(mu +md)
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which is called the Gell-Mann Oakes Renner relation.

Electroweak interactions. You may have noticed that I used covariant-looking

Ds in (9.16). That’s because the SU(2)L symmetry we’ve been speaking about is

actually gauged by W a
µ . (The electroweak gauge boson kinetic terms are in the · · · of

(9.16).) Recall that

LWeak 3 gW a
µ

Jaµ − J5a
µ︸ ︷︷ ︸

‘V’ - ‘A’

 = gW a
µ

(
VijQ̄iγ

µ1− γ5

2
τaQj + L̄iγ

µτa
1− γ5

2
Li

)

where Q1 =

(
u

d

)
, L1 =

(
e

νe

)
are doublets of SU(2)L.

Now, in equations, the statement “a pion is a Goldstone boson for the axial SU(2)”

is:

〈0| J5a
µ (x)

∣∣πb(p)〉 = ipµFπe
−ip·xδab

where the state
∣∣πb(p)〉 is a one-pion state of momentum p. If the vacuum were invari-

ant under the symmetry transformation generated by Jµ, the BHS would vanish. The

momentum dependence implements the fact that a global rotation (pµ = 0) does not

change the energy. Contracting the BHS with pµ and using current conservation (ig-

noring the explicit breaking just mentioned) would give 0 = p2F 2
π = m2

πF
2
π , a massless

dispersion for the pions.

Combining the previous two paragraphs, we see that the following process can

happen

π
Goldstone→ J5

µ
electroweak interaction→ leptons

(9.18)

and in fact is responsible for the dominant decay channel of charged pions. (Time goes

from left to right in these diagrams, sorry.)

M(π+ → µ+νµ) =
GF√

2
Fπp

µv̄νµγ
µ(1− γ5)uµ

where the Fermi constant GF ∼ 10−5GeV −2 (known from e.g. µ− → e−ν̄eνµ ) is a good

way to parametrize the Weak interaction amplitude. Squaring this and integrating
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over two-body phase space gives the decay rate

Γ(π+ → µ+νµ) =
G2
FF

2
π

4π
mπm

2
µ

(
1−

m2
µ

m2
π

)2

.

(You can see from the answer why the decay to muons is more important than the decay

to electrons, since mµ/me ∼ 200. This is called helicity suppression – the decay of the

helicity-zero π− into back-to-back spin-half particles by the weak interaction (which

only produces L particles and R antiparticles) can’t happen if helicity is conserved

– the mass term is required to flip the eL into an eR.) This contributes most of

τπ+ = Γ−1 = 2.6 · 10−8s.

Knowing further the mass of the muon mµ = 106MeV then determines Fπ = 92MeV

which fixes the leading terms in the chiral Lagrangian. This is why Fπ is called the pion

decay constant. This gives a huge set of predictions for e.g. pion scattering π0π0 →
π+π− cross sections.

Note that the neutral pion can decay by an anomaly into two photons:

qµ 〈p1, p2| J5,a=3
µ (q) |0〉 = −c e

2

4π2
ενλαβpν1ε

λ
1p

α
2 ε
β
2

where 〈p1, p2| is a state with two photons of polarizations ε1,2. I know this because it

is a matrix element of the JeJeJSU(2)−axial anomaly,

∂µJ
µ5a = − e2

16π2
ενλαβFνλFαβtr

(
τaQ2

)
where Q =

(
2/3 0

0 −1/3

)
is the quark charge matrix. Comments: (1) this symmetry

acts by u→ eiθγ5
u, d→ e−iθγ5

, and is not the same as the anomalous U(1)A (which does

qi → eiθγ5
qi for every flavor), and it’s also not the same as isospin u→ eiθu, d→ e−iθ,

which is not chiral, and not spontaneously broken. Confusing! (2) The rate of π0 decay

(known since the 1940s) gives a measurement of the number of colors of QCD! (3) This

effect can be encoded in the Lagrangian for the pions by a term

L 3 Nc
e2

16π2
π0εµνρσFµνFρσ,

where Nc = 3 is the number of colors. The effective field theory consistently realizes the

anomalies of the microscopic theory. This is an example of ‘t Hooft anomaly matching,

a principle which can be used, for example, to prove that QCD must spontaneously

break the SU(3)L × SU(3)R chiral symmetry (see Schwartz §30.6).

Wait – what SU(3)?
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SU(3) and baryons. The strange quark mass is also pretty small ms ∼ 95MeV,

and 〈s̄s〉 ∼ V 3. This means the approximate invariance and symmetry breaking pattern

is actually SU(3)L × SU(3)R → SU(3)diag, meaning that there are 16 − 8 = 8 pseudo

NGBs. Besides π±,0, the others are the kaons K±,0 and η. It’s still only the SU(2)L
that’s gauged.

We can also include baryons B = εαβγqαqβqγ. Since q = (u, d, s) ∈ 3 of the flavor

SU(3), the baryons are in the representation

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1

⊗ ⊗ = ( ⊕ )⊗ = ⊕ ⊕ ⊕ (9.19)

The proton and neutron are in one of the octets. This point of view brought some

order (and some predictions) to the otherwise-bewildering zoo of hadrons.

Returning to the two-flavor SU(2) approximation, we can include the nucleons

NL/R =

(
p

n

)
L/R

and couple them to pions by the symmetric coupling

L 3 λNNπN̄LΣNR.

The expectation value for Σ gives a nucleon mass: mN = λNNπFπ, where λNNπ can be

measured by scattering. This is a cheap version of the Goldberger-Treiman relation;

for a better one see Peskin pp. 670-672.

WZW terms in the chiral Lagrangian. Finally, I would be remiss not to

mention that the chiral Lagrangian must be supplemented by WZW terms to have the

correct realization of symmetries (in order to encode all the effects of anomalies, and

in order to violate π → −π which is not a symmetry of QCD).

The chiral Lagrangian governs a non-linear sigma model (NLσM)– a QFT whose

fields are maps from spacetime into some target space. In this case the target space is

the coset space G/H, where G is the full symmetry group (SU(Nf )L×SU(Nf )R) and H is

the unbroken subgroup SU(Nf )diagonal. We can parametrize this space by U = eiπaTa 2
Fπ

where the T a includes only generators of the broken part of the group, so the πa are

coordinates on G/H.

A WZW term is a term which we can sometimes add to a NLσM action; it is

defined by the fact that it is symmetric under some group G, but isn’t the integral of a

symmetric local Lagrangian density in D dimensions. Making it manifestly symmetric

requires the introduction of a fictitious extra dimension. This has the dramatic and

surprising consequence that its coefficient is quantized.
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To get the idea, consider a model in D = 0 + 1 where the field variable ň takes

values on the unit sphere S2, 1 =
∑

a=1,2,3 ň
2
a. This is a special case of a coset space

G/H = SU(2)/U(1).

In order to write the WZW term in a manifestly symmetric way (under the SO(3)

of rotations of the sphere, we have to extend the field into a (possibly fictitious) extra

dimension whose coordinate is u.
We do this in such a way that the real system lives at u = 1:

ň(t, u = 1) ≡ ň(t), ň(t, u = 0) ≡ (0, 0, 1)

it goes to the north pole at the other end of the extra dimension for

all t. Consider periodic boundary conditions in time ň(2π) = ň(0).

Then this means that the full space is really a disk with the origin at

u = 0, and the boundary at u = 1. Call this disk B, its boundary

∂B =M is the real spacetime (here a circle).

We can write the WZW term in terms of the S2-valued field ň1,2,3 as

W1[ň] =
2π

Ω2

∫
B2

ňadňb ∧ dňcεabc =
1

4π

∫
M

dt (1− cos θ) ∂tφ.

The integrand here is the volume element of the image of a chunk of spacetime in

the target S2. If we integrate over the union of two balls with cancelling boundaries

B2 ∪ B̄2, we get an integer multiple of 2π (the integer is the winding number of the

map).

The coefficient k of W1 in the action ∆S[ň] = kW1[ň] must be an integer since B1

and B̄1 give equally good definitions ofW2, which differ by 2πk. So this ambiguity will

not affect the path integral if k ∈ Z.

The generalization to a group-valued variable U in any dimension is of the form

WD = c

∫
BD+1

trU−1dU ∧ U−1dU ∧ · · · ∧ U−1dU︸ ︷︷ ︸
D + 1 of these

.

Such terms are interesting when πD+1(M) is nontrivial, where M is the space where

the fields live (the target space), that is, there are maps from SD+1 toM which cannot

be smoothly deformed to the trivial map where every point in the base space goes to
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the same point in the target. The variation of WD with respect to U is (for even D)67:

δWD = (D + 1)c

∫
BD+1

tr

(U−1dU
)D

δ
(
U−1dU

)︸ ︷︷ ︸
=U−1d(δUU−1)U

 (9.21)

= (D + 1)c

∫
BD+1

tr
{(
dUU−1

)D
d(δUU−1)

}
(9.22)

= (D + 1)c

∫
BD+1

dtr
{(
U−1dU

)D
U−1δU

}
(9.23)

Stokes
= (D + 1)c

∫
M

tr
{(
U−1dU

)D
U−1δU

}
which only depends on the field configuration on M, not on the extension to BD+1.

Again there can be topologically distinct ways to make the extension; demanding that

they always give the same answer determines c in terms of volumes of spheres (so

that c
∫
SD+1 tr(U−1dU)D+1 ∈ Z is the winding number), and the coefficient must be an

integer. (In D = 4, we have c = i
240π2 .)

This WZW term is less topological than the theta term we discussed above, in the

sense that it affects the equations of motion for ň(t). The variation of W is local in D

dimensions. The following table gives a comparison between theta terms and WZW

terms for a field theory in D spacetime dimensions, on a spacetime MD:

67Why do I restrict to even D?

tr
(
U−1dU

)D+1
= εµ1···µD+1tr

(
U−1∂µ1

U · · ·U−1∂µD+1

)
but εµ1···µD+1 = −(−1)D+1εµD+1µ1···µD so WD = (−1)DWD vanishes in odd dimensions. The step

from (9.22) to (9.23) also relies on this fact. Using 1 = U−1U and hence 0 = δ(U−1U) = d(U−1U),

so that

dU−1 = −U−1dUU−1, (9.20)

the term by which (9.22) and (9.23) differ is

tr
{(
d
(
U−1dU

)D)
δUU−1

}
product rule

= tr
{(
dU−1 ∧ dU ∧

(
U−1dU

)D−1 − (U−1dU ∧ dU−1 ∧ dU ∧
(
U−1dU

)D−2
+ · · ·

)
δUU−1

}
(9.20)

= − tr
{(
U−1dU ∧ U−1dU ∧

(
U−1dU

)D−1 − U−1dUU−1 ∧ dUU−1 ∧ dU ∧
(
U−1dU

)D−2
+ · · ·

)
δUU−1

}
=tr

(1− 1 + 1− 1...)︸ ︷︷ ︸
D − 1 of these

(
U−1dU

)D−1
δUU−1

 D − 1 even
= 0.

See Weinberg, vol 2, §23.4 for more.
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theta term WZW term

H =
∫
MD

h WD =
∫
BD+1

w, ∂BD+1 = MD

h = dq w = dv

Doesn’t affect EOM Affects EOM

Invisible in perturbation theory
Appears in perturbation theory,

e.g. in beta functions

H ∈ Z for MD closed
Coefficient of W ∈ Z

in order for path integral to be well-defined.

Pion physics is the context where these terms were first discovered, and where it was

realized that their coefficients are quantized. In particular the coefficient of the WZW

term W4[U ] here is Nc, the number of colors, as Witten shows by explicitly coupling

to electromagnetism, and finding the term that encodes π0 → γγ. One dramatic con-

sequence here is that the chiral Lagrangian (with some higher-derivative terms) has a

topological soliton solution (the skyrmion) which is a fermion if the number of colors of

QCD is odd. The field configuration U(x, t) is constant in time and approaches the vac-

uum at infinity, so we can regard it as a map U : (space ∪∞ ∼ Sd)→ G/H, where G is

the full symmetry group and H is the unbroken subgroup, so G/H is the space of Gold-

stones (in the chiral Lagrangian, G/H = SU(3) × SU(3)/SU(3)preserved ' SU(3)broken).

The configuration is topological in the sense that as a map from S3 → G/H, it can-

not be smoothly deformed to the trivial map – it represents a nontrivial element of

π3(G/H). Its nontriviality is witnessed by a winding number, which can be writ-

ten as the integral of a local density. In fact, the baryon number of this configura-

tion comes from the anomalous (WZW) contribution to the baryon number current

Bµ =
εµναβ
24π2 trU−1∂νUU

−1∂αUU
−1∂βU whose conserved charge

∫
space

B0 is exactly the

winding number of the map from space (plus the point at infinity) to the space of

goldstones. And finally this object a fermion because the WZW term evaluates to π

on a spacetime trajectory where the soliton makes a 2π rotation. So this object is a

fermionic particle which carries baryon number. It also carries isospin. It’s a nucleon!

Above we added nucleon fields to the chiral Lagrangian, but we actually didn’t need

to – they were already there as solitonic excitations. Note that the size of the soliton

(the region of space over which the fields vary) is determined by the higher-derivative

terms in the chiral lagrangian, so we shouldn’t take too seriously the substructure of

the proton predicted by this picture. But it doesn’t do too badly.

I should also mention that WZW terms are important in the study of interacting
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spin systems, for example in our understanding the dependence on the s of Heisen-

berg spin-s chains, and in phase transitions beyond the Landau-Ginzburg (symmetry-

breaking) paradigm (i.e. deconfined quantum criticality). This is a subject for Physics

215C.

9.8 Superconductors

Recall from §6.1 our effective (Landau-Ginzburg) description of superconductors which

reproduces the Meissner effect, the Abelian Higgs model:

F =
1

4
FijFij + |DiΦ|2 + a|Φ|2 +

1

2
b|Φ|4 + ... (9.24)

with DiΦ ≡ (∂i − 2eiAi) Φ.

I want to make two more comments about this:

Symmetry breaking by fluctuations (Coleman-Weinberg). [Zee problem

IV.6.9.] What happens near the transition, when a = 0 in (9.24)? Quantum fluctua-

tions can lead to symmetry breaking.

New IR dofs. A feature of this example that I want you to notice: the micro-

scopic description of real superconductor involves electrons – charge 1e spinor fermions,

created by some fermionic operator ψα, α =↑, ↓.

We are describing the low-energy physics of a

system of electrons in terms of a bosonic field,

which (in simple ‘s-wave’ superconductors) is

roughly related to the electron field by

Φ ∼ ψαψβε
αβ ; (9.25)

Φ is called a Cooper pair field. At least, the

charges and the spins and the statistics work out.

The details of this relationship are not the impor-

tant point I wanted to emphasize. Rather I wanted

to emphasize the dramatic difference in the correct choice of variables between the UV

description (spinor fermions) and the IR description (scalar bosons). One reason that

this is possible is that it costs a large energy to make a fermionic excitation of the

superconductor. This can be understood roughly as follows: The microscopic theory of

the electrons looks something like (ignoring the coupling to electromagnetism for now)

S[ψ] = S2[ψ] +

∫
dtddx uψ†ψψ†ψ + h.c. (9.26)
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where

S2 =

∫
dt

∫
d̄dkψ†k (i∂t − ε(k))ψk.

Spin is important here so that ψ†↑ψ↑ψ
†
↓ψ↓ is nonzero. A mean field theory description

of the condensation of Cooper pairs (9.25) is obtained by replacing the quartic term in

(9.26) by expectation values:

SMFT [ψ] = S2[ψ]−
∫

dtddx u 〈ψψ〉ψ†ψ† + h.c.

= S2[ψ]−
∫

dtddx uΦψ†ψ† + h.c. (9.27)

So an expectation value for Φ is a mass for the fermions. It is a funny kind of symmetry-

breaking mass, but if you diagonalize the quadratic operator in (9.27) (actually it is

done below) you will find that it costs an energy of order ∆Eψ = u 〈Φ〉 to excite a

fermion. That’s the cutoff on the LG EFT.

A general lesson from this example is: the useful degrees of freedom at low energies

can be very different from the microscopic dofs.

9.8.1 Lightning discussion of BCS.

I am sure that some of you are nervous about the step from S[ψ] to SMFT [ψ] above.

To make ourselves feel better about it, I will say a few more words about the steps

from the microscopic model of electrons (9.26) to the LG theory of Cooper pairs (these

steps were taken by Bardeen, Cooper and Schreiffer (BCS)).

First recall the Hubbard-Stratonovich transformation aka completing the square. In

0+0 dimensional field theory:

e−iux4

=
1√
iπu

∫ ∞
−∞

dσ e−
1
iu
σ2−2ix2σ . (9.28)

At the cost of introducing an extra field σ, we turn a quartic term in x into a quadratic

term in x. The RHS of (9.28) is gaussian in x and we know how to integrate it over

x. (The version with i is relevant for the real-time integral.) Notice the weird extra

factor of i lurking in (9.28). This can be understood as arising because we are trying

to use a scalar field σ, to mediate a repulsive interaction (which it is, for positive u)

(see Zee p. 193, 2nd Ed).

Actually, we’ll need a complex H-S field:

e−iux2x̄2

=
1

iπu

∫
C

d2σ e−
1
iu
|σ|2−ix2σ̄−ix̄2σ , (9.29)
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where
∫
C d2σ... ≡

∫∞
−∞ dReσ

∫∞
−∞ dImσ... (The field-independent prefactor is, as usual,

not important for path integrals.)

We can use a field theory generalization of (9.29) to ‘decouple’ the 4-fermion inter-

action in (9.26):

Z =

∫
[DψDψ†]eiS[ψ] =

∫
[DψDψ†DσDσ†]eiS2[ψ]+i

∫
dDx(σ̄ψψ+h.c.)−

∫
dDx

|σ|2(x)
iu . (9.30)

The point of this is that now the fermion integral is gaussian. At the saddle point

of the σ integral (which is exact because it is gaussian), σ is the Cooper pair field,

σsaddle = uψψ.

Notice that we made a choice here about in which

‘channel’ to make the decoupling – we could have in-

stead introduces a different auxiliary field ρ and writ-

ten S[ρ, ψ] =
∫
ρψ†ψ +

∫
ρ2

2u
, which would break up

the 4-fermion interaction in the t-channel (as an in-

teraction of the fermion density ψ†ψ) instead of the s

(BCS) channel (as an interaction of Cooper pairs ψ2).

At this stage both are correct, but they lead to differ-

ent mean-field approximations below. That the BCS

mean field theory wins is a consequence of the RG.

How can you resist doing the fermion integral in (9.30)? Let’s study the case where

the single-fermion dispersion is ε(k) =
~k2

2m
− µ.

Iψ[σ] ≡
∫

[DψDψ†]e
i
∫

dtddx
(
ψ†
(
i∂t−∇

2

2m
−µ
)
ψ+ψσ̄ψ+ψ̄ψ̄σ

)

The action here can be written as the integral of

L =
(
ψ̄ ψ

)(i∂t − ε(−i∇) σ

σ̄ − (i∂t − ε(−i∇))

)(
ψ

ψ̄

)
≡
(
ψ̄ ψ

)
M

(
ψ

ψ̄

)
so the integral is

Iψ[σ] = detM = etr logM(σ).

If σ is constant (which will lower the energy), the matrix M is diagonal in momentum

space, and the integral remaining to be done is∫
[DσDσ†]e−

∫
dDx

|σ(x)|2
2iu

+
∫

d̄Dk log(ω2−ε2k−|σ|
2).

It is often possible to do this integral by saddle point. This can justified, for example,

by the largeness of the volume of the Fermi surface, {k|ε(k) = µ}, or by large N number
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of species of fermions. The result is an equation which determines σ, which as we saw

earlier determines the fermion gap.

0 =
δexponent

δσ̄
= i

σ

2u
+

∫
d̄ωd̄dk

2σ

ω2 − ε2k − |σ|2 + iε
.

We can do the frequency integral by residues:∫
d̄ω

1

ω2 − ε2k − |σ|2 + iε
=

1

2π
2πi

1

2
√
ε2k + |σ|2

.

The resulting equation is naturally called the gap equation:

1 = −2u

∫
d̄dp′

1√
ε(p′)2 + |σ|2

(9.31)

which you can imagine solving self-consistently for σ. Plugging back into the action

(9.30) says that σ determines the energy cost to have electrons around; more precisely,

σ is the energy required to break a Cooper pair.

Comments:

• Notice that a solution of (9.31) requires u < 0, an attractive interaction. Super-

conductivity happens because the u that appears here is not the bare interaction

between electrons, which is certainly repulsive (and long-ranged). This is where

the phonons come in in the BCS discussion.

• If we hadn’t restricted to a delta-function 4-fermion interaction u(p, p′) = u0 at

the outset, we would have found a more general equation like

σ(~p) = −1

2

∫
d̄dp′

u(p, p′)σ(~p′)√
ε(p′)2 + |σ(p′)|2

.

• A conservative perspective on the preceding calculation is that we have made a

variational ansatz for the groundstate wavefunction, and the equation we solve

for σ is minimizing the variational energy – finding the best wavefunction within

the ansatz.

• I haven’t included here effects of the fluctuations of the fermions. In fact, they

make the four-fermion interaction which leads to Cooper pairing marginally rel-

evant. This breaks the degeneracy in deciding how to split up the ψψψ†ψ† into

e.g. ψψσ or ψ†ψρ. BCS wins. This is explained beautifully in Polchinski, lecture

2, and R. Shankar. If there were time, I would summarize the EFT framework

for understanding this in §9.9.
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• I’ve tried to give the most efficient introduction I could here. I left out any

possibility of k-dependence or spin dependence of the interactions or the pair

field, and I’ve conflated the pair field with the gap. In particular, I’ve been

sloppy about the dependence on k of σ above.

• You can study a very closely related manipulation on the problem set, in an

example (the Gross-Neveu model) where the saddle point is justified by large N .

9.9 Effective field theory of Fermi surfaces

[Polchinski, lecture 2, and R. Shankar] Electrically conducting solids are a remarkable

phenomenon. An arbitrarily small electric field ~E leads to a nonzero current ~j = σ ~E.

This means that there must be gapless modes with energies much less than the natural

cutoff scale in the problem.

Scales involved: The Planck scale of solid state physics (made by the logic by

which Planck made his quantum gravity energy scale, namely by making a quantity

with dimensions of energy out of the available constants) is

E0 =
1

2

e4m

~2
=

1

2

e2

a0

∼ 13eV

(where m ≡ me is the electron mass and the factor of 2 is an abuse of outside informa-

tion) which is the energy scale of chemistry. Chemistry is to solids as the melting of

spacetime is to particle physics. There are other scales involved however. In particular

a solid involves a lattice of nuclei, each with M � m (approximately the proton mass).

So m/M is a useful small parameter which controls the coupling between the electrons

and the lattice vibrations. Also, the actual speed of light c � vF can generally also

be treated as ∞ to first approximation. vF/c suppresses spin orbit couplings (though

large atomic numbers enhance them: λSO ∝ ZvF/c).

Let us attempt to construct a Wilsonian-natural effective field theory of this phe-

nomenon. The answer is called Landau Fermi Liquid Theory. What are the right low-

energy degrees of freedom? Let’s make a guess that they are like electrons – fermions

with spin and electric charge. They will not have exactly the properties of free elec-

trons, since they must incorporate the effects of interactions with all their friends. The

‘dressed’ electrons are called quasielectrons, or more generally quasiparticles.

Given the strong interactions between so many particles, why should the dofs have

anything at all to do with electrons? Landau’s motivation for this description (which
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is not always correct) is that we can imagine starting from the free theory and adia-

batically turning up the interactions. If we don’t encounter any phase transition along

the way, we can follow each state of the free theory, and use the same labels in the

interacting theory.

We will show that there is a nearly-RG-stable fixed point describing gapless quasi-

electrons. Notice that we are not trying to match this description directly to some

microscopic lattice model of a solid; rather we will do bottom-up effective field theory.

Having guessed the necessary dofs, let’s try to write an action for them consistent

with the symmetries. A good starting point is the free theory:

Sfree[ψ] =

∫
dt d̄dp

(
iψ†σ(p)∂tψσ(p)− (ε(p)− εF )ψ†σ(p)ψσ(p)

)
where σ is a spin index, εF is the Fermi energy (zero-temperature chemical potential),

and ε(p) is the single-particle dispersion relation. For non-interacting non-relativistic

electrons in free space, we have ε(p) = p2

2m
. It will be useful to leave this as a general

function of p. 68 69

The groundstate is the filled Fermi sea:

|gs〉 =
∏

p|ε(p)<εF

ψ†p |0〉 , ψp |0〉 = 0, ∀p.

(If you don’t like continuous products, put the system in a box so that p is a discrete

label.) The Fermi surface is the set of points in momentum space at the boundary of

the filled states:

FS ≡ {p|ε(p) = εF}.

The low-lying excitations are made by adding an electron just above the FS or

removing an electron (creating a hole) just below.

We would like to define a scaling transformation which focuses on the low-energy

excitations. We scale energies by a factor E → bE, b < 1. In relativistic QFT, ~p scales

like E, toward zero, ~p→ b~p, since all the low-energy stuff is near the single special point

~p = 0. Here the situation is much more interesting because there is a whole surface of

low-energy stuff on the FS. This will lead to what’s called hyperscaling violation – we

can’t just count powers of momentum.

68Notice that we are assuming translation invariance. I am not saying anything at the moment

about whether translation invariance is discrete (the ions make a periodic potential) or continuous.
69We have chosen the normalization of ψ to fix the coefficient of the ∂t term (this rescaling may

depend on p).
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One way to implement this is to introduce a hi-

erarchical labeling of points in momentum space,

by breaking the momentum space into patches

around the FS. (An analogous strategy of labeling

is also used in heavy quark EFT and in SCET.)

We’ll use a slightly different strategy, follow-

ing Polchinski. To specify a point ~p, we pick the

nearest point ~k on the FS, ε(~k) = εF (draw a line

perpendicular to the FS from ~p), and let

~p = ~k + ~̀.

So d− 1 of the components are determined by ~k and one is determined by `. (Clearly

there are some exceptional cases if the FS gets too wiggly. Ignore these for now.)

ε(p)− εF = `vF (~k) +O(`2), vF ≡ ∂pε|p=k.

So a scaling rule which accomplishes our goal of focusing on the FS is

E → bE, ~k → ~k, ~l→ b~̀.

This implies

dt→ b−1dt, dd−1~k → dd−1~k, d~̀→ bd~̀, ∂t → b∂t

Sfree =

∫
dt dd−1~k d~̀︸ ︷︷ ︸

∼b0

iψ†(p) ∂t︸︷︷︸
∼b1

ψ(p)− `vF (k)︸ ︷︷ ︸
∼b1

ψ†(p)ψ(p)


In order to make this go like b0 we require ψ → b−

1
2ψ near the free fixed point.

Next we will play the EFT game. To do so we must enumerate the symmetries we

demand of our EFT:

1. Particle number, ψ → eiθψ

2. Spatial symmetries: either (a) continuous translation invariance and rotation

invariance (as for e.g. liquid 3He) or (b) lattice symmetries. This means that

momentum space is periodically identified, roughly p ' p + 2π/a where a is the

lattice spacing (the set of independent momenta is called the Brillouin zone (BZ))

and p is only conserved modulo an inverse lattice vector 2π/a; the momentum

There can also be some remnant of rotation invariance preserved by the lattice.

Case (b) reduces to case (a) if the Fermi surface does not go near the edges of

the BZ.
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3. Spin rotation symmetry, SU(n) if σ = 1..n. In the limit with c → ∞, this is an

internal symmetry, independent of rotations.

4. Let’s assume that ε(p) = ε(−p), which is a consequence of e.g. parity invariance.

Now we enumerate all terms analytic in ψ (since we are assuming that there are no

other low-energy dofs integrating out which is the only way to get non-analytic terms

in ψ) and consistent with the symmetries; we can order them by the number of fermion

operators involved. Particle number symmetry means every ψ comes with a ψ†. The

possible quadratic terms are:∫
dt dd−1~k d~̀︸ ︷︷ ︸

∼b0
µ(k)ψ†σ(p)ψσ(p)︸ ︷︷ ︸

∼b−1

∼ b−1

is relevant. This is like a mass term. But don’t panic: it just shifts the FS around. The

existence of a Fermi surface is Wilson-natural (i.e. a stable assumption given generic

coefficients of all possible terms in the action); any precise location or shape (modulo

something enforced by symmetries, like roundness) is not.

Adding one extra ∂t or factor of ` costs a b1 and makes the operator marginal; those

terms are already present in Sfree. Adding more than one makes it irrelevant.

Quartic terms:

S4 =

∫
dt

4∏
i=1

dd−1~kid~̀i︸ ︷︷ ︸
∼b−1+4−4/2

u(4 · · · 1)ψ†σ(p1)ψσ(p3)ψ†σ′(p2)ψσ′(p4)δd(~p1 + ~p2 − ~p3 − ~p4)

Note the similarity with the discussion of the XY model in §??. The minus signs on

p3,4 is because ψ(p) removes a particle with momentum p. We assume u depends only

on k, σ, so does not scale – this will give the most relevant piece. How does the delta

function scale?

δd (~p1 + ~p2 − ~p3 − ~p4) = δd (k1 + k2 − k3 − k4 + `1 + `2 − `3 − `4)
?' δd (k1 + k2 − k3 − k4)

In the last (questioned) step, we used the fact that ` � k to ignore the contributions

of the `s. If this is correct then the delta function does not scale (since ks do not),

and S4 ∼ b1 is irrelevant (and quartic interactions with derivatives are moreso). If this

were correct, the free-fixed point would be exactly stable.

There are two important subtleties: (1) there exist phonons. (2) the questioned

equality above is questionable because of kinematics of the Fermi surface. We will

address these two issues in reverse order.
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The kinematic subtlety in the treatment of the

scaling of δ(p1 + p2 − p3 − p4) arises because of the

geometry of the Fermi surface. Consider scattering

between two points on the FS, where (in the labeling

convention above)

p3 = p1 + δk1 + δ`1, p4 = p2 + δk2 + δ`2,

in which case the momentum delta function is

δd(p1 + p2 − p3 − p4) = δd(δk1 + δ`1 + δk2 + δ`2).

For generic choices of the two points p1,2 (top figure at

left), δk1 and δk2 are linearly independent and the δ`s

can indeed be ignored as we did above. However, for

two points with p1 = −p2 (they are called nested, as depicted in the bottom figure at

left), then one component of δk1 + δk2 is automatically zero, revealing the tiny δ`s to

the force of (one component of) the delta function. In this case, δ(`) scales like b−1, and

for this particular kinematic configuration the four-fermion interaction is (classically)

marginal. Classically marginal means quantum mechanics has a chance to make a big

difference.

A useful visualization is at right (d = 2 with

a round FS is shown; this is what’s depicted on

the cover of the famous book by Abrikosov-Gorkov-

Dzyaloshinski): the blue circles have radius kF ; the

yellow vector is the sum of the two initial momenta

p1 + p2, both of which are on the FS; the condition

that p3 + p4, each also on the FS, add up to the same vector means that p3 must lie on

the intersection of the two circles (spheres in d > 2). But when p1 + p2 = 0, the two

circles are on top of each other so they intersect everywhere! Comments:

1. We assumed that both p1 and −p2 were actually on the FS. This is automatic if

ε(p) = ε(−p), i.e. if ε is only a function of p2.

2. This discussion works for any d > 1.

3. Forward scattering. There is a similar phenomenon for the case where p1 = p3

(and hence p2 = p4). This is called forward scattering because the final momenta

are the same as the initial momenta. (We could just as well take p1 = p4 (and

hence p2 = p3).) In this case too the delta function will constrain the `s and will

therefore scale.
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The tree-level-marginal 4-Fermi interactions at special kinematics leads to a family

of fixed points labelled by ‘Landau parameters’. In fact there is whole function’s worth

of fixed points. In 2d, the fixed point manifold is parametrized by the forward-scattering

function

F (θ1, θ2) ≡ u(θ4 = θ2, θ3 = θ1, θ2, θ1)

(Fermi statistics implies that u(θ4 = θ1, θ3 = θ2, θ2, θ1) = −F (θ1, θ2) .) and the BCS-

channel interaction:

V (θ1, θ3) = u(θ4 = −θ3, θ3, θ2 = −θ1, θ1).

Now let’s think about what decision the fluctuations make

about the fate of the nested interactions. The first claim,

which I will not justify here, is that F is not renormalized

at one loop. The interesting bit is the renormalization of the

BCS interaction:

The electron propagator, obtained by inverting the kinetic operator Sfree, is

G(ε, p = k + l) =
1

ε(1 + iη)− vF (k)`+O(`)2

where I used η ≡ 0+ for the infinitesimal specifying the contour prescription. (To

understand the contour prescription for the hole propagator, it is useful to begin with

G(t, p) = 〈εF | c†p(t)cp(0) |εF 〉 , c†p(t) ≡ e−iHtc†pe
iHt

and use the free-fermion fact [H, c†p] = εpc
†
p.)

Let’s assume rotation invariance. Then V (θ3, θ1) = V (θ3 − θ1), Vl =
∫

d̄θeilθV (θ).

Different angular momentum sectors decouple from each other at one loop.

We will focus on the s-wave bit of the interaction, so V is independent of momentum.

We will integrate out just a shell in energy (depicted by the blue shaded shell in the

Fermi surface figures). The interesting contribution comes from the following diagram:

δ(1)V = = iV 2

∫ ε0

bε0

dε′dd−1k′d`′

(2π)d+1

1

(ε+ ε′ − vF (k′)`′) (ε− ε′ − vF (k′)`′)

do

∫
d`
′

by residues = iV 2

∫
dε′dd−1k′

(2π)d+1

1

vF (k′)

ε− ε′ − (ε+ ε′)︸ ︷︷ ︸
=−2ε′

−1
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= −V 2

∫ ε0

bε0

dε′

ε′︸ ︷︷ ︸
=log(1/b)

∫
dd−1k′

(2π)dvF (k′)︸ ︷︷ ︸
dos at FS

(9.32)

Between the first and second lines, we did the `′ integral by residues. The crucial point

is that we are interested in external energies ε ∼ 0, but we are integrating out a shell

near the cutoff, so |ε′| > |ε| and the sign of ε + ε′ is opposite that of ε − ε′; therefore

there is a pole on either side of the real ` axis and we get the same answer by closing

the contour either way. On one side the pole is at `′ = 1
vF (k′)

(ε+ ε′). (In the t-channel

diagram (what Shankar calls ZS), the poles are on the same side and it therefore does

not renormalize the four-fermion interaction.)

The result to one-loop is then

V (b) = V − V 2N log(1/b) +O(V 3)

with N ≡
∫

dd−1k′

(2π)dvF (k′)
is the density of states at the Fermi surface. From this we derive

the beta function

b
d

db
V (b) = βV = NV 2(b) +O(V 3)

and the solution of the flow equation at E = bE1 is

V (E) =
V1

1 +NV1 log(E1/E)

{
→ 0 in IR for V1 > 0 (repulsive)

→ −∞ in IR for V1 < 0 (attractive)
(9.33)

There is therefore a very significant dichotomy depending on the sign of the coupling

at the microscopic scale E1, as in this phase diagram:

The conclusion is that if the interaction starts attractive at some scale it flows

to large attractive values. The thing that is decided by our perturbative analysis is

that (if V (E1) > 0) the decoupling we did with σ (‘the BCS channel’) wins over the

decoupling with ρ (’the particle-hole channel’). What happens at V → −∞? Here we

need non-perturbative physics.

The non-perturbative physics is in general hard, but we’ve already done what we

can in §9.8.1.

The remaining question is: Who is V1 and why would it be attractive (given that

Coulomb interactions between electrons, while screened and therefore short-ranged, are

repulsive)? The answer is:

Phonons. The lattice of positions taken by the ions making up a crystalline solid

spontaneously break many spacetime symmetries of their governing Hamiltonian. This
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implies a collection of gapless Goldstone modes in any low-energy effective theory of

such a solid70. The Goldstone theorem is satisfied by including a field

~D ∝ (local) displacement δ~r of ions from their equilibrium positions

Most microscopically we have a bunch of coupled springs:

Lions ∼
1

2
M
(

˙δ~r
)2

− kijδriδrj + ...

with spring constants k independent of the nuclear mass M . It is useful to introduce

a canonically normalized field in terms of which the action is

S[ ~D = (M)1/2 δ~r] =
1

2

∫
dtddq

(
∂tDi(q)∂tDi(−q)− ω2

ij(q)Di(q)Dj(−q)
)
.

Here ω2 ∝M−1. Their status as Goldstones means that the eigenvalues of ω2
ij(q) ∼ |q|2

at small q: moving everyone by the same amount does not change the energy. This also

constrains the coupling of these modes to the electrons: they can only couple through

derivative interactions.

For purposes of their interactions with the elec-

trons, a nonzero q which keeps the e− on the FS must

scale like q ∼ b0. Therefore

dtddq (∂tD)2 ∼ b+1+2[D] =⇒ D ∼ b−
1
2

and the restoring force dtdqD2ω2(q) ∼ b−2 is relevant,

and dominates over the ∂2
t term for

E < ED =

√
m

M
E0 the Debye energy.

This means that phonons mediate static interactions below ED – we can ignore re-

tardation effects, and their effects on the electrons can be fully incorporated by the

four-fermion interaction we used above (with some ~k dependence). How do they couple

to the electrons?

Sint[D,ψ] =

∫
dtq3qd2k1d`1d

2k2d`2 M
− 1

2 gi(q, k1, k2)Di(q)ψ
†
σ(p1)ψσ(p2)δ3(p1 − p2 − q)

70Note that there is a subtlety in counting Goldstone modes from spontaneously broken spacetime

symmetries: there are more symmetry generators than Goldstones. Basically it’s because the associ-

ated currents differ only by functions of spacetime; but a localized Goldstone particle is anyway made

by a current times a function of spacetime, so you can’t sharply distinguish the resulting particles.

Some useful references on this subject are Low-Manohar and most recently Watanabe-Murayama.
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∼ b−1+1+1−3/2 = b−1/2 (9.34)

– here we took the delta function to scale like b0 as above. This is relevant when we

use the Ḋ2 scaling for the phonons; when the restoring force dominates we should scale

D differently and this is irrelevant for generic kinematics. This is consistent with our

previous analysis of the four-fermion interaction.

The summary of this discussion is: phonons do not destroy the Fermi surface,

but they do produce an attractive contribution to the 4-fermion interaction, which is

relevant in some range of scales (above the Debye energy). Below the Debye energy, it

amounts to an addition to V that goes like −g2:

Notice that the scale at which the coupling V becomes strong (V (EBCS) ≡ 1 in

(9.33)) is

EBCS ∼ EDe
− 1
NVD .

Two comments about this: First, it is non-perturbative in the interaction VD. Second,

it provides some verification of the role of phonons, since ED ∼ M−1/2 can be varied

by studying the same material with different isotopes and studying how the critical

superconducting temperature (∼ EBCS) scales with the nuclear mass.

Here’s the narrative, proceeding as a func-

tion of decreasing energy scale, beginning at

E0, the Planck scale of solids: (1) Electrons

repel each other by the Coulomb interac-

tion. However, in a metal, this interaction

is screened by processes like this:

(the intermediate state is an electron-hole

pair) and is short-ranged. It is still repulsive,

however. As we coarse-grain more and more, we see more and more electron-hole pairs

and the force weakens. (2) While this is happening, the electron-phonon interaction is

relevant and growing. This adds an attractive bit to V . This lasts until ED. (3) At ED
the restoring force term in the phonon lagrangian dominates (for the purposes of their

interactions with the electrons) and we can integrate them out. (4) What happens

next depends on the sign of V (ED). If it’s positive, V flows harmlessly to zero. If

it’s negative, it becomes moreso until we exit the perturbative analysis at EBCS, and

vindicate our choice of Hubbard-Stratonovich channel above.

Further brief comments, for which I refer you to Shankar:

1. Putting back the possible angular dependence of the BCS interaction, the result
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at one loop is

dV (θ1 − θ3)

d`
= − 1

8π2

∫ 2π

0

d̄θV (θ1 − θ)V (θ − θ3)

or in terms of angular momentum components,

dVl
d`

= −V
2
l

4π
.

2. This example is interesting and novel in that it is a (family of) fixed point(s)

characterized by a dimensionful quantity, namely kF . This leads to a phenomenon

called hyperscaling violation where thermodynamic quantities need not have their

naive scaling with temperature.

3. The one loop analysis gives the right answer to all loops in the limit that N ≡
kF/Λ� 1, where Λ is the UV cutoff on the momentum.

4. The forward scattering interaction (for any choice of function F (θ13)) is not renor-

malized at one loop. This means it is exactly marginal at leading order in N .

5. Like in φ4 theory, the sunrise diagram at two loops is the first appearance of

wavefunction renormalization. In the context of the Fermi liquid theory, this

leads to the renormalization of the effective mass which is called m?.

Another consequence of the FS kinematics which I should emphasize more: it allows

the quasiparticle to be stable. The leading contribution to the decay rate of a one-

quasiparticle state with momentum k can be obtained applying the optical theorem to

the following process.

The intermediate state is two electrons with momenta k′ + q and k − q, and one

hole with momentum k′. The hole propagator has the opposite iη prescription. After

doing the frequency integrals by residues, we get

Σ(k, ε) =

∫
d̄q d̄k′

|uq|2

D − iη

D ≡ εk(1 + iη) + εk′(1− iη)− εk′+q(1 + iη)− εk−q(1 + iη)

(Notice that this is the eyeball diagram which gives the lowest-order contribution to

the wavefunction renormalization of a field with quartic interactions.) By the optical

theorem, its imaginary part is the (leading contribution to the) inverse-lifetime of the

quasiparticle state with fixed k:

τ−1(k) = ImΣ(k, ε) = π

∫
d̄q d̄k′δ(D)|uq|2f(−εk′)f(εk′+q)f(εk−q)
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where

f(ε) = lim
T→0

1

e
ε−εF
T + 1

= θ(ε < εF )

is the Fermi function. This is just the demand that a particle can only scatter into

an empty state and a hole can only scatter into a filled state. These constraints imply

that all the energies are near the Fermi energy: both εk′+q and εk′ lie in a shell of radius

ε about the FS; the answer is proportional to the density of possible final states, which

is thus

τ−1 ∝
(
ε

εF

)2

.

So the width of the quasiparticle resonance is

τ−1 ∝ ε2 � ε

much smaller than its frequency – it is a sharp resonance, a well-defined particle.
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