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0.1 Introductory remarks

Quantum field theory (QFT) is the quantum mechanics of extensive degrees of freedom.
What I mean by this is that at each point of space, there’s some stuff that can wiggle.

It’s not surprising that QFT is so useful, since this situation happens all over the
place. Some examples of ‘stuff’ are: the atoms in a solid, or the electrons in those
atoms, or the spins of those electrons. A less obvious, but more visible, example is the
electromagnetic field, even in vacuum. More examples are provided by other excitations
of the vacuum, and it will be our job here to understand those very electrons and atoms
that make up a solid in these terms. The vacuum has other less-long-lasting excitations
which are described by the Standard Model of particle physics.

Some examples of QFT are Lorentz invariant (‘relativistic’). That’s a nice simplifi-
cation when it happens. Indeed this seems to happen in particle physics. We're going
to focus on this case for much of this quarter. Still I would like to emphasize: though
some of the most successful applications of QFT are in the domain of high energy
particle physics, this is not a class on that subject, and I will look for opportunities to
emphasize the universality of QFT.

A consequence of relativity is that the number of particles isn’t fixed. That is:
there are processes where the number of particles changes in time. This is a crucial
point of departure for QFT. It’s a necessary consequence of Lorentz symmetry, but the
converse is false: particle production can happen without relativity.

‘Divergences’. Another intrinsic and famous feature of QFT discernible from the
definition I gave above is its flirtation with infinity. I said that there is ‘stuff at each
point of space’; how much stuff is that? Well, there are two senses in which ‘the number
of points of space’ is infinite: (1) space can go on forever (the infrared (IR)), and (2)
in the continuum, in between any two points of space are more points (the ultraviolet
(UV)). The former may be familiar from statistical mechanics, where it is associated
with the thermodynamic limit, which is where interesting things happen. For our own
safety, we’ll begin our discussion in a padded room, protected on both sides from the
terrors of the infinite.

Prof. Jenkins tells me that 215A ended just as Feynman diagrams were being drawn
for the first time. I think therefore that it will be useful to retreat a bit and rederive the
diagrammatic expansion from another (in many ways simpler) point of view, namely
the path integral.



0.2 Sources and acknowledgement

The material in these notes is collected from many places, among which I should
mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory (Wiley)

Zee, Quantum Field Theory (Princeton, 2d Edition)

Banks, Modern Quantum Field Theory: A Concise Introduction (Cambridge)
Schwartz, Quantum field theory and the standard model (Cambridge)

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT courses of Prof. L. Hall
and Prof. M. Halpern.


http://www.damtp.cam.ac.uk/user/tong/qft.html

0.3 Conventions

Following most QFT books, I am going to use the + — —— signature convention for
the Minkowski metric. I am used to the other convention, where time is the weird one,
so I'll need your help checking my signs. More explicitly, denoting a small spacetime
displacement as dz* = (dt, dZ)*, the Lorentz-invariant distance is:

+1 0 0 O

—1
d52 — +dt2 _ dif . df — nuydwudﬁcu Wlth Tlﬂy = nl“’ = 8 0 _01 8
0 0 0 -1

nv

o
= &C# = (@,V ) , and " = n*0,. T'll
use u, v... for Lorentz indices, and 1, k, ... for spatial indices.

(spacelike is negative). We will also write 0

The convention that repeated indices are summed is always in effect unless otherwise
indicated.

D is the number of spacetime dimensions, d is the number of space dimensions.

A consequence of the fact that english and math are written from left to right is
that time goes to the left.

A useful generalization of the shorthand A = % isdk = dk I will also write

ﬁd(q) = (27)%5@(g). T will try to be consistent about writing Fourler transforms as

d%
/(2 ”“”f /ddk e”“” = f(z).
IFF = if and only if.

RHS = right-hand side. LHS = left-hand side. BHS = both-hand side.

IBP = integration by parts. WLOG = without loss of generality.

+O(z") = plus terms which go like 2™ (and higher powers) when z is small.
~+h.c. = plus hermitian conjugate.

L > O means the object £ contains the term O.

We work in units where i and the speed of light, ¢, are equal to one unless otherwise
noted. When I say ‘Peskin’ I usually mean ‘Peskin & Schroeder’.

Please tell me if you find typos or errors or violations of the rules above.




1 The path integral makes some things easy

1.1 From particles to fields to particles again

Here is a way to discover QFT starting with some prosaic ingredients.

Consider a linear chain of particles of mass m, each connected to its neighbors
by springs with spring constant . This is a model of a (one-dimensional) crystalline
solid. When in equilibrium, the masses form a regular one-dimensional crystal lattice
(equally spaced mass points). Now let ¢, denote the displacement of the nth mass from
its equilibrium position z,, and let p,, be the corresponding momentum. Assume there
are N masses and (for simplicity) impose periodic boundary conditions: ¢n,+n = ¢y.
The equilibrium positions themselves are

T, =na,n=12.N

where a is the lattice spacing. The Hamiltonian for the collection of particles is:

2

N
pn 1 2 4
H= E oy - —q,_ + \q*. 1.1

vt (Qm QK(qn I 1)) Ad (1.1)

Notice that this system is an ordinary QM system, made of particles. In particular,
the whole story below will take place within the fixed Hilbert space of the positions of
the N particles.

I've included a token anharmonic term Aq* to remind us that we are leaving stuff
out; for example we might worry whether we could use this model to describe melting.

Set A = 0 for a while. With A = 0, the hamiltonian above describes a collection
of coupled harmonic oscillators, with a matrix of spring constants V' = kuq.qp. If
we diagonalize the matrix of spring constants, we will have a description in terms of
decoupled oscillators, called normal modes. Because the chain is translation invariant,
the normal modes are labelled by a wavenumber k, and the eigenvalues are w? =
% sin? % Then we can use our knowledge of the spectrum of a single SHO H =
hw (aTa + %) to construct the whole spectrum of excitations of the chain,

1 p2
H = hw 1 - 20
Ek: k<akak+2> +

(Here py is the center-of-mass momentum of the chain.) The groundstate is |0), the
state annihilated by all the annihilation operators a; |0) = 0, and excited states are
built like |kq, ko) = a,tlaltg |0). In the context of an elastic solid, these excitations are
called phonons.



Instead, let’s use the path integral.

Path integral reminder in a box.

Let’s remind ourselves how the path integral formulation of QM works for a particle
in one dimension with H = % +V(q). The basic statement is the following formula for
the propagator — the amplitude to propagate from position eigenstate |gy) to position
eigenstate |¢) during a time interval ¢ is

q(t)=q o ,
<q| o~ iHt |q0> _ / [dq]elfo dt (%q2_V(Q)) )
2(0)=qo

Here [dg] = N T[Y, dg(t;) - the path integral measure is defined by a limiting procedure
(M, = ﬁ — 00, At — 0,t fixed), and A is a normalization factor that always drops
out of physical quantities so I don’t need to tell you what it is.

Recall that the key step in the derivation of this statement is the evaluation of the
propagator for an infinitesimal time step:

. . 2 .
(qo] e ™ |q1) = (go] e M Em e TIAV(D o) + O(AL) .

An integral expression for this can be obtained by inserting resolutions of the identity

1= = ([avlo) 1) ( [ aalo) o))

in between the two exponentials. For a more extensive reminder, please see §2.4 of this
document.

Scalar field theory in one dimension. [Zee §1.3] The path integral for our
collection of oscillators is

7 = /[d(h . ..qu]eiS[q]

with Slg] = [dt (3, 3mnd2 —V({q})) = [dtL(g,¢). The potential is V({q}) =
>on %K/(qn+1 — qn)2. Now suppose we have poor eyesight and can’t resolve the indi-
vidual atoms in the chain; rather we're only interested in the long-wavelength (small-
wavenumber) physics. So let’s try to take the continuum limit ¢ — 0, N — oc.
Basically the only thing we need is to think of ¢, = ¢(x = na) as defining a smooth

L

Continuum Limit (x)

function:

[Note that the continuum field is often

(n-1)a na (n+l)a

called ¢(x) instead of g(z) for some reason. At least the letters ¢(x) and ¢(x) look
similar.|


http://physics.ucsd.edu/~mcgreevy/w15/130C-2015-chapter02.pdf
http://physics.ucsd.edu/~mcgreevy/w15/130C-2015-chapter02.pdf

We'll use

(qn - Qn—1)2 ~ CLQ (axq |z na; Zf Qn — /dl’f(q(l’))

2= [ldge

with [dg] now representing an integral over all configurations ¢(t,z) (defined by this

/dt/d:c (9tq — p? ((‘qu)2 —rg® —uqg* — ) = /dt/dmﬁ

where I've introduced some parameters u, v, r,u determined from m, x,a... in some
ways that we needn’t worry about, except to say that they are finite in the continuum
limit. The --- includes terms like a*(8,q)* which are small when k < 1 so we

The path integral becomes:

limit) and

ignore them. £ is the Lagrangian density whose integral over space is the Lagrangian

L= [dxL.
The equation of motion is the stationary phase condition,

5S
0= S 202q — rq — 2ug® — ...
5(](;6, t) pg + puidyqg —rq uq

In this expression I have written a functional derivative; with our lattice regulator, it is

simply a(n extremely useful) shorthand notation for the collection of partial derivatives
91
% .

From the phonon problem, we automatically found » = u = 0, and the equation of
motion is just the wave equation (07 — v29?)q = 0, where we see that v, is the sound
speed. This happened because of the symmetry ¢, — ¢, + ¢. This is the operation

! Functional derivatives will be very useful to us. The definition is

dp(x)
5o(y)

plus the Liebniz properties (linearity, product rule). More prosaically, they are just partial derivatives,
if we define a collection of values of the independent variable {x,} to regard as grid points, and let

— 5z —y) (1.2)

bn = ¢(n)
so that (1.2) is just

000 _,

aqu - nm-

If you are not yet comfortable with the machinery of functional derivatives, please work through pages
2-28 through 2-30 of this document now.


http://physics.ucsd.edu/~mcgreevy/w15/130C-2015-chapter02.pdf

that translates the whole crystal. It guarantees low-energy phonons near & = 0 because
it means ¢(x) can only appear in S via its derivatives. (This is a general property of
Goldstone modes; more on this later.)

We can construct a hamiltonian from this action by defining a canonical field-

momentum density 7(z) = 37[51 = poiq and doing the Legendre transformation:

H=>Y (pudn—La) = /dm (n(x)g(x) — L) = /dw (M + w2 (0,q(2))* + r¢* +ug* + ) .

24
(1.3)
Note that I suppress the dependence of all the fields on t just so it doesn’t get ugly,
not because it isn’t there. Also, I emphasize that the position along the chain x here
is just a label on the fields, not a degree of freedom or a quantum operator.

The field q is called a scalar field because it doesn’t have any indices decorating
it. This is to be distinguished from e.g. the Maxwell field, which is a vector field, and
which we’ll discuss soon. (Note that vibrations of a crystal in three dimensions actually
do involve vector indices! We omit this complication.)

The lattice spacing a and the size of the box Na in the discussion above are playing
very specific roles in regularizing our 1-dimensional scalar field theory. The lattice
spacing a implies a maximum wavenumber or shortest wavelength and so is called an
“ultraviolet (UV) cutoff”’, because the UV is the short-wavelength end of the visible
light spectrum. The size of the box Na implies a maximum wavelength mode which
fits in the box and so is called an “infrared (IR) cutoff”.

If (in addition to the continuum limit) we also take the infinite volume limit, then
the sums over k£ become integrals. In this limit we can make the replacement

% 3 / A, LS ~ (20)96D (k — k).
k

A check of the normalization factors comes from combining these two rules

1= e = / Alk(2m) 5D — ).
k

Continuum (free) scalar field theory in d + 1 dimensions. These continuum
expressions are easy to generalize to scalar field theory in any number of dimensions.
Let’s do this directly in infinite volume and set ;1 = 1 by rescaling fields. The action is

S[g] = / ' dt (%& V6 Vo V(¢)) | (1.4)

10



This is almost what we would have found for the long-wavelength (ka < 1) description
of a d-dimensional lattice of masses on springs, like a mattress (except that there would
have been one ¢ for each direction in which the atoms can wiggle). The equation of

motion is 5516
= = = 92+ vV —V'(9). 1.5
For the harmonic case V(¢) = $m?¢* we know what we’re doing, and (1.5) is called
the Klein-Gordon equation,
0= (00" +m?) ¢. (1.6)

(Notice that I've set vy = ¢ = 1 here, and this is where we have committed to a choice
of signature convention; take a look at the conventions page §0.3.). In relativistic
notation, the Lagrangian density is just £ = %(@@8‘% — m?¢?). This describes free
continuum real massive relativistic scalar quantum field theory. (Match the adjectives
to the associated features of the lagrangian; collect them all!)

oL
09
instantly promote to a quantum operator by using boldface symbols) is then

H= /ddx (%33)2 + %vg <6¢ . 6¢> + %m2¢2) .

Note that all these terms are positive.

The canonical momentum is m = = ¢ and the Hamiltonian (which we can

A translation invariant linear problem is solved by Fourier transforms: ¢(z) =

[d%k e~KZgh, and m(z) = [d% e~ KT, this is
1 1
H= / dk (§7rk7r_k +5 (vZk* +m?) ¢k¢_k)

where k2 = (—ik) - (ik) = k - k. This is merely a sum of decoupled oscillators, except
for the coupling between wavenumbers k£ and —k. We can read off the normal mode
frequencies, aka the dispersion relation:

wp = vk? +m?.

Notice that this is also the condition for a Fourier mode ei’;’f_w to solve the Klein-
Gordon equation (1.6).

We can decouple the modes with wavenumber £ and —k by introducing the ladder
operators®

| 1 [hw
=\ 9., ! =21/ —= (a, —a t1— (945 (1 _ 1/
P5 =\ 2 <a’f *a—k> » =T\ (ak a_k), a,,al,] = 2m)4%6 D (k — &).

2Beware that the mode operators ay defined here differ by powers of 27/L from the finite-volume

objects in the previous discussion. These agree with Peskin’s conventions.

11



Their commutator follows from [¢(x),7(y)] = 16 (x — y). In terms of the ladder

operators,
1
H:/ddk:hwk (a}iak—l—§).
The field operators

- / h ik-@ —ik-&
¢($):/ddk 2—&%(61C a, t+e kaL),
1 hwr [ 7= o
w(¥) = H /ddk \/ Tk <e‘k’”ak Y]

satisfy the canonical commutation relation

(1.7)

1
N———

6(7), 7(T)] = ih164 T — 7).

I emphasize that this is really the same equation as our starting point for each ball on
springs:
[An, Pr] = 1A10,,, .

The mode expansions (1.7) contain a great deal of information. First notice that
¢ is manifestly hermitian. Next, notice that from ¢(¥) = ¢(Z,0) by itself we can-
not disentangle a; and a,t, since only the combination a; + aT_k multiplies i Z The
momentum 7t contains the other linear combination. However, if we evolve the field
operator in time using the Heisenberg equation we find

o(Z,1) = eMop(T)e M = /ddk\ / Q—Zk (eiE'f_i“’Etak + e‘i’;'ﬂi‘*’ﬁtaD . (1.8)

Indeed we can check that the relation 7w = (,b holds.
Notice that the dependence on spacetime is via a sum of terms of the form:

A N
elkz fwgt elkuz |k0:wg

and their complex conjugates. These are precisely all the solutions to the wave equation
(1.6). For each E, there are two solutions, one with positive frequency and one with
negative frequency. You might have worried that solutions with both signs of the
frequency mean that the world might explode or something (like it would if we tried to
replace the Schrodinger equation for the wavefunction with a Klein-Gordon equation).
This danger is evaded in a beautiful way: the coefficient of the positive frequency
solution with wavenumber k is the destruction operator for the mode; the associated
negative frequency term comes with the creation operator for the same mode, as a
consequence of reality of the field.

12



1.2 Fields mediate forces

[Zee §1.3] Consider again our chain of balls on springs. Suppose a giant hand reaches
in and pushes the atom at position x,, a little bit. This can be described by adding to
the hamiltonian a term

0V (q) = —Ju(t)qn(?)

which applies a force J,(t) to the nth atom. We can ask, in the presence of such a
force, what is the amplitude to go from state I to state F' in time T

(F| efifOT dtH(t) 1) = /[D(b]eifdtdd;c(;(8¢)2_V(¢)+J(x)¢(x)).

As you see, this is a quantity for which we have a path integral representation. Here’s
a reason we might care about this quantity: take the initial and final states to be the

groundstate:
(0| efifOT dtH (t) 10) ~ efifOT dtBgs(J)

If the time-dependence is slow enough, the answer is obtained by the adiabatic approx-
imation: just add up the instantaneous groundstate energy at each time step.

[End of Lecture 1]

Let’s retreat to the case where the action is quadratic in ¢, so that we can actually
do the path integral:

IBP

L(¢) = % (8,00"¢ — m*¢?) —%(b (0° + m?) ¢ + total derivative. (1.9)

Going back to the lattice to make the integrals slightly less scary, we have

oo M. N . ONM,
AW = /[D¢]eif(£+J¢) _/ [T daneberterartien — (@mi) "M 1 gazta,
N ’ det A

Here repeated indices are summed as usual: ¢, A,,q, = [ dedyg(x) AL, ¢(y), ete... So
you can see that the matrix A multiplying the quadratic term in this gaussian integral
is Ayy = =0z —y) (02 + m?). It is an N M, x NM,; matrix. Its inverse A~! satisfies
by definition AMA;; = 04y, Which is the differential equation

—(*+m*)D(x —y) = 6(z — y). (1.10)

This equation says that D is a Green’s function for the operator —(9% +m?). The fact
that there is no special point in spacetime says A;yl = D(z — y) only depends on the
difference of its arguments.

Does this integral actually converge? On the homework you saw an integral of the
form fR dqe_%qu, which surely converges if A is a positive matrix. Actually, this is

13



overkill — it is enough to replace m? — m? —ie to make all the integrals converge. Here

2

€ is an infinitesimal, which means ¢ = 0 and ce = € for any positive ¢. Then each

f dgn; will have a factor of e~/ 4t which suppresses the integrand in the dangerous
large-field region®.

The equation (1.10) is translation-invariant and linear so you should not be sur-
prised that it is solved by going to Fourier space (in space and time):

D(z) = /dd+1k ek D 5 (g) = /dd+1k, ikt

in terms of which (1.10) becomes the algebraic equation 1 = (k* — m? + ie)D;,. Hence

D(z) = /dd“kk2 ¢

—m?2 +ie

ikx

Notice that the shift by e saves the day here: it keeps the inte-
gration contour from running right over the pole at k? = m?, by

moving slightly in the imaginary direction. More explicitly, LCCJ

B —m?+ie=w?—k*—m?+ie
-utie

is zero when

- - . - w.-ieo
w:i\/k2+m2—ieTaélo + (wy —i€), wp =\ k> +m?2 )

7 i _ 7 _ i
In the second step I Taylor expanded \/wj —1ie = \/wji — ;—Z +
O(€)? and used the facts that wy > 0, and that anything positive
times an infinitesmal is an infinitesimal.

We can then do the w integral by contours®: if ¢ > 0 (¢ < 0), we can close the
contour in the UHP (LHP) since the integrand goes like e "™%? and the integral equals
the residue of the pole at w = wy, F ie (times 27i):

D(x) = —i / @k (9@)—6_“&}”%@ + 9(—t)—€i(w’ft_k'£)> . (L11)

2wk ka

We'll learn to call this time-ordered in a moment.

3Here I have shown you one way to make the integral well-defined. You might worry that there
could be others (there are). Another thing you might be bothered by is the boundary conditions on
the fields and their relation to the initial and final states. These issues are closely related! In the next
subsection, we’ll say more.

4We are using the Cauchy residue theorem fC dzf(z) = 2ni sz Res.—., f where z; are the poles of
f. To remember the sign, consider a small circle Cy counterclockwise around the origin and f(z) = 1/z,
s0 L =i [} df = 2ri.

14



The propagator. Who is D(x), besides some quantity in terms of which we did a
Gaussian integral? Recall from the homework that the inverse matrix can be extracted
via a two-point correlation function:

A7l = /dque_équ/Z.
Putting back all the labels, the same manipulations show that

?

D(z —y) = (0lo(z)o(y)|0) (1.12)
— the amplitude to propagate an excitation created from the vacuum by ¢(z) to be
annihilated by ¢(y). The propagator, for short.

(Notice that if the system is Lorentz invariant (which starting from (1.9) it is) then
since D(x) is a scalar quantity, it can only depend on x through Lorentz invariants
made from z#, namely the proper distance z? = t* — 72, and the sign of t.)

Why the ‘?” in (1.12)? For one thing, ¢(z) and ¢(y) are operators — the order
matters. How do I know which order in which to write them? To reproduce (1.11) the
thing to do is to time-order them:

(0T (x)(y)[0) = (= — 4°) (Olg(2)(y)|0) + (" — 2°) (0lé(y)H()]0) .
To see this, plug in the mode expansion (1.7) to see e.g.

ak d%
2\ /0

= w, to satisfy the KG equation), which reproduces the first term

Q(Uk

©lo()o)0) = | a0 0] 0,0} 0) =

(where k° = wy, ¢°

in (1.11)%°.

Now why should we care about the propagator? Look again at W[J]. We've learned
that (up to terms independent of J),

Wil == [ [ ad @)D - ) = —5 [a g

Here J(z) = [d™ kel ], J; = J_, (since J(z) is real).

We get to pick J(z). Let’s choose J = J; + Jy to describe (in Zee’s words)
two lumps sitting still on the mattress: J,(z) = 6*(z — x,),a = 1,2. Then J, =

1

—Ji
—m? +1ie

5The other ways of making the path integral well-defined correspond to other ways of ordering the
¢s, and other initial and final states.

6In comparing to (1.11), it helps to notice that we can redefine the k integration variable to reverse
the sign of the exponent of the spatial part, fddkf(p)e”z'f = fddkf(ly)e*”z'f. (Thanks to Hung-Hwa
Lin for help during lecture.)

15



[ da®e—ik2 (ei’;'fl + eiE'f2). The interaction between the two lumps mediated by the

mattress field ¢ will then be described by the J;.J; cross-terms in W[J]:

0ik%(z° =) [ 33 ek(xl *)
= —— G 1.1
/daz /dy /dk; / kk2 m2—|—16+ (1.13)

dz” o 1.14
‘/ ! J e (L14)

iﬂ T1—T2)
= +/dl’ /CTS/{:— + ... (1.15)
k2 +m?2 —ie

(The ... indicate terms which don’t depend on x1, 2, so let’s ignore them.)

For this choice of .J, the Hamiltonian is time-independent, and "V = (0| e 71#7|0) =
e (DT g0 W = —E(J)T. We learn that

1k: -T19
/d‘lk + const.
k-?

Notice that we can drop the ie now, because this integrand is nonsingular for real k.
In d = 1, there are poles at £ = +im, and we can close the contour in the UHP for
free to get”

—mx

2mi e m*
Fy(J)=——— = — .
g( ) 21 2im 2m

Since x is the separation between the lumps, this means that our field has produced

an attractive force between the lumps
1 —mx
F=—-0,Ey(J) = —1—56

which falls off exponentially with the separation between the lumps. The range of the
potential goes inversely with the mass of the ‘force carrier’ ¢. The 3d version of this

¢ (see footnote 7) is called the Yukawa potential.

potential

"For convenience, here’s the integral in 3d:

/ d\"*kf”g'f y=coso 1 /°° k2dk /1 dyeivr — /°° dkk sin kr
k2 + M2 (277)2 0 k2 4+ M2 1 (27T)QT —oo k2 + M?

—_————
:2]:&2;”
1 1 [ kelkr
- dk——— + h.c.
(2m)2r (21 / e C)
_ 1 1 .lMel(lM)’!‘ _ e—Mr
T oz oM = dmr
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1.3 Euclidean path integral and Wick rotation

Here is a route to defining the path integral (actually the same as the replacement
m? — m? — ie) which makes clearer what is going on with the initial and final states.

The whole point here can be made for a single mode of the field — a single harmonic
oscillator — with action

St = 5 [t (@ar - 9%) - [ g

(where Q% = k2 + m? if you like). Consider the replacement 7 = it in the action:
1 1
Slq] = —§i/d7' (—(0-9)* = Q%¢*) + i/dTJq = i/dr <§ ((0-q)* + %¢%) + Jq) .
With this replacement, the path integral becomes

/[Dq]ede(%((B—rq)2+Q2q2)+Jq) = /[D(]]G_SE[q}.

This integrand suppresses configurations with large ¢, and large 0,q, and the integral
is therefore totally well-defined. The euclidean action is®

Splg) = /dr (% ((0-9)* + Q%) + Jq) = /dr (%q (02 + Q%) g+ Jq)

where (—0? + ?) is a positive operator (meaning all of its eigenvalues are positive).
Call its inverse (G, which then, by definition, satisfies

(—(93 + QQ) G(o,7) =0d(c —T)

The fact that our system is time-translation invariant means G(o,7) = G(0 — 7). We
can solve this equation in fourier space: G(s) = [dwe™’G,, makes it algebraic:

B 1
Y202
and we have .
elw _al 1

(Do it by residues: the integrand has poles at w = £i{2 (see the figure 1 below). The
absolute value of |7| is crucial, and comes from the fact that the contour at infinity
converges in the upper (lower) half plane for 7 < 0 (7 > 0).)

8t is called euclidean because the (0,¢)? has the same sign as the spatial derivatives (9,¢)?, so
this is the action we get in euclidean spacetime with metric d,,, rather than n,,. Exercise: put back
the spatial derivative terms and check that this is the case.
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Figure 1: Poles of the integrand of the w integral in (1.16).

I claim that the real-time calculation which keeps the oscillator in its groundstate
is the analytic continuation of the one we did above, where we replace

—i(mw/2—¢€)

WMink = € Wabove (117>

where € is (a familiar) infinitesimal. In the picture of the euclidean frequency plane
in Fig. 1, this is a rotation by nearly 90 degrees. We don’t want to go all the way to
90 degrees, because then we would hit the poles at £iQ2. The replacement (1.17) just
means that if we integrate over real wyni, we rotate the contour in the integral over w
as follows:

A

[Nabiwe = Wey il
) Conreptt
Yot J<o

as a result we pick up the same poles at wapove = i) as in the euclidean calculation.
Notice that we had better also rotate the argument of the function, 7, at the same time
to maintain convergence, that is:

Weucl = —1WMink; Weuclteucl = wMinktMinka teuct = +H1tMink- (118)

So this is giving us a contour prescription — a prescription for negotiating the poles —
for the real-frequency integral. The result is the Feynman contour, and it is the same as

18



Figure 2: The Feynman contour in the wyink complex plane.

what we got from m? — m? —1ie: depending on the sign of the (real) time separation of
the two operators (recall that ¢ is the difference), we close the contour around one pole
or the other, giving the time-ordered propagator. For the case of a free scalar field, the
replacement m? — m? — ie had the same effect of rotating the real-frequency contour
away from the poles. It is also the same as shifting the frequency by 2 — Q — ie, as
indicated in the right part of Fig. 2. This prescription works in a case where there is
no m? term.

Notice for future reference that the euclidean action and real-time action are related

by

2 2
Sl @] = / oy <( af:@) + Q?Q?) — iSwlQ] = —i / i (( affk) - QQQQ) .

because of (1.18). This means the path integrand is e~ Seuct = ei¥Minkc,

[End of Lecture 2]

Euclidean evolution. Now, why does the contour coming from the euclidean path
integral put the oscillator into its groundstate? The point in life of the euclidean time
evolution to prepare the groundstate from an arbitrary state:

e PH |any) = Z e PEn|n)(n|any) o |gs) + O (e_ﬁ(El_Egs)) (1.19)

— the euclidean-time propagator e " beats down the amplitude of any excited state
relative to the groundstate, for large enough f.

And the euclidean path integral gives a formula for this euclidean propagation
amplitude. Recall that the path integral representation for the real-time propagation
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amplitude is
(e iy = [ ldgettio,
fi

On the RHS here, we sum over all paths between ¢ and f in time ¢ (i.e. ¢(0) = ¢;, q(t) =
qs), weighted by a phase e/ %L, But that means you also know a representation for

> (fle ) = treH
f

— namely, you sum over all periodic paths ¢; = q; in imaginary time t = —if. So:

Z(B) = tre P"H = %[dq]e JPdrr _ %[dq]eswd[q]

The LHS is the partition function in quantum statistical mechanics. The RHS is the
euclidean functional integral we’ve been using. [For more on this, see Zee §V.2]

The period of imaginary time, § = 1/T, is the inverse temperature. We've been
studying the limit as g — co. Taking f — oo means 7" — 0, and you’ll agree that at
T = 0 we project onto the groundstate (if there’s more than one groundstate we have
to think more).

Time-ordering. To summarize the previous discussion: in real time, we must
choose a state, and this means that there are many Green’s functions, not just one:
(¥ q(t)q(s) |v) depends on |¢), unsurprisingly.

But we found a special one which arises by analytic continuation from the euclidean
Green’s function, which is unique’. It is

G(s,t) = (T (q(s)q(?))) ,

the time-ordered, or Feynman, Green’s function, and I write the time-ordering symbol
T to emphasize this. I emphasize that from our starting point above, the time ordering
arose because we have to close the contour in the UHP (LHP) for ¢t < 0 (¢t > 0).

9 Another important perspective on the uniqueness of the euclidean Green’s function and the non-
uniqueness in real time: in euclidean time, we are inverting an operator of the form —d? 4+ Q? which is
positive (= all its eigenvalues are positive) — recall that —92 = p? is the square of a hermitian operator.
If all the eigenvalues are positive, the operator has no kernel, so it is completely and unambiguously
invertible. This is why there are no poles on the axis of the (euclidean) w integral in (1.16). In real
time, in contrast, we are inverting something like +0? + Q2 which annihilates modes with 9; = iQ
(if we were doing QFT in d > 0 + 1 this equation would be the familiar p> — m? = 0). These are
called ‘on-shell states’, they are actual states in the spectrum of the Hamiltonian of the system. So
the operator we are trying to invert has a kernel and this is the source of the ambiguity. In frequency
space, this is reflected in the presence of poles of the integrand on the contour of integration; the
choice of how to negotiate them encodes the choice of Green’s function.
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Let’s pursue this one more step. The same argument tells us that the generating
functional for real-time, time-ordered correlation functions of ¢ is

Z[J] = <7'€ifdtq(t)J(t)> = (0| Te' 790y, (1.20)

in the sense that
150
Z6J(t) 0] (ts)

In the second step of (1.20) I just emphasized that the real time expectation value here

(Taq(ti)q(ta)-..) o Z| =0 -

is really a vacuum expectation value, as long as we use the ie prescription above to
define the integrals. This quantity has the picturesque interpretation as the vacuum
persistence amplitude, in the presence of the source J.'

So we see that in general, the correlation functions that are computed by this
“ie prescription” of Wick rotating from Euclidean spacetime are time-ordered vacuum
expectation values:

= / [DgleSunric f () = (O[T F(6)[0)

Causality. In other treatments of this subject, you will see the Feynman contour
motivated by ideas about causality. This was not the logic of our discussion here but
it is reassuring that we end up in the same place. Note that even in 0+1 dimensions
there is a useful notion of causality: effects should come after their causes.

1.4 Feynman diagrams from the path integral

Subsection §1.3 was a sophisticated discussion of QFT in 0+ 1 dimensions (i.e.ordinary
quantum mechanics of a single particle), since we focussed on a single mode. To attempt
to demystify some more of the structure we’ll discover in QF T, let’s regress even further,
and consider the case of QFT in 0+ 0 dimensions. By the path-integral representation,
this means ordinary integrals. If everything is positive, this is probability theory.

Suppose we want to do the integral

Z(J) :/ dq ez —fad' e = /dq e 5@ (1.21)

10 Actually, more useful is the generating function of connected correlation functions:

(Tq(t)q(t)...), = (;J((Stl) 5J((5t2)

where (q1¢2). = (q192) — (q1) (g2). Higher-point connected correlation functions are defined by sub-
tracting the gaussian answer. Connected correlation functions are well-named because they are com-

]OgZ[JHJ:O .

puted by connected Feynman diagrams, as we’ll discuss more next.

21



It is the path integral for ¢* theory with fewer labels. For g = 0, this is a gaussian
integral which we know how to do. For g # 0 it’s not an elementary function of its
arguments. We can develop a (non-convergent!) series expansion in g by writing it as

00 1 1 2
Z(J) = / dq 2™+ (1 —~ %q4 + 5 (—%q4) + o )

[e.9]

and integrating term by term. And the term with ¢! (that is, the coefficient of

o ()" s

00 an  poo 4dn
—LIm224Jq an _ 3 —im2¢2+Jq _ 3 lJ#J 2_7T
/_Oodqe2 q _(&]) /_Oodqe2 _(&]) ez i

So:
207) = 1| e (@) b

This is a double expansion in powers of J and powers of g. The process of computing
the coefficient of J"¢™ can be described usefully in terms of diagrams. There is a factor
of 1/m? for each line (the propagator), and a factor of (—g) for each 4-point vertex
(the coupling), and a factor of J for each external line (the source). For example, the

1 4

3 Ty I I, T 4
% "c\! ¥ 85 < | ,_)qu}
3 J

coefficient of gJ* comes from:

T

) ) 7 7T J

There is a symmetry factor which comes from expanding the exponential: if the
diagram has some symmetry preserving the external labels; the multiplicity of diagrams
does not completely cancel the 1/n!.

As another example, consider the analog of the two-point function:

_Jdgg e 0 _

In perturbation theory this is:

G ~ +__O__*OQ;+ 8 +_6_+O(g3)
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1 2
=m 2 (1 - Egm’4 + gng’S + O(gS)) (1.23)

To get the numerical coefficients note that Wick’s theorem for this simple case is

0 k odd
k )
q") = 1.24
< >0 {(k — !, keven (1.24)

— the number of ways of pairing k£ objects. Here (k—1)!! = (k—1)(k—3)(k—5)...-3- 1.
This is because there are k — 1 choices of partner for the first ¢, after which there are
k — 3 choices of partner for the next one, etc.

Some important structural comments: A diagram contributing to G which has any
part not connected to the external legs is cancelled by the expansion of the denominator
Z=/ dqe=°@. The contributions to Z are called ‘vacuum diagrams’ (since they have
no external lines, so they are like an amplitude for nothing to turn back into nothing).
Z is a sum over all diagrams with no external lines, including disconnected ones. As
you saw in 215A, this sum exponentiates: Z = e2-( connected diagrams )

Some labels. Some of these points are clearer if we put back some of the labels.
So consider the slightly more complicated case

N
_ 1 g g
Z:/Hd%e S, S(Q)ngiAijquF@E 4, ESOJF@E:Q?'
i=1 T S

(Think of i as like a position index, and A as a difference operator, so this is a dis-
cretization of ¢* theory.) Then we can develop a perturbative expansion by writing

— f sz\il dqie*S(q)ql .

e z (1.25)
- inil dqiE_SO(Q)e_% >idl .
o (=H)"n [dge= 3 LTI ahan
:Zn_o( 4!) / f q Zu,...,zn Hzaqzaql qk. 1.27)

> =0 (=) /nt Jdge=0 32, TTE i,

(Note the step with the ~ is where we exchange the sum over n with the integral over
q.)

Now the general statement of Wick’s theorem is:

RN k odd
e = A A keven

Zcontractions i1d2 l/2—1%k/2"
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Here the sum is over all ways of pairing up the k fields. (Note that this reduces to
(1.24) if we remove all the labels.)

Let’s think about a particular term, e.g. an O(g*) contribution to (g;q;):
+ ) X
‘ I |
LJ. = < 1l 2l /‘»7&7(7(2 L—% 5 = EQQZA&%E;AEIS
IR E—— : ol

The factor of 1/6 is called a symmetry factor. Instead of by explicit combinatorics,
we could have gotten this number by dividing by the order of the automorphism group
of the diagram. An automorphism of the diagram is a map from the diagram to
itself which preserves the external lines and the connectivity. In this diagram, we
can permute the three internal lines amongst themselves, giving |S3| = 3! = 6 in the
denominator. Don’t get hung up on the symmetry factors.

As a final example for now, here is the expansion of the four-point function:

2 N - - - —_ —
‘\ ’ -_ \/ A141A231 + A121A341 + A131A241
4 3 \
+ pl+rZ 8
+ >< + \57{4‘ ~|~\/Q —g EZ (A{zlAQIzlAgjflAzzl
N W A AL AL + )
\ oSl
*
(1G2q3q4) =~ T P+ w4+ |d+ T+ _

. (
T 4 bdr IR +
~ + bl 4 TR

* .. “+ .-

[End of Lecture 3]

All the labels. The Feynman diagrams we’re going to draw all the time are the
same but with more labels. Notice that each of the ¢s in our integral could come
with a label, ¢ — ¢,. Then each line in our diagram would be associated with a
matrix (m~?),, which is the inverse of the quadratic term g,m2,q, in the action. If
our diagrams have loops we get free sums over the label. If that label is conserved by
the interactions, the vertices will have some delta functions. In the case of translation-
invariant field theories we can label lines by the conserved momentum k. Each comes

with a factor of the free propagator each vertex conserves momentum, so

i
k24+m2+ie’
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comes with igd? (3" k) (27)P, and we must integrate over momenta on internal lines

[d"k.

Brief comments about large orders of perturbation theory.

e The perturbation series about g = 0 does not converge. How do I know? One
way to see this is to notice that if I made g even infinitesimally negative, the
integral itself would not converge (the potential would be unbounded below),
and Zy—_| is not defined. Therefore Z, as a function of g cannot be analytic in
a neighborhood of ¢ = 0. This argument is due to Dyson, and applies also in
most QFTs. This means there is more to QFT than perturbation theory: the
perturbation series does not define the field theory amplitudes.

e The expansion of the exponential in the integrand is clearly convergent for each
q. The place where we went wrong is exchanging the order of integration over g
and summation over n.

e In this case, the perturbation expansion can be given a closed form expression:
2 s (—1)" 22n+3 1\ / g \»
Z(0) = 4/ = r(2n+ = (—) . 1.28
(0) m? zn: nl (41" n 2) \m# (1.28)
e The expansion for G is of the form

G ~ m_Qicn (%)n

n=0

1
When n is large, the coefficients satisfy ¢, 1 "z —%ncn (you can see this by

looking at the coefficients in (1.28)) so that |c,| ~ n!. This factorial growth of
the number of diagrams is general in QFT and is another way to see that the
series does not converge.

e The fact that the coefficients ¢,, grow means that there is a best number of orders
to keep4. The errors start getting bigger when ¢, 14 (#) ~ ¢p, that is, at order
n ~ ?’Qﬂg. So if you want to evaluate G at this value of the coupling, you should
stop at that order of n. An estimate of the error by the next term left out gives

something that goes like e #/9.

e [ said above that the fact that the perturbation series doesn’t converge means
that it doesn’t define the field theory amplitudes. What does it miss? To answer
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this, consider trying to do the integral (1.21) by saddle point (at J = 0 for
simplicity):

9 3
3|q*

(Note the resemblance to the equations of motion.) This has three solutions:

0= S/(q*) = m2Q* +

3lm?2

9

Q*:OJ Q*::ti

The expansion about the ‘trivial” saddle at g, (where the action is S(g, = 0) = 0)
reproduces the perturbation series. At the other saddles,

1972 4
S (q* 4y 2 ) _ s (1.29)

'S

which means their contribution would go like e+32ig, which actually would blow
up at weak coupling, g — 0. These saddles are not on the contour and don’t
contribute for small positive g, but more generally (as for example when m? < 0),
there will be effects that go like e Tsl. This is a function whose series expansion
in g at ¢ = 0 is identically zero. You can never find it by doing perturbation
theory in g about g = 0.

A technique called Borel resummation can sometimes produce a well-defined func-
tion of g from an asymptotic series whose coefficients diverge like n!. The idea is
to make a new series

whose coefficients are ensmallened by n!. Then to get back Z(g) we use the
identity
1 (e o]
1=— dze 2"
n! Jo

and do the Laplace transform of B(z):

dze=7/9,m
/ dzB(z Z/Q—Zcmfo =¢ - —gzcmg =97Z(9).
0

This procedure requires both that the series in B(z) converges and that the
Laplace transform can be done. In fact this procedure works in this case.

The fact that the number of diagrams at large order grows like n! is correlated
with the existence of saddle-point contributions to Z(g) which go like e=%/9.
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This is because they are associated with singularities of B(z) at z = a; such a
singularity means the sum of 22" must diverge at z = a. (More generally, non-
perturbative effects which go like e=%/ g'/r (larger if p > 1) are associated with
(faster) growth like (pn)!. In string theory, p = 2. See this classic work.)

In fact in this case, we know the whole function. The integral actually does have
a name — it’s a Bessel function:

3m*

g

200 =0) = =B Kyo).

(for Re/p > 0), as Mathematica will tell you. Because we know about Bessel
functions, in this case we can actually figure out what happens at strong coupling,
when g > m?, using the asymptotics of the Bessel function.

The functions G(g) and Z(g) can be analytically continued in g away from the
real axis, and can in fact be defined on the whole complex g plane. It has a
branch cut on the negative real axis, across which its discontinuity is related to
its imaginary part. The imaginary part goes like e~ 19 near the origin and can be
computed by a tunneling calculation like (1.29).

How did we know Z has a branch cut? One way is from the asymptotics of the
Bessel function. But, better, why does Z satisfy the Bessel differential equation
as a function of the couplings? The answer, as you'll check on the homework, is
that the Bessel equation is a Schwinger-Dyson equation,

>0
0= / P (something e’S(q)) (1.30)
-0 94

which results from demanding that we can change integration variables in the
path integral.

For a bit more about this, you might look at sections 3 and 4 of this recent paper from

which I got some of the details here. See also the giant book by Zinn-Justin. There is a

deep connection between the large-order behavior of the perturbation series about the
trivial saddle point and the contributions of non-trivial saddle points. The keywords

for this connection are resurgence and trans-series and a starting reference is here.

The class of equations (1.30) is very important: it shows that the equations of

motion are true in Green’s functions, up to contact terms, the contributions where the
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a% hits the ‘something’. For example, in scalar field theory

_ O (o — (i
0= [ Dol (ota)e) <¢< s

In the special case where S is quadratic, S = [ ¢A¢ , this shows that the two-point

>+MH@—y)

function is a Green’s function for the quadratic operator A.
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1.5 Lagrangian field theory

[Here we fill in the bits of Peskin §2.2 that we missed above.| Let’s consider a classical
field theory in the Lagrangian description. This means that the degrees of freedom
are a set of fields ¢,(x), where r is a discrete index (for maybe spin or polarization
or flavor), and we specify the dynamics by the classical action. If the world is kind
to us (in this class we assume this), the action is an integral over space and time of a
Lagrangian density

Stol = [ d*as(s,0%0)
This important assumption is an implementation of locality.

This central object encodes the field equations, the canonical structure on the phase
space, the Hamiltonian, the symmetries of the theory.

I've sneakily implied that we are going to assume Lorentz invariance, so that L
depends on the 4-vector 0*¢, and not its components separately. I am also going to
assume that the action S is real.

Two examples to keep in mind are the Klein-Gordon Lagrangian:
1 1
Lra = 5 00" ) — §m2¢>2

and the Maxwell Lagrangian:

1 1
Lpy =——F, F*" =— (E*—- B?
EM 4e2 H 4e2 ( )
with F,, = 0,4, — 0,A, and A, regarded as the independent degrees of freedom.
A word about units: in units with A = ¢ = 1, everything has units of

mass to some power, called its mass dimension. Energy and momen-

tum p, = hk, have mass dimension +1. The space and time coordi- object | mass dim.
nates z* have mass dimension —1. The action goes in the exponential Dy 1
of the path integral measure [ [ng]e% and so must be dimensionless. xt -1

So the Lagrangian density has mass dimension d+ 1. This means that S 0
the KG field has mass dimension %! (and the mass m has mass di- L d+1
mension 1 (yay!)). In d+1 = 3+ 1 dimensions, E ~ A, B ~ VA have o 1
mass dimension 2 and A has mass dimension one (and e is dimension- 1

less). This is nice because then the covariant derivative 0, + A, has E, B, F,, 2
mass dimension one. Notice that E? + B? has dimension 4 which is
good for an energy per unit volume.

The equation of motion is




Note the functional derivative. You can check that in the case when £ depends only
on ¢ and 0,¢, this is the same as the Lagrange EOM

oL oL

— _ o
=55 "V o0ra)

(for each r) which I can’t remember. Note that since we are interested here in the bulk

equations of motion, we ignore boundary terms unless we are interested in field theory
on a space with boundary. That is a worthy subject but an unnecessary complication
for now.

By redefining the field by e.g. ¢ = % (x — B/C), we can make the KG theory uglier
1., ., 1
L=A+Bx+ §CX + §D8“Xaux.

From the path integral point of view, the field is just an integration variable. Some-
times, its normalization is meaningful, like in the phonon example where it began its life
as the displacement of the atoms from their equilibrium. So you see that relative to the
most general possible Lagrange density for a scalar field, we are not losing generality
except in our neglect of interactions, and in our neglect of terms with more derivatives.
The former neglect we will repair little by little in this course, by doing perturbation
theory. The latter is justified well by the renormalization group philosophy, which is a
subject for later.

Canonical field momentum and Hamiltonian. The Hamiltonian viewpoint in
field theory has the great virtue of bringing out the physical degrees of freedom. It
has the great shortcoming that it picks out the time coordinate as special and obscures
Lorentz symmetry.

The canonical field momentum is defined to be

(z) oL
(1) = =/ —.
(0p(x))
Notice that this expression assumes a local Lagrangian density. = is actually a ‘field

momentum density’ in the sense that the literal canonical momentum is #@)L =

dizm(z) (as opposed to £). I will often forget to say ‘density’ here.

The hamiltonian is then
H=Y pug.— L= /dd:c (W(x)giﬁ(x) - c) — /ddx b,

Noether’s theorem and the Noether method. Yay, symmetries. Why do
physicists love symmetries so much? One reason is that they offer possible resting
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places along our never-ending chains of ‘why?’ questions. For example, one answer to
the question “Why QFT?” is (certainly this is the one given in Weinberg’s text, but
just as certainly it is not the only one): quantum mechanics plus Poincaré symmetry.

They are also helpful for solving physical systems: Continuous symmetries are as-
sociated with conserved currents. Suppose the action is invariant under a continuous
transformation of the fields ¢, ¢(x) — ¢'(x). (The invariance of the action is what
makes the transformation a symmetry.) ‘continuous’ here means we can do the trans-
formation just a little bit, so that ¢(x) — ¢(z) + eAp(z) where € is an infinitesimal
parameter.

If the transformation with constant e (independent of space and time) is a symmetry,
then the variation of the action with € = €(z,t) must be proportional to J,e (at least
assuming some smoothness properties of the action), and so that it vanishes V¢ when
€ is constant:

S[é + e(x)Ag] — S[¢] = / dzdtd,e(z) " 2 — / d*zdte(x)0, " .

But if the equations of motion are obeyed, then the action is invariant under any
variation of ¢, including this one, for arbitrary e(x). But this means that 0,j* = 0, the
current is conserved. These words are an accurate description of the equation because

Qr = / diz °
R

in some region of space R can only change by leaving the region (assume the definition

they mean that the charge

of R is independent of time):

atQRz/ddx atf):—/ddm-j’:—/ i
R R OR

where in the last step we used Stokes’ theorem.

This trick with pretending the parameter depends on space is called the Noether
method. More prosaically, the condition that the action is invariant means that the
Lagrangian density changes by a total derivative (we assume boundary terms in the
action can be ignored):

£<¢/’ 3;@’) symgetry £<¢’ aﬂ¢) + 68#.7“
but on the other hand, by Taylor expansion,

calculus aﬁ 8£
L(#,0,8) LY £(¢,8M¢)+e(a—¢A¢+m8uA¢)
w

31



IBP oL oL oL

J/

eom

By combining the previous two equations for £(¢'), we see that on configurations which
satisfy the EOM, 0 = 9,,j* with

oL
L R
SEICS)

Notice that I stuck the index back in at the last step.

— (1.31)

There is a converse to the Noether theorem, which is easier to discuss directly in
quantum mechanics. Given a conserved charge (), that is, a hermitian operator with
[H,Q] = 0, we can make a symmetry transformation of the fields ¢ by

56 = ic[Q, ¢). (1.32)

We'll say that @@ generates the symmetry, for the following reason. (1.32) is the in-
finitesimal version of the finite transformation

¢ — ¢ = QeI

The object U = €!? is a unitary operator (since @ is hermitian) which represents the
action of the symmetry on the Hilbert space of the QFT. It is a symmetry in the sense

that it commutes with the time evolution operator e i#¢,

Some examples will be useful:

e For example, suppose S[¢| only depends on ¢ through its derivatives, for example,
Slgl = | %qub('?“gb. Then there is a shift symmetry ¢ — ¢’ = ¢ + €. Letting €
depend on spacetime, the variation of the action is S[p+€(x)]—S[¢] = — [ €0,0"¢,
so the current is j, = 0,¢. Let’s check the converse: Indeed, the charge ) =
fs pace Jo generates the symmetry in the sense that for small €, the variation in the
field is

0p=¢' — ¢ =c=i€lQ, ¢
(if we were doing classical mechanics, we should replace i[Q, ¢] with the Poisson
bracket). Using our expression for the current this is

d0p = ie[/ddyg%,qﬁ(x)] =e

which is indeed true by the canonical commutation relations. In this case the
finite transformation is again ¢ — ¢ + €.
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e Consider a complex scalar ®, and suppose S[®, ®*] is invariant under ® — e'‘® =
P + ie® + O(€?), such as S = [ (99*0P — V(®*®)). This U(1) phase transfor-
mation can be rewritten in terms of the real and imaginary parts as an SO(2)
rotation. The charge can be written as

Q= /ddx] /ddp (ala, —blb))

where the two sets of creation and annihilation operators are associated with
excitations of ® and ®' respectively. (That is, quantize ¢ as we did for a
single real scalar field, in terms of mode operators a;» respectively. Then let

= a; + iay, b = a; — iay, up to numerical prefactors.) So the particles created
by a and b have opposite charge (this follows given the mode expansion & ~
a; + bT_k) and can be interpreted as each others’ antiparticles: there can be
symmetry-respecting processes where an a particle and b particle take each other
out.

[End of Lecture 4]

The previous two examples are related. Consider the case where V(®*®) =
A(@*® — v?)? Changing variables to polar coordinates in field space, ® = pel?,
the Lagrangian is

L= p*(09)* + (9p)* = A(p* — v*)*.

If X is big, the potential forces p = v, and its fluctuations are heavy, and we are
left with £ = v?*(0¢)?, where ¢ — ¢ + € is a symmetry. Notice that ¢ = ¢ + 27
is periodic.

e Consider spacetime translations, #* — z* — a*. We can think of this as a trans-
formation of the fields by

o(r) = (x4 a) = ¢p(x) + a” @ +0(a?).

Our transformation parameter is now itself a four-vector, so we’ll get a four-
vector of currents T/. This will be a symmetry as long as the lagrangian doesn’t
depend explicitly on space and time ( so 9,£ = 0) but rather depends on space
and time only via the fields (so 0 # dzyﬁ chatprule o ,,gb + 00,9055 5 30 9L ) Let’s use
the prosaic method for this one: the shift in the Lagranglan den51ty also can be

found by Taylor expansion

d 14
Lo Lo 'L = L+ a0, (L),
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So the formula (1.31) gives

oL
TV = ——— 0,0 —LoF.
0 (au¢) ?{:';

For the time translation, the conserved charge 79 gives back the hamiltonian
density h = m¢— L obtained by Legendre transformation. The conserved quantity
from spatial translations is the momentum carried by the field, which for the KG

field is
P, = / dr T) = — / d®r 0.

For the Maxwell field, this gives the Poynting vector.

There is some ambiguity in the definition of the stress tensor (associated with
the possibility of adding total derivatives to L£).

Let’s check that the expression above for the conserved momentum agrees with
our expectations. In particular, in free field theory the total momentum of the

state ‘El, e /;n> should be just the sum of the momenta of the particles, P =

Py hk, (with interactions the story can be more complicated). Indeed
P, =— / dx 70, = / d’kk;alay,

agrees with this. (Notice that I used rotation invariance of the vacuum to not
worry about a possible constant term.)

I have the impression that you learned all about the rest of the Poincaré group
already in 215A.
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2 From correlation functions to the S matrix

We've derived an expression for correlation functions, such as (1.22), in terms of a sum
of diagrams connected to the external lines, ordered by the number of powers of the
coupling constant. Our next goal is to organize this sum.

First let’s make contact with the way the diagrammatic expansion was (I think)
introduced in 215A. A time-ordered real-time Green’s function has path integral rep-
resentation (with ie prescription implicit, and ¢; = ¢(x;))

G = QT 61+ 0ul) = 27 / (D)1 - -~ e’ @)
f[D¢]¢1 e ¢ne_ifV(¢)6iSo[¢]
= [[Dgenie V@ (2.2)
. —if (¢)
_ (O bne 2 010), (2.3)

(0|Te 1/ V9)0)

Here we've written S = Sy — [V where Sy is gaussian. The last object here is a
time-ordered expectation value in the free theory, which we know how to compute by
Wick contraction.

Two comments about this formula: (1) It must be admitted that in (2.1) the
variable ‘¢’ is seriously overloaded: on the LHS it is used to represent a (Heisenberg-
picture) operator, while on the RHS it is used to represent a (functional) integration
variable. (2) This formula (or a related one) is sometimes called the Dyson formula for
interaction-picture time evolution.

Taylor expanding the exponential e~#/V in (2.3) reproduces the diagrammatic ex-
pansion. (Notice that in real-time quantities, the interaction vertex comes with a factor
of —ig.) The denominator is the sum of bubble diagrams. In both numerator and de-
nominator, the disconnected diagrams exponentiate, and therefore cancel. Here is a
reminder of why this is true:

The exponentiation of the disconnected diagrams. [Peskin page 96] There
are some patterns in these sums of diagrams to which it behooves us to attend. (The
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following discussion transcends the ¢* example.) The general diagram has the form:

A .
W

Only some of the components are attached to the external legs; for a given diagram
A, call the factor associated with these components A. (note that A, need not be
fully connected). The rest of the diagram is made of a pile of ‘bubbles’ of various
types V; (each one internally connected, but disconnected from the external lines) and
multiplicities n; (e.g. V; could be a figure eight, and there could be ny = 2 of them.
These bubbles (or ‘vacuum bubbles’) would be there even if we didn’t have any external
lines, and they would have the same value; they are describing the fluctuations intrinsic
to the vacuum. The amplitude associated with the general diagram is then

n1 no n,
L S

nyl  nel Ne!

My =My, -

where the n;! factors are the most important appearance of symmetry factors: they
count the number of ways to permute the identical copies of V; amongst themselves.

The numerator of G™ is then

Gg?l)merator = <O|T <¢1 o '¢n€_ifv> ‘O> - ZMA = ZMAC Z ‘/1n1 . ‘/an . VOZLO‘

| | |
P e (=0} ni: No: Ney-
= ZMAC eV1.e%2.. . eV
Ac
=) Mgz (2.4)
Ac

— the bubbles always exponentiate to give the same factor of eX:"i independent of
the external data in G. In particular, consider the case of n = 0, where there are no
external lines and hence no A.:

G(O)

numerator

= (0| Te |0y =1- X"
But we care about this because it is the denominator of the actual Green’s function:

<O| T (le e ¢n€7ifv) |O> Gr(fl)merator
(0] Te=1/V |0) - GY =2 M. 29

numerator

G —
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And with that we can forget all about the bubbles. So for example,

GP= _ |, Q + 00 %2 —{——@——t—
I T «

Notice that in this manipulation (2.5) we are adding terms of many orders in per-
turbation theory in the coupling ¢g. If we want an answer to a fixed order in g, we can
regard anything of higher order as zero, so for example, it makes perfect sense to write

G w (1+84834--9) eV

Tistssr. ) TO0=a s p+0)=a+00)

(2) —
G\ = v

(I only drew one kind of bubble in the previous expression since that one was easy to
type.)

Momentum space Green’s functions from Feynman diagrams. In translation-
invariant problems, things are usually a little nicer in momentum space. In ¢* theory
in d + 1 dimensions, let’s think about

G(n) <p1 . .pn) = H / dd—i_ll‘ie_ipixiG(n) ($1 e :I"’n)
=1

This an off-shell Green’s function, a function of general p, not necessarily p?> = m?2.
It will, however, vanish unless >, p/’ = 0 by translation invariance. Consider a fully-
connected contribution to it, at order g"V. (We’ll get the others by multiplying these
bits.)

In ¢* theory, we need to make a diagram by connecting n external position vertices

z; to N 4-valent vertices z, using Feynman propagators Ap(ya—yp) = [ d% g, e iwa—ys)ar m,

where {ya} = {24, 2;}. All of the position dependence is in these exponentials.

Since each propagator has two ends, the number of lines (by the fully-connected

assumption) is
B #ofendsoflinesin—f—élNin_i_zN
B 2 S22 '

This is the number of ¢ integrals, a priori.

Np

The integral over the external positions x; (in the Fourier transform) gives [ d g elvi(—pi) =

Jdﬂ(qi — p;) and so we can label the external lines by p; (and we lose n ¢ integrals).

The integral over the position of each internal vertex is of the form [ d*1zet*(: )
where ¢, are the momenta associated to the lines coming into the vertex. So each
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internal vertex decreases the number of ¢ integrals by 1. One combination of the
momenta is fixed by overall momentum conservation so we have left

n
momentum integrals. This number is > 0 for fully connected diagrams, and it is the
number of loops in the diagram. (This counting is the same as in a Kirchoft’s law
resistor network problem.)'!

For example, consider a particular contribution to G} (n = 4 external legs) and
N = 2 interaction vertices

T e ¢
4424
which has N; = et =
k- r|+PL 2
P t¢
In the example, N, = 2 — 2 + 1 = 1 which agrees with one undetermined momentum
integral. This gives the amplitude

Np
. d+1
Mrc(pipa) = (—ig)" - s(FC)§"* )(Zpi)/ I[ @'k H m2 +ie
loops,a=1 1111657"
><:< (—ig)® 6d+l(ip,) ﬁ /derl i i
21 ! p? —m? — ie —m2+1ie(pr +p2 + k)2 —m?+ie

i=1 =1
(You might notice that the integral over k is in fact formally infinite, since at large k
it goes like A d'k ~ log(A). Try to postpone that worry.) The propagators for the
external lines Just factor out, and can be brought outside the momentum integrals.
Notice that here p is general, and this function has poles when the external particles
go on-shell, p? = m?.

So here are the momentum space Feynman rules for Green’s function in ¢* theory:

e Every line gives a factor of — = pLT:ﬂ & = Ap(p). Notice that since
Ap(x —y) = Ap(y — z), the choice of how we orient the momenta is not so
fateful.

T
e An internal vertex gives X‘ o (—ig) [dittzeTiXipiz = (—ig)ﬁdﬂ(zipi),
¢ ty
momentum conservation at each vertex. So, set . p; = 0 at each vertex (I've as-
sumed the arrows are all pointing toward the vertex). After imposing momentum

1 Here’s a proof that (2.6) is the number of loops in the diagram: place the N + n internal and
external vertices on the page. Add the propagators one at a time. You must add N +n — 1 just to
make the diagram fully connected. After that, each line you add makes a new loop.
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conservation, the remaining consequence of the vertex is

X ~ —ig.

e Integrate over the loop momenta Hgild‘”lqa for each undetermined momentum
variable. There is one for each loop in the diagram. You should think of these
integrals as just like the Feynman path integral: if there is more than one way
to get from here to there, we should sum over the amplitudes.

e Multiply by the wretched symmetry factor s(A).

e For G(p), multiply by an overall 6d+1(z p) in each diagram.

e An external vertex at fixed position, ~~— = ¢ ipz, (Such vertices would arise
if we wanted to compute G(x) using momomentum-space feynman rules.) More
generally, external vertices are associated with the wavefunctions of the states we
are inserting; here they are plane waves.

Here is another perspective on the exponentiation of the vacuum bubbles. Consider
the diagram:

?‘h'

4
® OOOH = (—ig)? H /d‘”lp@-ﬁdﬂ(pl + )8 (o +pa) -
» T =1

The two delta functions come from the integrals over z; 5, and we can restore sense by
remembering this:

<5d+1(p1 +p2>>2 = 5d+1(p1 + p2) /ddeZ = 5d+1(171 +p2)VT

where VT is the volume of spacetime. This factor arises because this process can
happen anywhere, anytime. There is one such factor for each connected component
of a collection of vacuum bubbles, so for example the diagram (eOE?Or eOE?Or) is

proportional to (VT)2. But the free energy o log Z = log G(¥) should be extensive,
o VT. Therefore, the vacuum bubbles must exponentiate.

The whole two point function in momentum space is then (through order ¢?) :

G n Q Q0 % + 0(g%)

NL‘Q Np=1 N =2 rakﬂn—
(2.7)
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I draw the blue dots to emphasize the external propagators. Notice that for the two-
point function, the number of loops is N = N — 5 +1 = N, the same as the number
of powers of g. More generally, for n # 2, there is an additive shift: Ny = constant
plus number of powers of g.

Organizing the propagator. We would like to unpack the physics contained in
the correlation functions which we’ve learned to compute in perturbation theory. The
first interesting one is the two-point function aka the propagator. Let’s factor out the
overall delta function by writing:

G (p1,p2) = (5d+1(p1 +P2)é(2) (p1).

It will be useful to re-organize this sum, in the following way:

_ 0040,

i

e

+
: B0 .+
o — @
B % + +
° 82 "
4 »_QLS_‘
A
R AV
: +

Here’s the pattern: we define a diagram to be one-particle irreducible (1P1I) if it cannot
be disconnected by cutting through a single internal propagator. So for example,

’Q is 1PI, but _QL is not; rather, the latter contributes to the bit with two

1PI insertions. Then

So that we may write equations without pictures, let

_ix(p) =

denote the 1PI two-point function. 3 being 1PI means that the external lines sticking
out of it are ‘nubbins,” placeholders where propagators may be attached. That’s why
there are no blue dots at the ends.
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Now suppose we know Y. It is known as the self-energy, for reasons we will see
next. Then we can write

~ 1 1 1 1 1 1
G(Q)(p) - 2 — m(z) 2 m2 (—iZ(p)) 2 m(Q) P2 m2 (—iE(p)) 2 — m2 (—iz(p)) 2 — m%
i ) 2 )
- mg p* —mg (pQ—mz)
i 1 i

[End of Lecture 5]

We see that the self-energy shifts the m? of the particle — it moves the location of
the pole in the propagator. In the interacting theory, m3 + X(p)|pol is the physical
mass, while mq (what we've been calling m until just now) is deprecatingly called the
‘bare mass’. For p? ~ m?, we will write

~ iz )
GO (p) = (m + regular bltS) (2.9)
This equation defines the residue Z which is called the ‘wavefunction renormalization
factor’. It is 1 in the free theory, and represents the amplitude for the field to create

2 represent the

a particle, and the other terms, which are not singular at p> = m
amplitude for the field to do something else (such as create multiparticle states), and
are absent in the free theory. Later we will see that unitarity requires Z < 1. Notice
that if we know ¥ only to some order in perturbation theory, then (2.8) is still true,

up to corrections at higher order.

The notion of 1PI extends to diagrams for G2 (p; - --p,). Let

G 1)

where the blob indicates the sum over all 1PI diagrams with n external nubbins (notice
that these do not have the blue circles that were present before). This means Gipy
&)

does not include diagrams like:
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Notice that 1PI diagrams are amputated — their external limbs have been cut off.

LSZ reduction formula. This is almost what we need to make S-matrix elements.
p;—m?

If we multiply the n-point function by []}_, we cancel out the propagators from

the external legs, near the mass shell. This object is naturally called the amputated
n-point function. (It differs from the 1PI n-point Green’s function because of diagrams

like this one @ which is amputated but not 1PI.) If we then take

p? — m?, we keep only the part of G which is singular on the mass-shell. And here’s
why we care about that:

Claim (the LSZ reduction formula):

n+m
S (ﬁ...ﬁ|5|]§...;§>:H T M GOF™ (kg « - kyyy —p1 -+ — Pr)
fi 1 n 1 m P8—>E13 1\/2 1 my —P1 Pn
(2.10)

a=1

where P, € {p;,k;}. In words: the S-matrix elements are obtained from Green’s
functions by amputating the external legs, and putting the momenta on-shell. Notice
that choosing all the final momenta p; different from all the initial momenta k; goes a
long way towards eliminating diagrams which are not fully connected.

This formula provides the bridge from time-ordered Green’s functions (which we
know how to compute in perturbation theory now) and the S-matrix, which collects
probability amplitudes for things to happen to particles, in terms of which we may
compute cross sections and lifetimes. Let us spend just another moment inspecting the
construction of this fine conveyance.

Why is LSZ true? Here’s the argument I've found which best combines concision
and truthiness. [It is mainly from the nice book by Maggiore §5.2; I also like Schwartz’
chapter 6; Peskin’s argument is in section 4.6.] The argument has several steps. The
field operators in this discussion are all in Heisenberg picture.

1. First, for a free field, the mode expansion implies that we can extract the ladder
operators by:

Vora, — i / o &5 (—iwg + Bo) oo (@)
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Qupal = —i/ddx e (4w + o) Prree () (2.11)
Notice that the LHS is independent of time, but the integrand of the RHS is not.
2. Now let’s pretend that we can turn the interactions off at t = 400, so that the

asymptotic states we are scattering are free particles.'? This allows us to write
the field in terms of some pretend free fields of mass m (not mg!)

5){ o Zrn®
x .

t~>v+_)oo Z%(ﬁout(l’)
The factors of v/Z are required to get the correct two point functions (2.9) near
the mass shell. The mode operators for ¢;, are called a™ ete. ®in, out are free
fields: their full hamiltonian is Hy. They are in Heisenberg picture, and the

reference time for ¢, o4 is F00 respectively. Since they are free fields, we can
use (2.11) to write

V2wpa™t = —i / 'z e (+iwg + o) fin(z) = —iZ 71/ / d'w e (+iwg + 0p) p(x)] 7

where in the second step we used the independence on time in (2.11), even though
$(x) is not a free field. An expression for a®®f obtains if we take t — +o0
instead.

3. Now make this expression manifestly covariant using the fundamental theorem
of calculus:

/2Wk (a(in)]L . a(out)T) _ iZ_1/2/ dt@t (/ ddI e—ikz (lu)k + a(]) ¢(x)>
IBP i;time iZ_l/z/dd+1-’17 e—ikxag¢ _ ¢ A 88 e—ikux#
———
(ﬁQ,mQ)e—ikx

iZl/z/dd“xe”” (O+m?) ¢(z) (2.12)

IBP in space
In the last step we made a promise to only use wavepackets for external states,
so that we can do IBP in space.

4. Now, here’s where the S-matrix enters. Assume none of the incoming momenta
k; is the same as any outgoing momentum p;.

(Pr---pnl STh1 - )

12Here’s why this is really bad: nearly everything we might scatter is a boundstate. For example:
atoms, nuclei, nucleons etc... But if there are no interactions there are no boundstates.
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= (@[T e s T]ar192)
- @7 ([LegsTLar") 1)

= @7 (H ags (apf - ) IT a;:T> )
2
(2;2) iZ—l/Q/ch-lxle—ik’lxl <Q| T (H \/w—paguts (D + m2) ¢($1) H\/W_k:a'}gﬂ) |Q>
2

= iz 2 / A ze e (O +m?) (Q T (H Vaad Se(x) [ | \/w_ka;“) Q) +X
2

In the last step, X comes from where the O, hits the time ordering symbol. This
gives terms which will not matter when we take k? — m?, I promise.

5. Now do this for every particle to get

(D1 pul Sk km) = H;ﬂ:l fdd“yj eTiPjvij 7 —1/2 (O, +m?)
[Ty [ d™* ey e iz = 2 (0; + m?) (Q To(wi) - d(y;)S Q) +X

The x and y integrals are just Fourier transforms, and this says that near the
mass shell,

n+m e /7
~(n+m || ivZ
G(+)(k1km;_pl_pn): m

a

(where P, € {pj;, k;}) which is the same as (2.10).

(p1--pu| Sk1- - k) + regular

Comment: In our discussion of QFT, a special role has been played by fields called
¢. Suppose we have some other (say hermitian) local operator O such that

(p] O(2) Q) = Zoe™

where (p| is a one-particle state made by our friend ¢ (we could put some labels, e.g. for
spin or polarization or flavor, on both the operator and the state, but let’s not). Such
an O is called an ‘interpolating field’ or ‘interpolating operator’. And suppose we have
information about the correlation functions of O:

Gy (1-+-n) = (Q T (Os(1) -+ Op()) |9)
In this case, there is a more general statement of LSZ:

Haa (Z(:l/?ifddﬂxae—ipama (Da + m3)>
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oy (2 /% [ dt et (o, +m3)) GE(1-+n)
= (p)SHpY)  (213)

This more general statement follows as above if we can write O, ipery vV Z4,¢im. This

more general formula allows us to scatter particles that are not ‘elementary’ in the
sense that they are made by the fields in terms of which we write our Lagrangian.

Here is a summary of the long logical route connecting Feynman diagrams to mea-
surable quantities in particle physics:

4
g, %;r

Final state phase space,
S state normalization
.f‘

LSZ
G = <alT (448,494,100

Ta0(l-i€),

Feynman contour

<ol T(444$ eV )io>

Wick,
exponentiation of
vacuum bubbles

r<«X

The final step was covered in 215A.

45



S-matrix from Feynman diagrams. The end result of the previous discussion is
a prescription to compute S-matrix elements from Feynman diagrams. In a translation-
invariant system, the S matrix always has a delta function outside of it. Also we are
not so interested in the diagonal elements of the S matrix where nothing happens. So
more useful than the S matrix itself are the scattering amplitudes M defined by

(F1(S =) |i) = (2m)*1 60 <pr - sz-) iMy; . (2.14)
¥ i

(The object iM5d+1(Z p) is sometimes called the transfer matrix. The i is a conven-
tion.)

The rules for the Feynman diagram calculation of M (for ¢* theory, as a represen-
tative example) are:

1. Draw all amputated diagrams with appropriate external nubbins for the initial
and final states. For a diagram with Ny loops think of Ny, letters that are like k&
or ¢q or p to call the undetermined loop momenta.

2. For each vertex, impose momentum conservation and multiply by the coupling
(—iM).

3. For each internal line, put a propagator.
4. For each external line, put a factor of v/Z.

5. For each loop, integrate over the associated momentum [ a1,

A comment about rule 1: For tree-level diagrams (diagrams with no loops), ‘am-
putate’ just means leave off the propagators for the external lines. More generally, it

means leave off the resummed propagator (2.8). In particular, a diagram like >X

is already included by using the correct Z and the correct m.

Example: snucleon scattering. [Here we follow Tong §3.5 very closely| Let’s
consider an example with a complex scalar field ® interacting with a real scalar field
¢ with Lagrangian

1 1 1 1
L= 58#@*8M(I) — §m2®*<1> + §au¢aﬂ¢ — §M2¢2 + ,C[ (215)
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with  L; = —gP* P

In specifying initial states below, I will need names for the mode operators of the two
fields:

a‘p . .
= | —— (a,e P +ale?) | o,
¢ / 2o, (2, p€"") |po—s,
a‘p : :
®= | —— (bye " +cle?) | _p
/2Ep p P
where I've written w, = /M?+p? E, = \/m? + ¢ Notice that the & — e *®
symmetry is conserved; the charge is

q:Nc_Nb-

But the ¢ particles are not conserved.'® Relative to ¢* theory, the differences in the
Feynman rules are: we have two kinds of propagators, one of which is oriented (to keep
track of the flow of the conserved ® number through the diagrams), and instead of a
4-point vertex which costs —ig, we have a 3-point vertex for ¢p®*® which costs —ig.

Let’s consider 2 — 2 scattering of ® particles, so
(i) = v o) s | f) = B3, 70)  with |5, 57)) = /2B, /2B b bl [0).

(To appreciate some of the beauty of the diagram technique, see Tong §3.3.3 for the
artisanal version of this calculation.) The Feynman rules above give, to leading nonzero

o {

= (-19) <<p1—p3>2—M2+ie <p1—p4>2—M2+ie)' (2.16)

order,

The diagrams depict two ‘snucleons’ ® (solid lines with arrows indicating snucleons
versus antisnucleons) exchanging a meson ¢ (double gray line, with no arrow) with
momentum k = p; — p3 = py — p2 (first term) or k = py — p1 = po — p3 (second term).
Time goes to the left as always. Notice that here I am being careful about using arrows

13You might notice a possible problem with this theory: what happens to the quadratic term for ®
when ¢ is very negative? Let’s not take it too seriously.
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on the lines to indicate flow of particle number through the diagram, while the extra
(light blue) arrows indicate momentum flow.

The meson in these diagrams is virtual, or off-shell, in the sense that it does not
satisfy its equation of motion k% # M?2. In fact, each of these diagrams is actually
the sum of retarded and advanced exchange of real on-shell particles. (For more on
this statement, see Schwartz chapter 4 or §4.5 of the notes here.) The two diagrams
included in (2.16) make the amplitude symmetric under interchanging the two particles
in the initial or final state, as it must be because they are indistinguishable bosons.

Two more examples with the same ingredients are useful for comparison If we

instead scatter a snucleon and an anti-snucleon, so |i) = \/2Ej, /2Ep2bT , then

the leading diagrams are

iM = +

= (—i 2( ! + ! )
(-ig) (p1+p2)2—M2+ie (p1 — ) — M? +ie

This one has a new ingredient: in the first diagram, the meson momentum is k = p;+po,

(2.17)

which can be on-shell, and the ie matters. This will produce a big bump, a resonance,
in the answer as a function of the incoming center-of-mass energy /s = 1/ (p1 + p2)?.

Finally, we can scatter a meson and a snucleon:

e,

= (—ig)? . (2.18)
(p+k) —m2+1e (p— k')° —m2+le

Now the intermediate state is a snucleon.

There is a common notation for the Lorentz-invariant combinations of the momenta
appearing in these various processes, called Mandelstam variables, of which s is one.
A concise summary appears in §3.5.1 of Tong’s notes.
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3 QED

3.1 Quantum light: Photons

The quantization of the Maxwell field is logically very similar to the case of a
harmonic chain. There are just a few complications from its several polarizations,
and from the fact that quantum mechanics means that the vector potential is real and
necessary (whereas classically it is just a convenience). This is a quick-and-dirty version
of the story. I mention it here to emphasize that the machinery we are developing
applies to a system you have already thought a lot about!

Maxwell’s equations (with ¢ = 1) are:

V-B=0, V x E = —8,B, (3.1)
V-E= 4mp, V x B =0,E +4nj (3.2)
(where the familiar electric and magnetic fields are B = —F% and ¢/ B = —F'¥/). The

first two equations (3.1) are constraints on E and B which mean that their components
are not independent. This is annoying for trying to treat them quantumly. To get

around this we introduce potentials A, = (®, A), which determine the fields by taking
derivatives and which automatically solve the constraints (3.1):

— — -

, aka E=-VO®—0,A B=VxA.
Potentials related by a gauge transformation
A D =A-V) &0 =3+

for any function A(7,t), give the same E , B. The Bohm-Aharonov effect is proof that
(some of the information in) the potential is real and useful, despite this redundancy.
We can partially remove this redundancy be choosing our potentials to satisfy Coulomb
gauge

V-A=0.
In the absence of sources p =0 = j’, we can also set ® = 0. In this gauge, Ampere’s
law becomes

AV x (6 X /Y) = V- (6 : /f) — VA= —?A e |OPA—AVPA=0),

This wave equation is different from the scalar wave equation O¢ = 0 in three ways:
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e we're in three spatial dimensions,
e the speed of sound v, has been replaced by the speed of light ¢,

e the field A is a vector field obeying the constraint V-A =0. In fourier space
A(z) = 32, e A(k) this condition is
0="Fk-Ak)

— the vector field is transverse.

An action which gives rise to Maxwell’s equations is

1 1 1
S[A] - /d4(L’ (_ZF#VFW/> = /d4I£Maxwell- EMaxwell - _ZF#VF’“V = 5 (E2 — B2) .

_ 08
M(x)'

The canonical momentum of A is then Il 4, % = F'. So the Hamiltonian is'*:

1 L
}f—i/ﬁ%(E?+§Bﬂ . (3.3)

Note that we must regard A as the dynamical variable to obtain (3.2) by 0 =

Here E = —8,A plays the role of field momentum 7(z) in (1.3), and B = V x A plays
the role of the spatial derivative 0,q. We immediately see that we can quantize this
system just like for the scalar case, with the canonical commutator

[p(2), m(@)] =iho(z —a')  ~  [A(7), By(7)] = —ihd° (7 — )4y

where 4,7 = 1..3 are spatial indices’”. So we can immediately write down an expres-
sion for the quantum Maxwell field in terms of independent creation and annihilation
operators:

4You may also recall that the energy density of a configuration of Maxwell fields is u =
% (EQ + §2> . This result can be obtained either by Legendre transformation of Lyfaxwen, or from

T¢, the energy momentum tensor.
15As a check, note that using this Hamiltonian and the canonical commutator, we can reproduce
Maxwell’s equations using Ehrenfest’s theorem:

(024) = o, (E) = f% (1. £)) = (#9°4),.
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The field momentum is E = —8,5

B =i /wg ak ses iR agsé:(%)efiE-F>
s=1,2

Also, the magnetic field operator is

3T o A | h . > (1) ik T ok (1) p— ik
B = V x A = Z Z Wlk X <a];"s€$(]€)6 ke agses(/{:)e k ) )
px s

the magnetic field is analogous to §¢ in the scalar field theory'®. Plugging these
expressions into the Hamiltonian (3.3), we can write it in terms of these oscillator
modes (which create and annihilate photons). As for the scalar field, the definitions of
these modes were designed to make this simple: It is:

1
H = Z?‘wk (agsa,;s + 5) .
k,s

Notice that in this case we began our story in the continuum, rather than with
microscopic particles connected by springs. (However, if you read Maxwell’s papers
you’ll see that he had in mind a particular UV completion involving gears and cogs. I
actually don’t understand it; if you do please explain it to me.)

The vacuum energy is
1 L3
E,= - hwy, = —— [ d*khck.
073 Z LA DISE / ¢

The fact that ), is no longer a finite sum might be something to worry about. This
vacuum energy has physical consequences, since it can depend on boundary conditions
placed on the field by conducting objects, as we’ll discuss in §4.1.

3.2 More on vector fields

A few things we did not do yet for vector fields: study the propagator, figure out the
data on external states, and understand the relation of between the masslessness of the
photon and gauge invariance.

16T should say a little more about the polarization vectors, €s. They conspire to make it so that

there are only two independent states for each k and they are transverse k- é’s(l%) =0,s0 s =1,2.
The polarization vectors of a given k can be chosen to satisfy the following completeness relation:

Zesi(]%)egj(if) =dij — 1277.]%] . (3.4)
This says that they span the plane perpendicular to k.
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Consider the following Lagrangian for a vector field A, (which I claim is the most
general quadratic Poincaré-invariant Lagrangian with at most two derivatives):

r— _% 0 AV A, + a0, A0, A” +A, A" + ce™779, A,0,A,

=(0A4)2
The sign is chosen so that spatial derivatives are suppressed, and the normalization of
the first term is fixed by rescaling A. (Another possible-seeming term, 9,A"0, A",
is related to the second term by two IBPs.) The last term is a total derivative,
e’ 9,A,0,A, x 0, (""" A,0,A,), and will not affect the EoM or anything at all
in perturbation theory; it is called a 6 term.
The EoM are

J
IAY (x)

0= / L=—0%A, —ad, (8- A) +bA, (3.5)

which (like any translation-invariant linear equation) is solved by Fourier transforms
Au(z) = e if
ke, + ak, (k - €) + be, = 0.

There are two kinds of solutions: longitudinal ones with €, o &, (for which the disper-

__b
1+4a

The longitudinal mode may be removed by taking b # 0 and a — —1, which we will

sion relation is k% = ), and transverse solutions € - k = 0 with dispersion k? = —b.

do from now on. This gives the Proca Lagrangian:

1 1
*Ca:—l,bz—;ﬂ - _ZFNVFMV + iﬂQAuAuv

where as usual F,, = 0,4, — 0,A,. Note that the EOM (Proca equation) 0 = 0'F.,, +
p?A, implies 0 = 9V A, by 0 = 9"0"F,,,. So each component of A, satisfies (by (3.5))
the KG equation, k? = p?, and the transverse condition € - £ = 0. In the rest frame,
k* = (ko,ﬁ)“, we can choose a basis of plane-wave transverse solutions which are
eigenstates of the vector rotation generator

0 0
1 1 1
JF=i * , namely, ) = — L= 0
-1 V2 | Fi 0
0 1
' () . els) = 4478 (rx (1) _ kuky
They are normalized so that € - €®) = 46" and > _, jex” & = —nu + uz SO

that they project out € oc k. Notice that in the massless case, only two of these three
polarization states will be transverse to k*. If k o< 2 (for example in the massless case
with k* = (E,0,0, E)*) then these € are also all helicity eigenstates: h = J - k = J*.
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Canonical stuff: The Canonical momenta are 7' = gf = —F% = E' (as for

electrodynamics in §3.1) and 7% = 8 A = 0. This last bit is a little awkward, but it

just means we can solve the equations of motion for Ay algebraically in terms of the
other (real) dofs:

0= 2% G B4y = (—V2) AtV A — A(@) _/d?’ye—ulf—ﬂ—(_v'A)
o4 ° ° EERrN
(3.6)

So at each moment Aj is determined by A;. (Notice that this is still true for y —
0.) The hamiltonian density is (after using 7* = F%, integration by parts, and the
equations of motion for Ap)

<E2+§2+M2fp+/ﬁf4§>20a

1 1 1
h_ (F022+2F2+/,62A2+/.L2A2):§

where positivity follows from the fact that it is a sum of squares of real things.

The canonical equal time commutators are then

which if we add up the plane wave solutions as

e~ ikzgr (7“) +ikz ,rT (r)x
Z — ape,’ +e e, >
=1,2 3/ 2(&)

give the bosonic ladder algebra for each mode
S 3 7 TS
[y, a51] = 4 (F - p)o.

The normal-ordered hamiltonian is
cH = Z / ak wkak ay.

Using the mode expansion above, the propagator for the A,(x) field is found to be

(O1T A, () A, ()[0) = / d“ke‘ik(”y){ i ff lﬁm (3.7)

Notice that like in the spinor case the polarization sum ) €/*¢], = — (0, —kuk,/ u?) ap-
pears in the numerator of the propagator. (Note that there are 3 orthonormal polariza-
tions, so this is a rank-3 matrix; its kernel is the longitudinal direction, k*.) The quan-
tity in square brackets is then the momentum-space propagator. Since (0| A,(z) |k, r) =
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m

gives €*.

€/, (k)e ™ a vector in the initial state produces a factor of €, (k), and in the final state

Massless case. In the limit ;1 — 0 some weird stuff happens. If we couple A,
to some object j# made of other matter, by adding AL = j#A,, then we learn that
0, AP = 1=29,7*. This means that in order to take p — 0, it will be best if the current
is conserved 0,j*.

One example is the QED coupling, j* = U~*WU. Here j* is the Noether current
for the symmetry ¥ — ¥ of the Dirac Lagrangian. This coupling A, j* arises from
the ‘minimal coupling’ prescription of replacing 9, — D, = 0, + ieqA, in the Dirac
Lagrangian. In this case, the model, with Lagrangian

1

Ez\i/(ilD—m)\If—4

2
Fl Fm — %A#A/ﬂ#z:o,

has a local invariance under 4, — A, + 9, \(x)/e, ¥(z) — @V (z). For A non-
constant (and going to zero far away), this is a redundancy of our description rather
than a symmetry (for example, they have the same configuration of E.B . $ A). That is,
configurations related by this gauge transformation should be regarded as equivalent.

[End of Lecture 6]

Another example can be obtained by taking a complex scalar and doing the same
replacement: £ = D, ®*D*® + ... Notice that in this case the vertex involves a deriva-

tive, so it comes with a factor of ’V\,< = —ieq(pe +po ). Also, thereisa A, A, O*P

coupling, which gives a vertex },{ = —ie*¢* 1.

How do I know that configurations related by a gauge transformation should be
regarded as equivalent? If not, the kinetic operator for the massless vector field
(N (0°0,) — 0,0,) AY = 0 is not invertible (even in Euclidean section!), since it anni-

hilates 4, = 9, \.

What’s the propagator for a massless vector field, then? One strategy is to simply
ignore the gauge equivalence and use the same propagator (3.7) that we found in the
massive case with 4 — 0. Since the dynamics are gauge invariant, it will never make
gauge-variant stuff, and the longitudinal bits « k,k, in (3.7) (which depend on ) will
just drop out, and we can take p — 0 in the denominator at the end. This actually
works. The guarantee that it works is the QED Ward identity: any amplitude with an
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external vector €(k), is of the form
= iM =iM"(k)e, (k)

and if all external fermion lines are on-shell then
M*(k)k, = 0.

There is a complicated diagrammatic proof of this statement in Peskin; Schwartz §8.4
argues that it is a necessary condition for Lorentz invariance of M = ¢, - M*; and
we will see some illustrations of it below (I also recommend Zee §I1.7). But it is
basically a statement of current conservation: such an amplitude is made (by LSZ
and the photon Schwinger-Dyson equation) from a correlation function involving an
insertion of the electromagnetic current j*(k) = [ d*z e **j#(z), in the form, M# ~
e Qg (k)...|Q), and k,j"(k) = 0 is current conservation'”.

This property guarantees that we will not emit either of the unphysical polarizations

of massless photons, since the amplitude to do so is either A( emit €y o ky) = €, M*

k,MH Y21 or the @ — 0 limit of

emit €§\/ = i(ky Oa 07 —W))\ x ELMM _
" =

1
EMO — wM?) = = | kMO — /B2 + 2 MP
with k* = (w,0,0, k)* ( wM) Ny

L

==

kb
1
== kM — A o) 20,
o~~~ — 2k
=0,by Ward

~
—0 as u—0

For the same reason, in summing over photon final-states (for example in computing
a cross section), we’ll have

S OIMP =" (k) ek M (k)M (k).

17 Current conservation Ouj* is a statement which requires the equations of motion (recall the
proof of Noether’s theorem). Recall that equations of motion are true in correlation functions, up
to contact terms, using the independence of the path integral on choice of integration variables. By
contact terms, I mean terms which are only nonzero when two operators are at the same point. So
you can worry about the contact terms in the argument for the Ward identity. The reason they do
not contribute is that all the operators in the correlation function (using the LSZ formula) correspond
to external states. A collision between the operators creating the external particles would lead to a
disconnected amplitude, which could only contribute for degenerate kinematical configurations, and
we can ignore them. If you would like to read more words about this, look at Schwartz §14.8, or §3.3.
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This sum is only over the two physical polarizations of the massless photon. If we choose

a frame with k* = (k, 0,0, k)*, the Ward identity says 0 = k,M" = k(M" — M?3), so
D e(B)ue(k)s M ()M (k)" = [MPAHMPP = | M PH M PHMP=| MO = =, M* (k) M (k)

€

(3.8)

that is, just like in the numerator of the propagator, we can replace

> elk)uek)y ~> =
since they differ by stuff proportional to £* which vanishes when contracted with the
rest of the amplitude. In (3.8) we see explicitly that the crazy timelike polarization
(which looks like negative probability) cancels the longitudinal polarization € o k.

Gauge fixing. You might not be happy with the accounting procedure I've advo-
cated above, where unphysical degrees of freedom are floating around in intermediate
states and only drop out at the end by some formal trick. In that case, a whole zoo of
formal tricks called gauge firing has been prepared for you. Here’s a brief summary to
hold you over until we really need it for the non-Abelian case.

At the price of Lorentz invariance, we can make manifest the physical dofs, by
choosing Coulomb gauge. That means we restrict d,A* = 0 (so far, so Lorentz in-
variant) and also V - A = 0. Looking at (3.6), we see that this kills off the bit of Agy
that depended on A. We also lose the helicity-zero polarization V- A x €9, But the
Coulomb interaction is instantaneous action at a distance.

To keep Lorentz invariance, we can instead merely discourage configurations with
0 - A # 0 by adding a term to the action

1 1 9
L=—F,F" ——(0-A
for some arbitrary number £. Physics should not depend on &, and this is a check on
calculations. The propagator is

e —i(n — (1 — Okuk,/u?
(TA,(z /d4ke ik( y{ 1(77uk2(_'u2_2i!£ U2

and again the bit with £,k, must drop out. £ = 1 is called Feynman gauge and makes
this explicit. ¢ = 0 is called Landau gauge and makes the propagator into a projector
onto k.

It becomes much more important to be careful about this business in non-Abelian
gauge theory.
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3.3 On the non-perturbative proof of the Ward identity

[Schwartz §14.8] First, consider a Green’s function from which we might make an S-
matrix element by LSZ,

G =(QITO(x1) -+ Op(x,)|02) = /[D\If]ei‘g@l(atl) w Op(zy)
where the operators O;(z1) — e 19O, () have charge @Q; under a global U(1) sym-
metry. For example the O(z) could be just the elementary field ¥(z) '°.

Now change variables in the path integral so that O;(x;) +— e Q@) O;(x;); the
action will shift by S+ S— [ ad,j* where j* is the Noether current. The path integral
doesn’t change at all, so its infinitesimal variation is

0=0G = /[D\IJ] (—/iaa“juei*g(’)l O — iZQia(asi)eiS(Ql . --On> (3.9)

— / dPza(x)

Since this is true for any «(z), we learn that the thing in square brackets is zero:
0,7" = 0 up to contact terms. This is called the Ward-Takahashi identity.

(3.10)

i0, (j*(z)0; --- O,) — Z Qi0P (x — ;)G

Now suppose we do this same manipulation in a gauge theory, like QED. The
additional terms in S are —iF w4 iAu\Tl’y“\IJ, which are invariant under the trans-
formation, so don’t change these statements. Notice that the transformation we're
doing here is not the gauge transformation, since A, doesn’t transform — we’re only
doing the gauge transformation on the matter fields here, so their kinetic terms actually
shift and produce the ad"j,, term above. Photon field insertions in G don’t contribute,
since they have charge zero here.

Next, think about the LSZ formula for an S-matrix element with (say) two external
photons:

M = (e, ..ep..|8]..) e“eZi”/d%eipxmw,/d4xleipkka’;g/...<A”(x)...A°'(xk)...>
(3.11)

where O, is shorthand for the photon kinetic operator O, = 0O7,, — 0,0,/ p?, and I'm
ignoring the wavefunction renormalization factors (v/Z) for simplicity. The Schwinger-
Dyson equation for A, then implies that

D’;UDW (A”(x)...A% (zg)...) = DIZU ((*(2)... A% (zy)...) — 6% (@ — 2p)Muo () (3.12)
= (Ju(@)...Jo (k) —i06(x — zk)Nyo (...) (3.13)

18You’ll have to trust me for now that the path integral for fermionic fields exists. That’s the only
information about it we’ll need here. Also I've absorbed the factor of Z~! into [DV].
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First of all, this is why I said we could get the S-matrix elements with photons from
correlators with currents. But notice that this is only true up to the contact terms.
But those are disconnected amplitudes which we can ignore.

Finally, set the polarization of one of the photons equal to its momentum ¢ = p.
Then

p'M, = ezi”/d%eim/d‘lxleip’““ /dyeiq”’ (id, +m1) ... (105" ... Jp(1).. U (y)..)

= <g1 —m1> (g2 —m2> ZQ]CNJ(,QJ +p,...) (3.15)

where the £ depends on whether particle j is incoming or outgoing. At the last step
we used the Fourier transform of (3.10).

Now here’s the punchline: The G on the RHS of (3.15) has poles at (¢; +p)? = m?,

¢?-m? . .
23 it will vanish. End of

and not at ¢; = m?. So when it’s multiplied by 4, —mj = “mm
story. Notice that no use of perturbation theory was made here.

3.4 Feynman rules for QED

First, Feynman rules for Dirac fermion fields, more generally'. As always in these
notes, time goes to the left, so I draw the initial state on the right (like the ket) and
the final state on the left (like the bra).

1. An internal fermion line gives

- { - - k}—mq,

19 Another good example of a QFT with interacting fermions is the Yukawa theory theory of a Dirac
fermion field plus a scalar ¢ and an interaction

V=gl = = —igs. (3.16)

Notice that in 3+ 1 dimensions, [g] = +4 — [¢] — 2[¥] =4 — 1 — 23 = 0, the coupling is dimensionless.
This describes more realistically the interactions between nucleons (which are fermions, as opposed to
snucleons) and scalar pions, which hold together nuclei. It also is a crude sketch of the Higgs coupling
to matter; notice that if ¢ is some nonzero constant (¢), then there is a contribution to the mass of
the fermions, g (¢).
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which is a matrix on the spinor indices.

There are four possibilities for an external fermion line of definite momentum. Here
u, v are respectively the positive- and negative-energy solutions of the Dirac equation,
(p —m)u (k) =0, (p+m) v (k) = 0. (For areminder, see e.g. §5.4 of my 215A lecture
notes.)

—
2. = Vlk,r)y=u"(k)

- xﬂ,m = (k)

- ._‘L-..
3‘ ‘._é_. . ow - <k7r,ﬁj:ﬂr(k>
fea —?—1

5V g, = (R =07 (R).

6. Some advice: When evaluating a Feynman diagram with spinor particles, always
begin at the head of the particleenumber arrows on the fermion lines, and keep
going along the fermion line until you can’t anymore. This will keep the spinor
indices in the form of matrix multiplication. Why: every Lagrangian you’ll ever
encounter has fermion parity symmetry, under which every fermionic field gets
a minus sign; this means fermion lines cannot end, except on external legs. The
result is always of the form of a scalar function (not a matrix or a spinor) made
by sandwiching gamma matrices between external spinors:

oy OE— s ——0 = Z @ (p')a (pile of gamma matrices),, u"(p)s
a,b...=1..4

Furthermore, in S-matrix elements the external spinors u(p), v(p) satisfy the equa-
tions of motion (p — m)u(p) = 0, a fact which can be used to our advantage to
shrink the pile of gammas.

There can also be fermion lines which form internal loops (though not at tree

level, by definition). In this case, the spinor indices form a trace,

Z (pile of gamma matrices),, = tr (pile of gamma matrices) .

a

We'll learn to compute such traces below (around (3.18)); in fact, traces appear
even in the case with external fermions if we do not measure the spins.
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7. Diagrams related by exchanging external fermions have a relative minus sign.

8. Diagrams with an odd number of fermion loops have an extra minus sign.

The last two rules are best understood by looking at an example in detail.

To understand rule 8 consider the following amplitude in the Yukawa theory with

interaction (3.16): — It is a contribution to the meson propagator.

It is proportional to

() Waly) = (—)tr(2) T (1) V()T (y) = (—1)trSp(x — y)Sp(z — y)

g
=l
IS

S
-
S
=

[Peskin page 119] To understand rule 7 consider YW — WV (nucleon) scattering

o AL
in the Yukawa theory: The blob represents the matrix

y / Yo

—i[Vd*z

rl

element

0 (psr3ipara] Te |P17’1;J927”2>0

where the initial state is
[p171; Para)y O a;iTa;;é* 0)
and the final state is
o (psr3i para| = (Ipsrsi para)y) o (0] altals = — (0] alsar
where note that the dagger reverses the order.

The leading contribution comes at second order in V:

0 (p3r3;paral T (%(ig)z/d421 /d422 (‘I/‘I’¢)1 (\I/\Ijﬁb)g) [p171; Par2)

To get something nonzero we must contract the ¢s with

each other. The diagrams at right indicate best the pos- .

sible ways to contract the fermions. Exchanging the roles | r 22,
I

of z; and 2z interchanges two pairs of fermions so costs —e <

no signs and cancels the %
The overall sign is annoying but can be fixed by demand-

.ll
ing that the diagonal bit of the S-matrix give /\\ | ¥ 2,
.*?.

(D3pa] (L +...) [p1p2) = +0(p1 — p3)0(p2 — pa) + - - -

The relative sign is what we’re after, and it comes by comparing the locations of fermion
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operators in the contractions in the two diagrams at right. In terms of the contractions,
these t— and u— channel diagrams are related by leaving the annihilation operators
alone and switching the contractions between the creation operators and the final state.
Denoting by ab the fermion creation operators coming from the vertex at z; o,

(0] a,, ap,al al... + (0| a,, a,alal ...
= (0] ay, apaa]; al... — (0| ap4a]£ apaag
—— S N~

In the last expression the fermion operators to be contracted are all right next to each
other and we see the relative minus sign.

While we're at it, let’s evaluate this whole amplitude to check the Feynman rules
I've claimed and get some physics out. It is

—ig(z1—22)§
Spi = —gQ/dzleQ /d‘%z% (6—122(171—233)@7"3 (ps)u™ (py) - 6—121(192—134)@7"4(]94)“7’2 (p2) — (3 4)) )
q

—m? +ie

In the first (t-channel) term, the integrals over 215 gives §(p1 — p3 — q)$(p2 — ps — q),
and the ¢ integral then gives d(p; + ps — p3 — pa), overall momentum conservation. In
the second (u-channel) term, g = p; — py = p3 — p2. Altogether,

Sf,‘ =1+ 54(pT)i/\/l
with, to leading order,

1 1

t—m? (gu1) (tgtiz) = u—m?

iM = —ig? ( (@) (U3u2)) (3.17)

with ¢ = (p; — p3)?,u = (p1 — ps)®. This minus sign implements Fermi statistics.

Yukawa force revisited. In the non-relativistic limit, we can again relate this
amplitude to the force between particles, this time with the actual spin and statistics of
nucleons. In the COM frame, p; = (m, p), po = (m, —p) and p3 = (m, '), ps = (m, —p').

In the non-relativistic limit, the spinors become u] = ( Vo e ) — /m (gr) so that

P~ \vape
tguy = u(ps)Pu(p)™ = 2mé&l &, = 2md,,,,. Let’s simplify our lives and take two

distinguishable fermions (poetically, they could be proton and neutron, but let’s just
add a label to our fermion fields; they could have different masses, for example, or
different couplings to ¢, call them g;,¢92). Then we only get the t-channel diagram.
The intermediate scalar momentum is ¢ = p; — p3 = (0,p— p') so t = (p1 — p3)? =
—* = —(F—7)* and

. ) 1
IMNR,COM — 19192ﬁ4m25r1r35r27’4.
q= +my
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Compare this to the NR Born approximation matrix element
278(Ey — Ey) (<iV(@) = wa (715 17) v

4
1
= IpV [ —= 534 + 12
;/mgm( ~12)
1

Vv 2m4

19192
=2m0(E, — F,,)0 "™ —2=_
(Ep v) 72+ m?b

where in the second line we summed over possible final states of the second (target)
particle, and corrected the relativistic normalization, so that yg (7'|P) vp = ﬁg(p —7).
This is completely independent of the properties of the second particle. We infer that

the scalar mediates a force with potential U(x) = —%. It is attractive if g1 g2 > 0.

[End of Lecture 7]

Back to QED. The new ingredients in QED are the propagating vectors, and the
interaction hamiltonian V' = e¥~#*WA,. The rest of the Feynman rules are

9. The interaction vertex gets a

;}w — _ ieryﬂ

10. An external photon in the initial state gets a €“(p), and in the final state gets a
e (p).

11. An internal photon line gets a

i
~ = g (0 (L= QRE/R)
2

where m, = 0 (it’s sometimes useful to keep it in there for a while as an IR
regulator) and the value of £ is up to you (meaning that your answers for physical
quantities should be independent of ).

Spinor trace ninjutsu.

The trace is cyclic:  tr (AB---C) =tr (CAB---). (3.18)
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Our gamma matrices are 4 x 4, so  trll = 4.
5 =
try* = tr (75)2 o = tryPyHy® Era= —try* = 0. (3.19)

The same trick shows that the trace of any odd number of gammas vanishes. The idea
is that an odd number of gammas is a map between the L and R subspaces, so it has
only off-diagonal terms in the Weyl basis.

kY clifé)rd

(3.18)
try™y =

—try¥ " + 20 trll —tryky” + 8 = trytyY =4t (3.20)

try Py = 4 (07 0 — o) (3.21)

Why is this? The completely antisymmetric bit vanishes because it is proportional to
v which is traceless (by the same argument as (3.19)). If any pair of indices is the
same then the other two must be too by (3.20). If adjacent pairs are the same they can
just square to one and we get +1; if alternating pairs are the same (and different from
each other) then we must move them through each other with the anticommutator. If
they are all the same we get 4.

trv”*y”v’”y"f = —4jetvrl.

3.5 QED processes at leading order

Now we are ready to do lots of examples, nearly all of which (when pushed to the
end) predict cross sections which are verified by experiments to about one part in

137.%% Here 5= ~ a = % is the small number by which the next order corrections are

suppressed. 2!

Did I mention that the antiparticle of the electron, predicted by the quantum Dirac
theory (i.e. by Dirac), is the positron? It has the same mass as the electron and the
opposite electromagnetic charge, since the charge density is the 0 component of the

electromagnetic current, j#* = U~y*W, so the charge is

/d?’xjo(q:) = /\IffyO\If = /\IIT\II = /d‘g’pz (al ;a,, — bl b.).

20T guess it is this overabundance of scientific victory in this area that leads to the intrusion of so
many names of physicists in the following discussion.

21This statement is true naively (in the sense that the next diagrams which are nonzero come with
two more powers of ¢), and also true in fact, but in between naiveté and the truth is a long road of
renormalization, which begins in the next section.
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So bf creates a positron.

[Schwarz §13.3, Peskin §5.1] Perhaps the simplest to start with is scattering of
electrons and positrons. We can make things even simpler (one diagram instead of
two) by including also the muon, which is a heavy version of the electron®”, and asking
about the process utu~ < ete”. At leading order in e, this comes from

iMuvL,u*(_(;Fe* ==

—i <77uu - k2
k2

with £ = p; + p2 = ps + p4 by momentum conservation at each vertex. I've labelled

(1—€Mmku)
= (—iew™ (p3)7" 0™ (P4)) muons (—1ev™ (p2)7"u™ (1)) etectrons (3-22)
the spinors according to the particle types, since they depend on the mass.

Ward identity in action. What about the k,k, term in the photon propagator?
The spinors satisfy their equations of motion, p ur = meu (where u; = u;! for short)
and Vo, = —MmDs. The k, appears in

ky oy ur = vy (pl —H;/)Q) uy = Vg uy + Vopp,ur = (m —m)ovu = 0.

(The other factor is also zero, but one factor of zero is enough.) Therefore
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M = ;@3%1}4 - UgyHuy
where s = k* = (p; + p2)* = E%,,, is the Mandelstam variable. And I am relying on
you to remember which spinors refer to muons (3,4) and which to electrons (1,2).

Squaring the amplitude. We need to find M7 (the dagger here really just means
complex conjugate, but let’s put dagger to remind ourselves to transpose and reverse
the order of all the matrices). Recall the special role of 7° here:

Yo =% W =
This means that for any two Dirac spinors,

(‘E’Y”%)T = ‘I’ﬂu‘l’l-

22Who ordered that? (I. 1. Rabi’s reaction to learning about the muon.) I hope you don’t find it
too jarring that the number of ‘elementary’ particles in our discussion increased by three in the last
two paragraphs. People used to get really disgruntled about this kind of thing. But here we have, at
last, uncovered the true purpose of the muon, which is to halve the number of Feynman diagrams in
this calculation (compare (3.28)).
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(This is the same manipulation that showed that the Dirac Lagrangian was hermitian.)

So
2

(&
M = ~ (007" uz) (@y,ve)

and therefore

6
Mt ete-|? = —2£ Vuz) (U37"04) - (U17,02) (D2 ypun) - (3.23)
out n

These objects in parentheses are just c-numbers, so we can move them around, no
problem. I've grouped them into a bit depending only on the initial state (the electron
stuff 1, 2) and a bit depending only on the final state (the muon stuff 3,4).

Average over initial, sum over final. In the amplitude above, we have fixed the
spin states of all the particles. Only very sophisticated experiments are able to discern
this information. So suppose we wish to predict the outcome of an experiment which
does not measure the spins of the fermions involved. We must sum over the final-state

> eont ) = (= ma) = D05 pa)u ()

S4 S4

spins using

(where T wrote the last expression to emphasize that these are just c-numbers) and
ZUSS p3)U; (ps) = (p?) + mu> "

Looking at just the ‘out’ factor of |[M|? in (3.23), we see that putting these together
produces a spinor trace, as promised:

> ()32t v(pa);?) (0(p2)2 Vg™ (ps)a)

g

(?4_mu)bc
= YW, — mu)eevea(Py + Mp)da

= (v (g ) (py )

= PapPsotry? Py — mi ety

53,54

(3:20),(3.21) 9

4| phps + pspl — ps - pan™ — myn™ (3.24)
=P34
If also we don’t know the initial (electron) spins, then the outcome of our experiment

is the average over the initial spins, of which there are four possibilities. Therefore, the
relevant probability for unpolarized scattering is

4

Pl = (0t ()2 (o)) (o () 2 (4 o))

$1,2,3,4
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(3.24) twice e
—5 (P13P24 + DPrapas + mipra + mipsy + 2mm?,)
s

algebra 2 4
fegeb Siz (£ +u” + 4s(m? + mi) —2(m? + mi)2) (3.25)

In the second step of (3.25) the piapsy terms cancel. In the
last step of (3.25) we used all the Mandelstam variables:

s= (P +p2)’ = (s+ps)? = Egy =A4E° ) )
t=(p=po)’ = (p2—pa)® = mi4m —2B2 42k e /,E(c,?\ :
u=(p1—ps)? = (p2—p3)* = mZ +m —2E* =2k - p/ e s\ et
A
where the particular kinematic variables (in the rightmost 4 / B
M f+={'€,*f}

equalities) are special to this problem, in the center of
mass frame (CoM), and are defined in the figure at right.
Really there are only two independent Lorentz-invariant
kinematical variables, since s+t +u = >, m?.

Now we can use the formula for a differential cross section with a two-body final
state, in the CoM frame (for the derivation, see these notes, §4.7):

do B 1 Ip] (1 2
(38).0 = e (12
= B e oo+ B2 ) (326)
16E5 |f| cr

where a = % is the fine structure constant. This can be boiled a bit with kinematical
relations |k| = /E? —m2, |p| = V/E? —m?2 to make manifest that it depends only on
two independent kinematical variables, which we can take to be the CoM energy F
and the scattering angle 6 in k - 7 = |k||] cos@ (best understood from the figure). It
simplifies a bit if we take £ > m,, and more if we take £ > m, ~ 200m,, to

do o?

- 2
0 1 (14 cos®0). (3.27)

In fact, the two terms here come respectively from spins transverse to the scattering
plane and in the scattering plane; see Schwartz §5.3 for an explanation.

There is a lot more to say about what happens when we scatter an electron and a
positron! Another thing that can happen is that the final state could be an electron
and positron again (Bhabha scattering®).

23See figure 3 here. Now remember that a person doesn’t have much control over their name. By
the way, I totally believe the bit about non-perturbative strings = lint.
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They are not necessarily the same e~ and et, though
(except in the sense that they are all the same), because
another way to get there at tree level is the second, t-
channel, diagram, at right. The intermediate photon in

that diagram has k; = (p; — p3), so that the denominator
of the propagator is t = k? = (p; — p3)? instead of s.

Squaring this amplitude gives
|IMs + M|? = M + IM]* + 2Re (M M), (3.28)

interference terms. Interference terms mean that you have to be careful about the
overall sign or phase of the amplitudes.

You may be surprised that the cross section (3.27) decreases with energy. Mechan-
ically this comes mainly from the 1/s? from the photon propagator: as s grows, the
intermediate photon is more and more off-shell. But more deeply, it’s because above
we've studied an exclusive cross-section, in the sense that we fixed the final state to be
exactly a muon and an antimuon. At higher energies, nothing new happens, because
the final state is fixed.

It has also been very valuable to think about inclusive cross-sections for e*e™ scat-
tering, because in this way you can make anything that the s-channel photon couples
to, if you put enough energy into it. The inclusive cross section for (eTe™ goes to
anything) does grow with energy, and jumps at energies which are thresholds for new
particles in the final state. In this way, for example, we can also make quarks (more
specifically quark-antiquark pairs) since they also carry electric charge. See Peskin pp
139-140 (and our later discussion in §5.3) for a bit more about that, and in particular
how this observable gives evidence that there are three colors of quarks.

’e_e_ —e e’ ‘ What happens if instead we scatter two

electrons (Moller scattering)? In that case, the leading
order diagrams are the ones at right. Now the interme-
diate photons have k; = (p;1 — p3) and k, = (p1 — p4)
respectively, so that the denominator of the propaga-
tor is ¢t and w in the two diagrams. The evaluation of

these diagrams has a lot in common with the ones for
ete” — eTe™, namely you just switch some of the legs
between initial and final state.
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The relation between such amplitudes is called crossing
symmetry. Let’s illustrate it instead for e"p~ < e pu™,
where again there is only one diagram, related by cross-
ing to (3.30). The diagram is the one at right. (The
muon is the thicker fermion line.)

.  (1=Okuky
| - (= )
iM = ;i :(_16u3’y“u1))electrons 2 (—1eu2’y u4)muons (329)

with k& = p; — p3 = p2 — ps. It differs from (3.30) by replacing the relevant vs with
us for the initial/final antiparticles that were moved into final/initial particles; and
relabelling the momenta. After the spin sum,

b3 = () ) ) o)

this amounts to the replacement (py, p2, p3, pa) — (p1, —P3, P4, —Pp2); on the Mandelstam
variables, this is just the permutation (s, t,u) — (t,u,s).

Crossing symmetry more generally. If you look at a Feynman diagram on its
side (for example because someone else fails to use the convention that time goes to the
left) it is still a valid amplitude for some process. Similarly, dragging particles between
the initial and final state also produces a valid amplitude. Making this relation precise
can save us some work. The precise relation for dragging an incoming particle into the
final state, so that it is an outgoing antiparticle, is:

iMyia(psipispa) %} =iMyasi(ps. k= —paipi) = /?if}

(If you must, note that this is another sense in which an antiparticle is a particle
going backwards in time.) If A is a spinor particle, the sum relations for particles and
antiparticles are different:

Zu =p+m, > V(R (k) =F—m=—(p+m)

— after accounting for £ = —py4, they differ by an overall sign. Hence we must also ap-
pend a fermion sign factor (_1)number of fermions shuffled between in and out in the unpolarized

scattering probability. We'll study a well-motivated example in more detail next.
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Mott formula. By studying scattering of an electron from a heavy charged fermion
(a muon is convenient) we can reconstruct the cross section for scattering off a Coulomb
potential (named after Mott). This example will be important later in §4, where we’ll
figure out how it is corrected by other QED processes.

ptp~ < eTe | Consider again the process ™~ < ete™. To try to keep things
straight, I'll call the electron momenta p,p’ and the muon momenta k, k', since that

won’t change under crossing. We found the amplitude

lMuﬁ*'uf(_e‘Fe* =

—i (17“,, — o2

muons q 2

) (=ieo” )y ) (3.30)

electrons

— (—ieaS(kwvs’(k'))
(with ¢ = p+p' = k + k')** and the (unpolarized) scattering probability density

1 o spinor traces let EM L
D

spins

where the tensor objects E*, M come respectively from the electron and muon lines,

1
1 B = b, + 2pv = (p - 9+ )

1
1%wi@%+%%—mdhy+mﬁ

and they are contracted by the photon line, with s = ¢*> = (p + p/)%.

e pu < e p | To get from this the amplitude (tree level, so far) for the process

e [~ < e p~, we must move the incoming positron line to an outgoing electron line,
and move the outgoing antimuon line to an incoming muon line (hence the sign in o will
be (_1>number of fermions shuffled between in and out __ (_1)2 — 1) Relative to the amplitude
for p* = < ete” (3.30), we must replace the relevant vs with us for the initial/final
antiparticles that were moved into final/initial particles, and we must replace p’ —
—p k' — —K"

(1-8a.4;

—i Nuww — 2
= T = (O b s PSRN

qi

Z4Relative to the notation I used earlier, py = p,p2 = p',p3 = k,ps = k.
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with ¢ = p — p' = k — k’. After the spin sum,

1 et
7 2 M =d (=purl, = Hups = (—p -9+ md)

. (—k#kl’, — kL k= mu (kK + mi)) (3.32)

On the Mandelstam variables, this is just the permutation (s,¢,u) — (¢, u, s).

Payoff: the Mott formula. Recall other ways of figuring out the scattering cross
section from a Coulomb potential from a point charge of charge ze. (’/ <t

We think about scattering from a fixed electrostatic potential Ay = ¢ and do classical
mechanics. I can never remember how this goes. Instead, let’s just scatter an electron
off a heavy charge, such as a muon. If the charge of the heavy object were z times that
of the electron, we would multiply the amplitude by z and the cross section by 22.
‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi-

i - Ko )
nal energy as ky = my, ko = \/m2 +k* = m, + k‘g"‘r-"“’rﬂ

%EQ/mM + -+~ m,. Also, this means the collision r— A - e 2,

is approximately elastic, £’ ~ E. In the diagram of / T=cEmp) ®
the kinematics at right, annoyingly, s = cosf,c = ekt e 0 pe )

sind. (Sorry.)

This means that the muon-line tensor factor M, in (4.11) simplifies dramatically:

1
_ZMW ~ kK, + k‘;ky — N | kK — mi ~ 5H05V02mi.
—_———

In the electron line, we’ll need the ingredient
—p-p +m?=—E?+p"cosf +m? = —p*(1 — cosb). (3.33)
So

EM My, = 32mp B = 32my(2E" + 0™ (—p - p' +my))
(3.33) 32mi(2E2 — 72(1 — cosh))
=p?/E?

trig

5 39m22(E? — P sin’0/2) 64m2 E*(1 — 2sin?0/2) .
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From the two-body phase space, the cross section is

11 1 42% aQ  p
do = — “64m SE*(1— 3%sin®0/2
7 Urel 2 Qmu t ( B s / >167T Etotal
=B
Brorarvm, 4E 2%e*(1 — %sin® 0/2) d§
N B 12 1672
Noting that t = (p — p/)? = —2p%(1 — cosf), we get
do ,a?(1—p%sin®0/2)

dQmott : 43252 sin 0 /2
If we take < 1 in this formula we get the Rutherford formula. Notice that it blows

up at 6 — 0. This is a symptom of the long-range nature of the Coulomb potential,
i.e. the masslessness of the photon.

Electron-proton scattering. The answer is basically the same if we think of
the heavy particle in (4.10) as a proton (we have to flip the sign of the charge but
this gets squared away since there is no interference in this case). ep — ep is called
Rutherford scattering, for good reason®”. More generally, the Mott formula applies to
scattering electrons off of heavy pointlike charged particles. For ep collisions at high
enough energies, this formula fails because the proton has structure. At even higher
energies it works again because the electron scatters off pointlike, approximately free
quarks.

Electron-photon scattering. In the case of the process e~ + e~7, ?° we meet
a new ingredient, namely external photons:

iM= }4{ X iM, +iM;

o ik, +m +m
= —16)26’fe4 U3z (’y,, 2 Yo + 7# P t m2 %) . (3-34)

The two amplitudes have a relative plus since we only mucked with the photon contrac-
tions, they just differ by how the gamma matrices are attached. If you don’t believe
me, draw the contractions on this:

(vel (VAY) (T AD); |ve)

25If you don’t know why, you should go read Inward Bound, by Abraham Pais, as soon as possible.
26which at high energy is called Compton scattering and at low energies is called Thomson scattering.

Despite my previous curmudgeonly footnote chastising the innocent reader for an imagined incomplete
knowledge of the history of science, I do have a hard time remembering which name goes where.
Moreover, as much as I revere the contributions of many of these folks, I find that using their names
makes me think about the people instead of the physics. No one owns the physics! It’s the same
physics for lots of space aliens, too.
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(I'm not going to TeX it, thank you).

Now, if we don’t measure the photon polarizations, we need

P=t Y MP

polarizations, spins

The key ingredient is the completeness relation

Z eif(k:)ef,(k‘) = —1),, + something proportional to k*k".

i=1,2
We can do various incantations to find a definite coefficient of k*k", but it will not
matter because of the Ward identity: anytime there is an external photon €(k),, the
amplitude is M = M, e*(k) and satisfies k#M, = 0. Therefore, we can ignore the
term about which I was vague and we have

Z IM|? = Z Eff/\/l“*./\/l”ei = =N M M” + (terms with M, k")
polarizations

i
= - MM

M
Don’t be scared of the minus sign, it’s because of the mostly minus signature, and

makes the thing positive. But notice the opportunity to get negative probabilities if
the gauge bosons don’t behave!

A dramatic process related by crossing to Compton scattering is pair annihilation,
My ete—. See the end of Peskin §5, where he has a nice plot comparing to experi-

mental data the result for j—g as a function of scattering angle.

[End of Lecture 8]
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4 To infinity and beyond

At this point we are capable of successfully computing the amplitudes and cross-sections
for many processes using QED. More precisely, we can do a good job of the leading-
order-in-a amplitudes, using Feynman diagrams which are trees — no loops. The natural
next step is to look at the next terms in the perturbation expansion in «, which come
from diagrams with one loop. When we do that we're going to encounter some confusing
stuff. A place we've already encountered this stuff is in the additive constant in the
Hamiltonian; this has physical consequences as we’ll see in thinking about Casimir
forces in §4.1.

We don’t encounter these short-distance issues in studying tree-level diagrams be-
cause in a tree-level diagram, the quantum numbers (and in particular the momenta)
of the intermediate states are fixed by the external states. In contrast, once there is
a loop, there are undetermined momenta which must be summed, and this sum in-
cludes, it seems, arbitrarily-high-momentum modes, about which surely we have no
information yet.

In order to put ourselves in the right frame of mind to think about that stuff, we’ll
make a brief retreat in §4.2 to systems with finitely many degrees of freedom.

Then we’ll apply some of these lessons to a toy field theory example (scalar field
theory). Then we’ll come back to perturbation theory in QED. Reading assignment
for this chapter: Zee §III.
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4.1 Casimir effect: vacuum energy is real

[A. Zee, Quantum Field Theory in a Nutshell, §1.9] This subsection has two purposes.
One is to show that the %hw energy of the vacuum of the quantum harmonic oscillator
(which appeared in our discussion of quantum sound and light) is real. Sometimes we
can get rid of it by choosing the zero of energy (which doesn’t matter unless we are
studying dynamical gravity). But it is meaningful if we can vary w (or the collection of
ws in the case of many oscillators as for the radiation field) and compare the difference.

The other purpose is to give an object lesson in asking the right questions. In
physics, the right question is often a question which can be answered by an experiment,
at least in principle. The answers to such questions are less sensitive to our silly
theoretical prejudices, e.g. about what happens to physics at very short distances.

In the context of the bunch of oscillators making up the radiation field, we can
change the spectrum of frequencies of these oscillators {wy} by putting it in a box and
varying the size of the box. In particular, two parallel conducting plates separated by
some distance d experience an attractive force from the change in the vacuum energy
of the EM field resulting from their presence. The plates put boundary conditions on
the field, and therefore on which normal modes are present.

To avoid some complications of E&M which are not essential for our point here,
we're going to make two simplifications:

e we're going to solve the problem in 1+1 dimensions

e and we're going to solve it for a scalar field.

To avoid the problem of changing the boundary conditions outside the plates we
use the following device with three plates:

|« d— | +— L—d — |

(We will consider L > d, so we don’t really care about the far right plate.) The
‘perfectly conducting’ plates impose the boundary condition that our scalar field ¢(z)
vanishes there. The normal modes of the scalar field ¢(z) in the left cavity are then

¢; =sin (jrz/d), j=1,2,..

_ il
~ 4
cavity which we won’t need. We're going to add up all the %hws for all the modes in

with frequencies w; c. There is a similar expression for the modes in the right

both cavities to get the vacuum energy Ey(d); the force on the middle plate is then
—04F).
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The vacuum energy in the whole region of interest between the outer plates is the
sum of the vacuum energies of the two cavities

Ey(d) = f(d) + f(L —d)

where

We have done something wrong. What?

Our crime is hubris: we assumed that we knew what the modes of arbitrarily large
mode number k (arbitrarily short wavelength, arbitrarily high frequency) are doing,
and in particular we assumed that they cared about our silly plates. In fact, no metal
in existence can put boundary conditions on the modes of large enough frequency —
those modes don’t care about d. The reason a conductor puts boundary conditions
on the EM field is that the electrons move around to compensate for an applied field,
but there is a limit on how fast the electrons can move (e.g. the speed of light). The
resulting cutoff frequency is called the plasma frequency but we don’t actually need to
know about all these details. To parametrize our ignorance of what the high-frequency
modes do, we must cut off (or regularize) the contribution of the high-frequency modes.
Let’s call modes with w; > 7/a high frequency, where a is some short time*”. Replace

[(d) = fla,d) = hoo Y e/
j=1

) (§/>

j=1

_ 1 _
71767u'/d 1
mh ea/d

T2 (et 1y

2

12
>

a<d d T TaQ

—_— - 4.1

22 2d4d | 48045 (4.1)
—~—

—00 as a—0

Answers which don’t depend on a have a chance of being meaningful. The thing we
can measure is the force:

F = —=04Ey = —(f'(d) - f(L—d)

2"You can think of a as the time it takes the waves to move by one lattice spacing. If we work
in units where the velocity is ¢ = 1, this is just the lattice spacing. I will do so for the rest of this
discussion.
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(1+0(d/L)) . (4.2)

This is an attractive force between the plates. (I put the ¢ back in the last line.)

The analogous force between real conducting plates, caused by the change of bound-
ary conditions on the electromagnetic field, has been measured.

The string theorists will tell you that Zj‘;l ] = —%, and our calculation above
agrees with them in some sense. But what this foolishness means is that if we compute
something which is not dependent on the cutoff we have to get the same answer no

matter what cutoff we use. Notice that it is crucial to ask the right questions.

An important question is to what extent could we have picked a different cutoff
function (instead of e=™/%) and gotten the same answer for the physics. This interest-
ing question is answered affirmatively in Zee’s wonderful book, 2d edition, section 1.9
(available electronically here!).

A comment about possible physical applications of the calculation we actually did:
you could ask me whether there is such a thing as a Casimir force due to the vacuum
fluctuations of phonons. Certainly it’s true that the boundary of a chunk of solid
puts boundary conditions on the phonon modes, which change when we change the
size of the solid. The problem with the idea that this might produce a measurable
force (which would lead the solid to want to shrink) is that it is hard to distinguish
the ‘phonon vacuum energy’ from the rest of the energy of formation of the solid,
that is, the energy difference between the crystalline configuration of the atoms and
the configuration when they are all infinitely separated. Certainly the latter is not
well-described in the harmonic approximation (A =0 in (1.1)).

A few comments about the 341 dimensional case of E&M. Assume the size
of the plates is much larger than their separation L. Dimensional analysis shows that
the force per unit area from vacuum fluctuations must be of the form

he

where A is a numerical number. A is not zero!

Use periodic boundary conditions in the xy planes (along the plates). The allowed
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wave vectors are then

i 2mn, 2mn,
-\ L, L,

We have to do a bit of E&M here. Assume the plates are perfect conductors

with n,,n, integers.

(this where the hubris about the high-frequency modes enters). This means that the
transverse component of the electric field must vanish at the surface. Instead of plane
waves in z, we get standing waves: ¢(z) o sin (nmz/L).

The frequencies of the associated standing waves are then

wp(k) =c¢ 72 +k%2n=0,1,2

Also, there is only one polarization state for n = 0.

So the zero-point energy is

where it’s useful to define

Now you can imagine introducing a regulator like the one we used above, and replacing
!/ / -
Z . A Z e_a‘w"(k)/ﬂ—.
nk nk

and doing the sums and integrals and extracting the small-a behavior.

4.2 A parable from quantum mechanics on the breaking of
scale invariance

Recall that the coupling constant in ¢* theory in D = 3 4 1 spacetime dimensions
is dimensionless, and the same is true of the electromagnetic coupling e in QED in
D = 341 spacetime dimensions. In fact, the mass parameters are the only dimensionful
quantities in those theories, at least in their classical avatars. This means that if we
ignore the masses, for example because we are interested in physics at much higher
energies, then these models seem to possess scale invariance: the physics is unchanged
under zooming in.
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Here we will study a simple quantum mechanical example (that is: an example
with a finite number of degrees of freedom)* with such (classical) scale invariance. It
exhibits many interesting features that can happen in strongly interacting quantum
field theory — asymptotic freedom, dimensional transmutation. Because the model is
simple, we can understand these phenomena without resort to perturbation theory.
They will nevertheless illuminate some ways of thinking which we’ll need in examples
where perturbating is our only option.

Consider the following (‘bare’) action:

sl = [ (5t + a0 (@) = [ (3 - v)

where ¢ = (z,y) are two coordinates of a quantum particle, and the potential involves
§@(q) = §(x)é(y), a Dirac delta function. I chose the sign so that gy > 0 is attractive.
(Notice that I have absorbed the inertial mass m in %mv2 into a redefinition of the

variable ¢, ¢ — v/mq.)

First, let’s do dimensional analysis (always a good idea). Since h = ¢ = 1, all
dimensionful quantites are some power of a length. Let —[X] denote the number of
powers of length in the units of the quantity X; that is, if X ~ (length)**) then we
have [X] = —v(X), a number. We have:

[t] = [length/c] = -1 = [dt] = —1.

The action appears in the exponent in the path integrand, and is therefore dimension-
less (it has units of /), so we had better have:

and this applies to each term in the action. We begin with the kinetic term:
0= / dt?] =

P =41 — [§]= 42 — [(ﬂ:_%.

2
Since 1 = [ dgd(q), we have 0 = [dg] + [6(¢)] and
[6P(9)] = —[q|D = g, and in particular [6*(¢)] = 1.

This implies that the naive (“engineering”) dimensions of the coupling constant gy are
[go] = 0 — it is dimensionless. Classically, the theory does not have a special length
scale; it is scale invariant.

281 learned this example from Marty Halpern.
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The Hamiltonian associated with the Lagrangian above is
Ly 2
Now we treat this as a quantum system. Acting in the position basis, the quantum
Hamiltonian operator is
h2

H=——
2

(0 +95) — 900™(q)

So in the Schrodinger equation Hyp = (—%Vz + V(q‘)) Y = E1, the second term
on the LHS is
V(@)e(a) = —god® ()1(0).
To make it look more like we are doing QFT, let’s solve it in momentum space:

_ d*p 7
¢(@=/W€ o(p)

The delta function is

d2p ip‘g/h
5(2)((1) _ / (27Th)2 e\Pa/h

So the Schrodinger equation says
(_%vz_E)¢@>=—w«@w@>
[ (p; - E) o(p) = +900%(a)(0)
:4g0</fpﬂW)¢m) (4.3)

which (integrating the both-hand side of (4.3) over ¢: [ d*qe™77((4.3)) ) says

<§_E)Mm:+%/f§%wm

There are two cases to consider:

e (7=0)= [d®pp(p) = 0. Then this case is the same as a free theory, with the

constraint that ¢(0) = 0,
7
(5 — E) w(p) =0

i.e. plane waves which vanish at the origin, e.g. ¥ x sin ’%xeiipyy/ . These scat-
tering solutions don’t see the delta-function potential at all.
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e (0) = a # 0, some constant to be determined. This means p?/2 — E # 0, so we
can divide by it :

o) == (@) = 5o

72 72
pT _ e _
5> — F 5 — F

The integral of the RHS (for ¢(0) = «) is a little problematic if £ > 0, since
then there is some value of p where p? = 2E. Avoid this singularity by going to

the boundstate region: consider £ = —ep < 0. So:
9o
9007) — R
5 + €p

What happens if we integrate this [ d*p to check self-consistency — the LHS should

give v again:
0= / dpe(p) 1 - / dp— 20—
Lo 7 T eB

=(0)=a#0

— /d2pﬁ290 =1
34‘63

is a condition on the energy ep of possible boundstates.

But there’s a problem: the integral on the LHS behaves at large p like

*p
p_2 =0 .
At this point in an undergrad QM class, you would give up on this model. In QFT we
don’t have that luxury, because this kind of thing happens all over the place. Here’s

what we do instead.

We cut off the integral at some large p = A:

A 32
d°p

This our first example of the general principle that a classically scale invariant system
will exhibit logarithmic divergences (rather: logarithmic dependence on the cutoff).
It’s the only kind allowed by dimensional analysis.

The introduction of the cutoff can be thought of in many ways: we could say there
are no momentum states with [p| > A, or maybe we could say that the potential is not
really a delta function if we look more closely. The choice of narrative here shouldn’t
affect our answers to physics questions at energies far below the cutoff.
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More precisely:

A 2 A 2
d d A
/ > P :27r/ Qpp :27Tlog(1+—).
L +ep 0 B +es 2¢p
So in our cutoff theory, the boundstate condition is:
A 72 2
d’p 9o A
1= = 1 1+— .
go/ P otep 2R A 2ep

A solution only exists for gy > 0. This makes sense since only then is the potential
attractive (recall that V = —gg9).

[End of Lecture 9]

Now here’s a trivial-seeming step that offers a dramatic new vista: solve for €p.

A1
e —1
As we remove the cutoff (A — 00), we see that F = —ep — —o0, the boundstate

becomes more and more bound — the potential is too attractive.

Suppose we insist that the boundstate energy eg is a fixed thing — imagine we’ve
measured it to be 200 MeV*’. We should express everything in terms of the measured
quantity. Then, given some cutoff A, we should solve for go(A) to get the boundstate

energy we have measured:
27 h?

log <1+%>'

This is the crucial step: this silly symbol gy which appeared in our action doesn’t mean

go(A)

anything to anyone (see Zee’s dialogue with the S.E. in section III). We are allowing
go = the bare coupling to be cutoff-dependent.

Instead of a dimensionless coupling go, the useful theory contains an arbitrary
dimensionful coupling constant (here eg). This phenomenon is called dimensional
transmutation (d.t.). The cutoff is supposed to go away in observables, which depend
on ep instead.

In QCD we expect that in an identical way, an arbitrary scale Agcp will enter into
physical quantities. (If QCD were the theory of the whole world, we would work in
units where it was one.) This can be taken to be the rest mass of some mesons —
boundstates of quarks. Unlike this example, in QCD there are many boundstates, but
their energies are dimensionless multiplies of the one dimensionful scale, Agcp. Nature
chooses Agep =~ 200 MeV.

298poiler alert: I picked this value of energy to stress the analogy with QCD.
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[This d.t. phenomenon was maybe first seen in a perturbative field theory in S.
Coleman, E. Weinberg, Phys Rev D7 (1973) 1898. We'll come back to their example.]

There are more lessons in this example. Go back to (4.4):

A2 1 = .
5= 5z # D00 n(N)
e —1 n=0
it is not analytic (i.e. a power series) in go(A) near small go; rather, there is an essential
singularity in go. (All derivatives of eg with respect to gy vanish at go = 0.) You can’t
expand the dimensionful parameter in powers of the coupling. This means that you’ll
never see it in perturbation theory in go. Dimensional transmutation is an inherently

non-perturbative phenomenon.

Look at how the bare coupling depends on the cutoff in this example:
. 27Th2 A2>>EB 27Th2 A2>>€B
log (1 + %) log <%>

— the bare coupling vanishes in this limit, since we are insisting that the parameter eg

go(A) 0

is fixed. This is called asymptotic freedom (AF): the bare coupling goes to zero (i.e.
the theory becomes free) as the cutoff is removed. This also happens in QCD.

RG flow equations. Define the beta-function as the logarithmic derivative of the
bare coupling with respect to the cutoft:

0
Def: =A—qgo(A) .
e B(90) 9 Ago( )
For this theory
0 2Wh2 calculate 92 —onh?
Blgo) =Asi | —7 oy | = —W—gQ N s
log <]- + E) perturbative  not perturbative

Notice that it’s a function only of gg, and not explicitly of A. Also, in this simple toy
theory, the perturbation series for the beta function happens to stop at order gz.

£ measures the failure of the cutoff to disappear from our discussion — it signals a
quantum mechanical violation of scale invariance. What’s 3 for? Flow equations:

9o = B(g0).
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30 This is a tautology. The dot is
A=0,A, s=logA/Ay = 9, = Adx.

(A is some reference scale.) But forget for the moment that this is just a definition:
2
.9 ( —2rh?/ )
=——(1—e¢ g,
9o e

This equation tells you how ¢y changes as you change the cutoff. Think of it as a
nonlinear dynamical system (fixed points, limit cycles...)

Def: A fixed point g of a flow is a point where the flow stops:

OZQOlgg :5(96) )

a zero of the beta function. (Note: if we have many couplings g¢;, then we have such
an equation for each ¢g: ¢; = Bi(g). So f; is (locally) a vector field on the space of
couplings.)

Where are the fixed points in our example?
Blan) = = (1= 2ol
T

There’s only one: g = 0, near which 5(gy) ~ —i—i, the non-perturbative terms are
small. What does the flow look like near this point? For gy > 0, go = B(g0) < 0. With
this (high-energy) definition of the direction of flow, gy = 0 is an attractive fixed point:

k<< =<=<=<=<=<=<=<K =K =Kmmmmm e g ()
g5 = 0.
We already knew this. It just says go(A) ~ @ — 0 at large A. A lesson is

—27h2
that in the vicinity of such an AF fixed point, the non-perturbatuve stuff e 9 is

small. So we can get good results near the fixed point from the perturbative part of 3.
That is: we can compute the behavior of the flow of couplings near an AF fixed point
perturbatively, and be sure that it is an AF fixed point. This is the situation in QCD.

30Warning: The sign in this definition carries a great deal of cultural baggage. With the definition
given here, the flow (increasing s) is toward the UV, toward high energy. This is the high-energy
particle physics perspective, where we learn more physics by going to higher energies. As we will see,
there is a strong argument to be made for the other perspective, that the flow should be regarded as
going from UV to IR, since we lose information as we move in that direction — in fact, the IR behavior
does not determine the UV behavior in general, but UV does determine IR.
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On the other hand, the d.t. phenomenon that we've shown here is something that
we can’t prove in QCD. However, the circumstantial evidence is very strong!

Another example where this happens is quantum mechanics in any number of vari-
2
ables with a central potential V' = —f—g. It is also classically scale invariant:

] = — [712]=+1 — g =0.

This model was studied in K.M. Case, Phys Rev 80 (1950) 797 and you will study it on
the first homework. The resulting boundstates and d.t. phenomenon are called Efimov
states; this model preserves a discrete scale invariance.

Here’s a quote from Marty Halpern from his lecture on this subject:

I want you to study this set of examples very carefully, because it’s the only time in
your career when you will understand what is going on.

In my experience it’s been basically true. For real QFT's, you get distracted by Feynman

diagrams, gauge invariance, regularization and renormalization schemes, and the fact
that you can only do perturbation theory.
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4.3 A simple example of perturbative renormalization in QFT

[Zee §I11.1, Schwartz §15.4] Now let’s consider an actual field theory but a simple one,
namely the theory of a real scalar field in four dimensions, with

__1 22 Y9 4
L= 2¢>D¢ m-¢ 4!¢. (4.5)

Recall that [¢] = £-2 so [m] = 1 and [¢] = 52,

above, this will mean logarithms!

so g is dimensionless in D = 4. As

Let’s do 2 < 2 scattering of ¢ particles.

N
iMoo = >< + ‘>/%>'<u -+ LL 7“‘&-\- &- +  0O(g*)
ke k s

—_ig  + M, iM, + iM, + O

where, in terms of ¢, = k1 + ks, the s-channel 1-loop amplitude is

g o i [
B 9 —m? +1ie(qs — k)2 — m? +ie K+

Parametrizing ignorance. Recall our discovery of the scalar field at the be-

ginning of the quarter by starting with a chain of springs, and looking at the long-
wavelength (small-wavenumber) modes. In the sum, [ d*k, the region of integration
that’s causing the trouble is not the part where the system looks most like a field
theory. That is: if we look closely enough (small enough 1/k), we will see that the
mattress is made of springs. In terms of the microscopic description with springs, there
is a smallest wavelength, of order the inverse lattice spacing: the sum stops.

Field theories arise from many such models, which may differ dramatically in their
short-distance physics. We’d like to not worry too much about which one, but rather
say things which do not depend on this choice. Recall the discussion of the Casimir
force from §4.1: in that calculation, many different choices of regulators for the mode
sum corresponded to different material properties of the conducting plates. The leading
Casimir force was independent of this choice; more generally, it is an important part of
the physics problem to identify which quantities are UV sensitive and which are not.

If we had an actual lattice (like the chain of springs), we would replace the inverse

propagator p* — m? = w® — p* —m? with w? — w?

— m?, where w, is the dispersion
relation (e.g. w, = 2t Z?Zl (1 — cosp;a) for nearest-neighbor hopping on the cubic
lattice), and p is restricted to the Brillouin zone (—m/a < p; < w/a for the cubic
lattice). Instead, for simplicity, let’s keep just impose a hard cutoff on the euclidean

momentum ¢ p? < A2,
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Parametrizing ignorance is another way to say ‘doing science’. In the context of
field theory, at least in the high-energy community, it is called ‘regularization’.

Now we need to talk about the integral a little more. The part which is causing
the trouble is the bit with large k, which might as well be |k| ~ A > m, so let’s set
m = 0 for simplicity.

We’ll spend lots of time learning to do integrals below. Here’s the answer:

A2 2 2
iM = —ig +iCg? (log —+ log -+ log Z) +O(g?)

1

If you must know, C' = 1.

Observables can be predicted from other observables. Again, the boldface
statement might sound like some content-free tweet from some boring philosophy-of-
science twitter feed, but actually it’s a very important thing to remember here.

What is g7 As Zee’s Smart Experimentalist says, it is just a letter in some theorist’s
lagrangian, and it doesn’t help anyone to write physical quantities in terms of it. Much
more useful would be to say what is the scattering amplitude in terms of things that
can be measured. So, suppose someone scatters ¢ particles at some given (s,t,u) =
(80, to, ug), and finds for the amplitude iM (sg, to, ug) = —igp where P is for ‘physical’.?!
This we can relate to our theory letters:

— lgp = iM(So, t07 Uo) = —lg + ICQQLO + 0(93) (46)

where Lo = log /;—j + log /2—02 + log 2—; (Note that quantities like gp are often called gg
where ‘R’ is for ‘renormalized,” whatever that is.)

Renormalization. Now here comes the big gestalt shift: Solve this equation (4.6)
for the stupid letter g

—ig = —igp —iC¢*Lo + O(g)

and eliminate g from the discussion:

iM(s,t,u) = —ig +iCg°L + O(g’)

31You might hesitate here about my referring to the amplitude M as an ‘observable’. The difficult
and interesting question of what can actually be measured in experiments can be decoupled a bit from
this discussion. I'll say more later, but if you are impatient see the beginning of Schwartz, chapter 18.
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4.7 . . .
D igp —iCghLo +iCgEL + O(g})

t
= —igp +iCgp (log ? + log?o + log %) + O(gh). (4.8)

This expresses the amplitude at any momenta (within the range of validity of the
theory!) in terms of measured quantities, gp, So, to, up. The cutoff A is gone! Just like
in our parable in §4.2, it was eliminated by letting the coupling vary with it, g = g(A),
according to (4.7). We'll say a lot more about how to think about that dependence.

Renormalized perturbation theory. To slick up this machinery, consider the
following Lagrangian density (in fact the same as (4.5), with m = 0 for simplicity):
1 gp )
L=—-¢0¢— Z-¢* — 2o 4.9
2(;5 ¢ 4! 4! (49)
but written in terms of the measured coupling gp, and some as-yet-undetermined ‘coun-
terterm’ 6,. Then

S t U
M(s,t,u) = —gp — 0, — Cgp <log e + log e + log P) + 0(g3).

If, in order to enforce the renormalization condition M(sg,ty,ug) = —gp, we choose
50 Lo U
5, = —gpC (log e + log e + log F)

then we find

u

t
M(s,t,u) = —gp — Cgp <log 24 log — + log —) + O(g3)
So t() Uo

—all the dependence on the unknown cutoff is gone, we satisfy the observational demand
M(sp, to, up) = —gp, and we can predict the scattering amplitude (and others!) at any
momenta.

The only price is that the ‘bare coupling” ¢ depends on the cutoff, and becomes
infinite if we pretend that there is no cutoff. Happily, we didn’t care about g anyway.
We can just let it go.

The step whereby we were able to absorb all the dependence on the cutoff into
the bare coupling constant involved some apparent magic. It is not so clear that the
same magic will happen if we study the next order O(g3) terms, or if we study other
amplitudes. A QFT where all the cutoff dependence to all orders can be removed with
a finite number of counterterms is called ‘renormalizable’. As we will see, such a field
theory is less useful because it allows us to pretend that it is valid up to arbitrarily high
energies. The alternative, where we must add more counterterms (such as something
like %qﬁfj) at each order in perturbation theory, is called an effective field theory, which
is a field theory that has the decency to predict its regime of validity.
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4.4 Radiative corrections to the Mott formula

Recall that by studying scattering of an electron from a heavy charged fermion (a muon
is convenient) we reconstructed the cross section for scattering off a Coulomb potential
(named after Mott). Our next goal is to figure out how this cross section is corrected
by other QED processes.

Recall that

—i <"7/LV - (1_5)2‘1;4‘11;
M= ):\ _leu >fyluu(p)))eleCtrons 2 & <_iea(/€>’yyu<k/)>muons(4‘]‘0)

qi

with ¢ =p — p' = k — k’. After the spin sum,

1 Z |M|2 _2 <_pﬂp;/ - p,/upzz - nuu(_p : p/ -+ mg))

(kK — Kk — nu(—k - K + mﬁ)) (4.11)

Consider the limit where the target p particle is much heavier than the electron.
‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi- r k?@",‘,ﬂ;}“,rs)

— ‘,’.:o ~
nal energy as ky = my, ko = \/m2 +k* = m, + £ (-hho‘q 7 % .

> € 3
%kQ/m# + -+ >~ my,. Also, this means the collision F T =C,mp) [
is approximately elastic. In the diagram of the kine- o- /wg 9,-pc,-ps)

matics at right, ¢ = cosf, s = sin 6.
The answer we found after some boiling was:

do _ a?(1-p*sin®0/2)
dMote 4322 sin 0/2

If we take f < 1 in this formula we get the Rutherford formula.

Radiative corrections. Now it’s time to think about perturbative corrections to
this cross section. Given that the leading-order calculation reproduced the classical
physics of the Coulomb potential, you can think of what we are doing as effectively
discovering (high-energy or short-distance) quantum corrections to the Coulomb law.
The diagrams we must include are these (I made the muon lines thicker and also red):

iMe;u—eu = i 1
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. liﬂjﬁi Lo

e What do the one-loop diagrams in the second line have in common? They have

an internal muon line. Why does this matter? When the energy going through the
!

relative contribution is down by k/m, < 1. So let’s neglect these for now.

line is much smaller than the muon mass, then the propagator is ~ m%b and its

e Why don’t we include diagrams like ? The LSZ formula tells us

that their effects on the S-matrix are accounted for by the wavefunction renormalization
factors Z

Sepcen = V2 N ;C\Jr(i ;}i>+

and in determining the locations of the poles whose residues are the S-matrix elements.

amputated, on-shell

We’ll take care of these when we talk about the electron self-energy.

e Notice that the one-loop amplitudes are suppressed relative to the tree level am-
plitude by two factors of e, hence one factor of the fine structure constant o = .

Their leading effects on the cross section come from

JN‘DiJr(:{.;{)JF...

from the cross term between the tree and one-loop amplitudes.

2
‘ ~ Otree + O(CY3)

In the above discussion, we encounter all three ‘primitive’ one-loop divergent am-
plitudes of QED, which we’ll study in turn:

e clectron self-energy: __dﬁ_

e vertex correction: x“&x

e vacuum polarization (photon self-energy): «M@vv-

[End of Lecture 10]
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4.5 Electron self-energy in QED

Let’s think about the electron two-point function in momentum space:

LN SO

(4.12)

As we did for the scalar field theory in §3, we will denote the 1PI two-point function

by
—ix(p) =

a blob with nubbins; for fermions with conserved particle number, the nubbins carry
arrows indicating the particle number flow. Let me call the tree level propagator

pP—m+ie  p—mg

iS(p) =

— notice that I added a demeaning subscript to the notation for the mass appearing in
the Lagrangian. Foreshadowing.

The full two point function is then:

G (p) = iS 4+ 1S (—i%(p)) iS +iS (—=iX(p)) iS (=iX(p))iS + - --
. .1
= 1S(1+ES+ESES+---)_181_25
i 1 B i
p—mol—zyjfmo p—mo—Z(p)'

Are you worried about these manipulations because ¥ and S are matrices in the spinor

(4.13)

indices? Don’t be: they are both made entirely from p, and therefore they commute;
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we could do these manipulations in the eigenbasis of p. This fully corrected propagator
has a pole at

p=m=my+X(m) . (4.14)
This means that the actual mass of the particle is this new quantity m. But what is

m (it is called the ‘renormalized mass’)? To figure it out, we need to know about .

In QED we must study ¥ in perturbation theory. As you can see from (4.12), the
leading (one-loop) contribution is

-k

f . .
_in _ e ()2 d4k‘ m 1(%+m0) v =17
1 2(p) Vi ;3_. ( 16) / Y k2 _ m(Q) + iﬁ’y (p — ]{3)2 — qu T ic

k.

Notice that I am relying on the Ward identity to enforce the fact that only the traverse
bit of the photon propagator matters. Also, I added a mass u for the photon as an
IR regulator. We must keep the external momentum p arbitrary, since we don’t even
know where the mass-shell is!

Finally, I can’t put it off any longer: how are we going to do this loop-momentum
integral?

Step 1: Feynman parameter trick. It is a good idea to consider the integral

1 1 =1
/ dr 1 _ / I 1 _ 1 -1
o @A+ -—oB2  Jy “@A-B)+B? A-Bz(A-B)+B|,_,

1 _1+1 1
 A—-B A B/) AB’

This allows us to combine the denominators into one:

1 1 ! 1
1= 2 2 2 i dx 3 T 2
W mitie(p— K — 2 tic Jo © (2 (52— 2pk + k2) — 2 +ie) + (1 — 2)(k2 — m3 + ie))
B A
Step 2: Now we can complete the square
1
1
7= / dx 5
0
(k —px)? — A +ie
=l
with

=k —ptr, A =4pPe? +ap® —apt 4+ (1—2)mi = op® + (1 —2)m — 2(1 — z)p.
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Step 3: Wick rotate. Because of the ie we’ve been dutifully car-
rying around, the poles of the p° integral don’t occur in the first ‘ : \_Ff‘
and third octants of the complex p" plane. (And the integrand

decays at large [p°|.) This means that we can rotate the contour =

to euclidean time for free: (° = if*. Equivalently: the integral »
over the contour at right vanishes, so the real time contour gives

the same answer as the (upward-directed) Euclidean contour.
Notice that ¢* = —¢%. Altogether

1
—i¥s(p) = —e /d“é/ dr————— :—62/ clxi/d‘lﬁEL2
A—|—1€) 0 (2 +A)

where the numerator is
N =~# ([+xp—|—m0)7u =-2 (l—l—:z:p) + 4my.

Here T used two Clifford algebra facts: v, = 4 and y*pv, = —2p. Think about the
contribution from the term with £ in the numerator: everything else is invariant under
rotations of /

d€

<WE:—Lw%ﬁﬂ—d%g2

(2m)t (2m)t

so this averages to zero. The rest is of the form (using [g, d€2s = 27?)

_6/‘ /ﬁﬂ? 2(2my — ap)
Zalp 2m)t (2 + A)?

@ dx(Qmo —zp)T (4.15)

J= / £2+A

In the large ¢ part of the integrand this is

with

A e

2 ~ log A.

You knew this UV divergence was coming. To be more precise, let’s add zero:
/ ( 2+ A A >
J = 2
2 + A (62 + A)
1 A A |
= de? - In(? + A —_— = In(2 + A — 1.
/0 (€2+A (EQ_i_A)?) (€ + )lﬁ 0T 21 A|, » (& + )}gz -0

Recall that

A=zp*+ (1 —z)my— (1 —2)p* = Ap?).
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Pauli-Villars regularization. Here is a convenient fiction: when you exchange
a photon, you also exchange a very heavy particle, with mass m? = A2, with an extra
(—1) in its propagator. This means that (in this Pauli-Villars regulation scheme) the
Feynman rule for the wiggly line is instead

T\ R 2 ie A2 tie
:_in ,UQ—A2
MU\ (K2 — p2 +ie) (k2 — A2 + ie)

This goes like k%l at large k, so the integrals are more convergent. Yay.

Notice that the contribution from the Pauli-Villars photon to tree-level amplitudes
Ak

e

determined by the external momenta), which innocuously vanishes as A — oo.

goes like |5~ (where k is the momentum going through the photon line,

Remembering that the residue of the pole in the propagator is the probability for
the field operator to create a particle from the vacuum, you might worry that this is
a negative probability, and unitarity isn’t manifest. This particle is a ghost. However,
we will choose A so large that the pole in the propagator at k? = A? will never be
accessed and we’ll never have external Pauli-Villars particles. We are using this as a
device to define the theory in a regime of energies much less than A. You shouldn’t
take the regulated theory too seriously: for example, the wrong-sign propagator means
wrong-sign kinetic terms for the PV fields. This means that very wiggly configurations
will be energetically favored rather than suppressed by the Hamiltonian. It will not
make much sense non-perturbatively.

I emphasize that this regulator is one possibility of many. They each have their
drawbacks. They all break scale invariance. A nice thing about PV is that it is
Lorentz invariant. A class of regulators which make perfect sense non-perturbatively is
the lattice (as in the model with masses on springs). The price is that it really messes
up the spacetime symmetries.

Applying this to the self-energy integral amounts to the replacement

T~ Taz) — Ian?)
= [(ln (62 + A(p? )) 1) — (In (¢* + A(A?) — 1)] ‘go
o EHAE T
TR AN 0
A(p?) A(A?)
=In1/1 _IHA(AQ) =1In A)

Notice that we can take advantage of our ignorance of the microphysics to make the
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cutoff (the PV scale A) as big as we like and thereby simplify our lives:

9 A>>e\r/\eer0ne A2

AN =N + (1 —2)md — (1 —2)p x

Finally then

! xA\?

(6]
2(p)PV o J, x( Mo J]}Zﬁ) i xu? + (1 - I)mg — 513(1 - x)pQ

(4.16)

Having arrived at this regulated expression for the self-energy we need to “impose
a renormalization condition,” i.e. introduce some observable physics in terms of which
to parametrize our answers. We return to (4.14): the shift in the mass as a result of
this one-loop self-energy is

om =m —mo = Yg(p =m) + O(et) = Yo(p = mo) + O(e)

1 A2
— dx (2 —x)mgln °

o J, zp? + (1 — 2)md + z(1 — 2)m?
=wu2+(1*w2)\7rn85f(:v,mo,u)
1 2 2
A

o (2—2)mo | In— fln 0

2m 0 mp f(l’, my, :U’)

divergent relatively small

a 1 A? 3« A?
~—|2—= In— =—myln—;. 4.17

27 ( 2) o nm% I nm% (4.17)

In the penultimate step (with the &), we’ve neglected the finite bit (labelled ‘relatively
small’) compared to the logarithmically divergent bit: we’ve already assumed A > all
other scales in the problem.

Mass renormalization. Now the physics input: The mass of the electron is 511
keV (you can ask how we measure it and whether the answer we get depends on the
resolution of the measurement, and indeed there is more to this story; this is a low-
energy answer, for example we could make the electron go in a magnetic field and
measure the radius of curvature of its orbit and set m.v?/r = evB/c), so

3 A?
511 keV =~ m,. = my (1 + Y —2) + O(a?).
4T mg

In this equation, the LHS is a measured quantity. In the correction on the RHS o ~ %
is small, but it is multiplied by In 1[7\1_2 which is arbitrarily large. This means that the
bare mass mg, which is going to absorb the cutoff dependence here, must actually be

really small. (Notice that actually I've lied a little here: the o we've been using is
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still the bare charge; we will need to renormalize that one, too, before we are done.) I
emphasize: mgy and the other fake, bare parameters in £ depend on A and the order of
perturbation theory to which we are working and other theorist bookkeeping garbage;
m. does not. At each order in perturbation theory, we eliminate my and write our
predictions in terms of m.. It is not too surprising that the mass of the electron
includes such contributions: it must be difficult to travel through space if you are
constantly emitting and re-absorbing photons.

Wavefunction renormalization. The actual propagator for the electron, near
the electron pole is
i p~m 14

~¥(2) — ~
W) p—mo—X(p)  p-m

+ regular terms. (4.18)

The residue of the pole at the electron mass is no longer equal to one, but rather Z.
To see what Z actually is at this order in €2, Taylor expand near the pole

Taylor 0X
Y(p) = E(p =m)+ 6_;/5'?:’"(7/) —m) A+

00X 4
= Bp=m0)+ Zlemo(p = mo) +- + O

So then (4.18) becomes

GO (p) P2 - - (4.19)
pom =Gl —m)  (p—m) (1-2],,)
So that . o5
Z=——e— 1t —— |y =142
1= Flmo op

and at leading nontrivial order

0%y, (i) a (! ( x\? —2x(1 — x))
07 =—\me = — [ de|—2xln———+4 (2myg—axmg)————
8p | 27 0 f(‘r7m07/'l’) ( ’ O) f(xam()nu)
2

S <ln A—2 + ﬁnite) . (4.20)
4r mg

Here f = f(x, mg, ) is the same quantity defined in the second line of (4.17). We’ll
see below that the cutoff-dependence in §Z plays a crucial role in making the S matrix
(for example for the ey — ey process we've been discussing) cutoff-independent and
finite, when written in terms of physical variables.
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4.6 Big picture interlude

OK, I am having a hard time just pounding away at one-loop QED. Let’s take a break
and think about the self-energy corrections in scalar field theory. Then we will step
back and think about the general structure of short-distance senstivity in (relativistic)
QFT, before returning to the QED vertex correction and vacuum polarization.

4.6.1 Self-energy in ¢* theory

[Zee §I11.3] Let’s return to the ¢* theory in D = 34 1 for a moment. The Mse ss
amplitude is not the only place where the cutoff appears.

Above we added a counterterm of the same form as the ¢* term in the Lagrangian.
Now we will see that we need counterterms for everybody:

99 44

1
=3 (600 + m*¢?) - IP 4t _ -

1 1,
i ~ 502606 — S0,

Here is a way in which ¢* theory is weird: At one loop there is no wavefunction
renormalization. That is,

7T iy [ 2

<~ <

which is certainly quadratically divergent, but totally independent of the external mo-
mentum. This means that when we Taylor expand in & (as we just did in (4.19)), this
diagram only contributes to the mass renormalization. Demanding that the pole in the
propagator occurs at p? = m?, we must set 6,,2 = —0%.

So let’s see what happens if we keep going:

f

5% (k) = :_-:@?“_ = (—ig)? /d4p/d4qiD0(p)iDo(q)iDo(k—p—q) = I(k?,m, A).

~
9

Here iDo(p) = -

i
—m?2-+ie

and we've defined I by this expression. The fact that I depends only on k? is a

is the free propagator (the factor of i is for later convenience),

consequence of Lorentz invariance. Counting powers of the loop momenta, the short-
distance bit of this integral is of the schematic form [ A d;—f ~ A%, also quadratically
divergent, but this time k?-dependent, so there will be a nonzero 67 o ¢g?. As we just
did for the electron self-energy, we should Taylor expand in k. (We’ll learn more about
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why and when the answer is analytic in k% at k = 0 later.) The series expansion in &>
(let’s do it about k? = 0 ~ m? to look at the UV behavior) is

0%9(k?) = Ag + K2 Ay + k* Ay 4 - --

where Ag = I(k* = 0) ~ A?. In contrast, dimensional analysis says A; = %I |k2—0 ~
S dli—f ~ A% ~ InA has two fewer powers of the cutoff. After that it’s clear sailing:
Ay = (%)2 I|p2—g ~ fA f—fj ~ A2 is finite as we remove the cutoff, and so are all the
later coefficients.

Putting this together, the inverse propagator is
D7 (k) = Dyt(k) — B(k) = k* — m? — (6%1(0) + Ag) —k*A; — k* Ay + - -
———
=a~A2

The - - - here includes both higher orders in g (O(g?)) and higher powers of k%, i.e. higher
derivative terms. If instead the physical pole were at a nonzero value of the mass, we
should Taylor expand about k? = m? instead:

D7 (k) = Dyt (k) =2(k) = k> —mg — (621(0) + Ag) —(k* —m%)A; — (K> —m3)* Ag+- - -
N

=a~A2
where now A, = & (5%)" Sa(k?) |2z,
Therefore, the propagator is
1 Z
D(k) = U S
N 1y e R e
with
1 2 2

Some points to notice: @ §Z = Aj;.

e The contributions A,>2(k*)" can be reproduced by counterterms of the form
A,¢0"¢. Had they been cutoff dependent we would have needed to add such (cutoff-
dependent) counterterms.

e The mass-squared of the scalar field in D = 341 is quadratically divergent, while
the mass of the spinor was only log divergent. This UV sensitivity of scalar fields is
32

ubiquitous™ (see the homework) and is the source of many headaches.

e On the term ‘wavefunction renormalization’: who is ¢7 Also just a theorist’s let-
ter. Sometimes (in condensed matter) it is defined by some relation to observation (like

32 At least for most regulators. We’ll see that dim reg is special.
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the height of a wave in the mattress), in high energy theory not so much. Classically,
we fixed its (multiplicative) normalization by setting the coefficient of ¢pO¢ to one. If
we want to restore that convention after renormalization, we can make a redefinition
of the field ¢z = Z~/2¢. This is the origin of the term ‘wavefunction renormalization’.
A slightly better name would be ‘field renormalization’, but even better would be just
‘kinetic term renormalization’.

Renormalized perturbation theory revisited. The full story for the renormal-
ized perturbation expansion in ¢* theory is

1 2 1 5 5 gp 4
5—5(8@ —gmpd” — ¢ + Let

with ) . 5
— 257 2 = 2.2 Y9 4.

Here are the instructions for using it: The Feynman rules are as before: the coupling

i
. _ 421
>< p, k? —m?% + ie ( )

but the terms in L. (the counterterms) are treated as new vertices, and treated per-

and propagator are

turbatively:
>8< = —i),, —®—— = —i(0Zk*+om?).

All integrals are regulated, in the same way (whatever it is). The counterterm couplings
04,07,0m? are determined iteratively, as follows: given the dy_1s up to O(gy), we fix
each one § = §y_; + gNAdn + O(gh ) by demanding that (4.21) are actually true up
to O(gh ™). This pushes the cutoff dependence back into the muck a bit further.

I say this is the full story, but wait: we didn’t try to compute amplitudes with more
than four ¢s (such as 3 < 3 scattering of ¢ quanta). How do we know those don’t
require new counterterms (like a ¢° term, for example)?

4.6.2 Where is the UV sensitivity?

still Zee §II1.3, Peskin ch. 10. We'll follow Zee’s discussion pretty closely for a bit.]
Given some process in a relativistic, perturbative QFT, how do we know if it will
depend on the cutoff? We’d like to be able answer this question for a theory with
scalars, spinors, vectors. Here’s how: First, look at each diagram A (order by order
in the loop expansion). Define the ‘superficial’ degree of divergence of A to be D 4 if
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A ~ AP4 (in the limit that A < all other scales — this is an asymptotic statement). A
log divergent amplitude has D4 = 0 (sometimes it’s called D4 = 07).

Let’s start simple, and study the ¢* theory in D = 4. Consider a connected diagram
A with Bg external scalar lines. I claim that D4 =4 — Bp. [End of Lecture 11]

Why didn’t it depend on any other data of the diagram, such as

By = # of internal scalar lines (i.e., propagators)
V = # of ¢* vertices

L = # of loops
? We can understand this better using two facts of graph theory and some Br=38
power counting. I recommend checking my claims below with an example, Bp =4
such as the one at right. V=5
L=4

Graph theory fact #1: These quantities are not all independent. For a connected
graph,
L=B—(V-1). (4.22)

We already discussed a version of this statement around (2.6). Math proof**: Imagine
placing the vertices on the page and adding the propagators one at a time. You need
V' — 1 internal lines just to connect up all V' vertices. After that, each internal line you
add necessarily adds one more loop. ]

Another way to think about this fact makes clear that L. = # of loops = # of
momentum integrals. Before imposing momentum conservation at the vertices, each
internal line has a momentum which we must integrate: HQBL . dPq,. We then stick a
§P)(S” q) for each vertex, but one of these gives the overall momentum conservation
§P)(kr), so we have V — 1 fewer momentum integrals. For the example above, (4.22)
says 4 =8 — (5 —1).

Graph theory fact #2: Each external line comes out of one vertex. Each internal
line connects two vertices. Altogether, the number of ends of lines sticking out of
vertices is

Bp +2B; =4V

where the RHS comes from noting that each vertex has four lines coming out of it (in
¢* theory). In the example, this is 4 +2-8 =4 -5. So we can eliminate

B; =2V — Bg/2. (4.23)

331 learned this one from my class-mate M.B. Schulz.
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Now we count powers of momenta:
L A By 1
A~T] / "k, [ ] it
a=1 a=1 "o
Since we are interested in the UV structure, I've set the mass to zero, as well as all the

external momenta. The only scale left in the problem is the cutoff, so the dimensions
of A must be made up by the cutoft:

Di=[A] = DL-2B
(4.22)
=) By(D —2) — D(V —1)
D
"2 py Bp+ V(D —4).

If weset D=3+ 1=4, we get Dy = 4 — Bg as claimed. Notice that with B = 2
we indeed reproduce D4 = 2, the quadratic divergence in the mass renormalization,
and with By = 4 we get D4 = 0, the log divergence in the 2 <— 2 scattering. This
pattern continues: with more than four external legs, D4 = 4 — Bg < 0, which means
the cutoff dependence must go away when A — 0. This is illustrated by the following
diagram with Bp = 6:

So indeed we don’t need more counterterms for higher-point interactions in this theory.

Why is the answer independent of V' in D = 47 This has the dramatic consequence
that once we fix up the cutoff dependence in the one-loop diagrams, the higher orders

have to work out, i.e. it strongly suggests that the theory is renormalizable. **

Before we answer this, let’s explore the pattern a bit more. Suppose we include
also a fermion field v in our field theory, and suppose we couple it to our scalar by a
Yukawa interaction:

Sbare[¢7 Tﬂ == /dDm (%Qﬁ (D + mi’) ¢ + @Z_J (_a + m¢) ¢ + W@W) + %¢4) .

34Why isn’t it a proof of renormalizability? Consider the following integral:

I_ A d4p Ad4k
- (p2 _|_m2)5 !

According to our method of counting, we would say Dz =4+ 4 — 10 = —2 and declare this finite and
cutoff-independent. On the other hand, it certainly does depend on the physics at the cutoff. (I bet
it is possible to come up with more pathological examples.) The rest of the work involving ‘nested
divergences’ and forests is in showing that the extra structure in the problem prevents things like 7
from being Feynman amplitudes.
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To find the degree of divergence in an amplitude in this model, we have to independently
keep track of the number fermion lines Fg, F7, since a fermion propagator has dimension
[%] = —1, so that D4 = [A] = DL — 2B; — F;. The number of ends-of-fermion-lines
is 2V, = 2Fg + F7 and the number of ends-of-boson-lines is V,, + 4V, = Bg + 2B;.
The number of loops is L = By + F; — (V, + V;, — 1). Putting these together (I used
Mathematica) we get

Dy=D+ (D —4) (Vg+%‘/y)+BE (#)JFFE (#) (4.24)

Again in D = 4 the answer is independent of the number of vertices! Is there something
special about four spacetime dimensions?

To temper your enthusiasm, consider adding a four-fermion interaction: G(1)) (1))
(or maybe Gy (Vy"9)(py,¢) or Ga(Yy"y°¢)(y,7°¢) or any other pile of gamma
matrices in between, with the indices contracted). When you redo this calculation on
the homework, you'll find that in D = 4 a diagram (for simplicity, one with no ¢* or
Yukawa interactions) has

Dy=4—-(1)Bg — (g) Frp+2Vg.

This dependence on the number of four-fermi vertices means that there are worse and
worse divergences as we look at higher-order corrections to a given process. Even worse,
it means that for any number of external lines Fz no matter how big, there is a large
enough order in perturbation theory in G where the cutoff will appear! This means we
need 6, (1)) counterterms for every n, which we’ll need to fix with physical input. This
is a bit unappetizing, and such an interaction is called “non-renormalizable”. However,
when we remember that we only need to make predictions to a given precision (so that
we only need to go to a finite order in this process) we will see that such theories are
nevertheless quite useful.

So why were those other examples independent of V7 It’s because the couplings
were dimensionless. Those theories were classically scale invariant (except for the mass
terms).

4.6.3 Naive scale invariance in field theory

[Halpern| Consider a field theory of a scalar field ¢ in D spacetime dimensions, with
an action of the form

ste = [ av (%ama% - g¢P)
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for some constants p,g. Which value of p makes this scale invariant? (That is: when
is g dimensionless, and hence possibly the coupling for a renormalizable interaction.)

Naive dimensions:
[S]=[h] =0, [z]=-1, [de] =-D, [0=1

The kinetic term tells us the engineering dimensions of ¢:

0= [Skinetic] =—-D+2+ 2[¢] - [¢] = T 5 -

Notice that the D = 1 case agrees with our quantum mechanics counting from §4.2.
Quantum field theory in D = 1 spacetime dimensions is quantum mechanics.

Then the self-interaction term has dimensions

0 = [Sinteraction] = _D + [g] +p[¢] — [g] = D _p[¢] = D +p¥

We expect scale invariance when [g] = 0 which happens when

2D

i.e. the scale invariant scalar-field self-interaction in D spacetime dimensions is ¢pP-2.

| D | 12 (8][4 5 [6]..] D Joo
@] —2 10 [3]1]3/2 2.5
scale-inv’t p=pp | —2 | cox | 6 | 4| 10/3 | B | 2

* What is happening in D = 2?7 The field is dimensionless, and so any power of
¢ is naively scale invariant, as are more complicated interactions like g;;(¢)9,¢'0"¢’,
where the coupling g(¢) is a function of ¢. This allows for scale-invariant non-linear
sigma models, where the fields are coordinates on a curved manifold with metric ds? =

gz‘jd¢id¢j :
In dimensions where we get fractional powers, this isn’t so nice.

Notice that the mass term AS = [ dP xm;gzﬁz gives
0=—-D+2[m|+2[¢] = [ml=1VD<x

— it’s a mass, yay.
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What are the consequences of this engineering dimensions calculation in QFT? For
D > 2, an interaction of the form g¢? has

< 0 when p > pp, non-renormalizable or irrelevant
Pp —P
Pp

lg] =D - = 0 when p = pp, renormalizable or marginal (4.25)

> (0 when p < pp, super-renormalizable or relevant.

Consider the ‘non-renormalizable’ case. Suppose we calculate in QFT some quantity f
with [f] as its naive dimension, in perturbation theory in g, e.g. by Feynman diagrams.

We'll get:
f = Z gncn
n=0
with ¢, independent of g. So

[fT=mnlgl+lea] = lea] = [f] = nlg]

So if [g] < 0, ¢, must have more and more powers of some mass (inverse length) as
n increases. What dimensionful quantity makes up the difference?” Sometimes it is
masses or external momenta. But generically, it gets made up by UV divergences (if
everything is infinite, dimensional analysis can fail, nothing is real, I am the walrus).
More usefully, in a meaningful theory with a UV cutoff, Ay, the dimensions get made
up by the UV cutoff, which has [Ayy] = 1. Generically: ¢, = ¢, (AUV)_”[Q], where ¢,
is dimensionless, and n[g] < 0 — it’s higher and higher powers of the cutoff.

Consider the renormalizable (classically scale invariant) case: [c,] = [f], since [g] =
0. But in fact, what you'll get is something like

A
Cn = G log”™ (%) :
IR

where Ajp is an infrared cutoff or a mass or external momentum, [A;g] = 1. Some
classically scale invariant examples (so that m = 0 and the bare propagator is 1/k?)
where you can see that we get logs from loop amplitudes:

o~ (AL o Ly
>"_j\\ e/ —r‘C__}*\‘ L J e MF- .
¢*in D = 4: ¢%in D = 3:
Yy (K@)
¢®in D = 6: 1 In D = 2, even the propagator for a massless
scalar field has logs:

—ikx

(6l2)8(0)) = [ @k ~ log
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The terms involving ‘renormalizable’ in (4.25) are somewhat old-fashioned and come
from a high-energy physics point of view where the short-distance physics is unknown,
and we want to get as far as we can in that direction with our limited knowledge (in
which case the condition ‘renormalizability’ lets us get away with this indefinitely —
it lets us imagine we know everything). The latter terms are natural in the opposite
situation (like condensed matter physics) where we know some basically correct micro-
scopic description but want to know what happens at low energies. Then an operator
like ﬁqb% whose coefficient is suppressed by some large mass scale M is irrelevant
for physics at energies far below that scale. Inversely, an operator like m?¢? gives a
mass to the ¢ particles, and matters very much (is relevant) at energies £ < m. In the

marginal case, the quantum corrections have a chance to make a big difference.

4.7 Vertex correction in QED
[Peskin chapter 6, Schwartz chapter 17, Zee chapter I11.6] Back to work on QED. The

vertex correction X&:éﬂ has some great physics payoffs:

e We'll cancel the cutoff dependence we found in the S matrix from 07.

e We'll compute g — 2 (the anomalous magnetic moment) of the electron, the locus
of some of the most precise agreement between theory and experiment. (Actually
the agreement is so good that it’s used as the definition of the fine structure
constant. But a similar calculation gives the leading anomalous magnetic moment
of the muon.)

e We'll see that the exclusive differential cross section (g—g)em_eu

considering is not really an observable. Actually it is infinity!*® The key word

that we’ve been

here is ‘exclusive,” which means that we demand that the final state is exactly one
electron and one muon and absolutely nothing else. Think for a moment about
how you might do that measurement.

This is an example of an IR divergence. While UV divergences mean you're
overstepping your bounds (by taking too seriously your Lagrangian parameters
or your knowledge of short distances), IR divergences mean you are asking the
wrong question.

35More accurately, the exclusive cross section is zero; the one-loop correction is minus infinity, which
is perturbation theory’s clumsy attempt to correct the finite tree level answer to make it zero.
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To get started, consider the following class of diagrams.

o s e Gy

— + + +

1 ;
=iM = ie? (u(p )P (p, p)ulp)) — (K" )y, u(K) (4.26)
q
The shaded blob is the wvertex function I'. The role of the light blue factors is just
to make and propagate the photon which hits our electron; let’s forget about them.
Denote the photon momentum by ¢ = p’ — p. We’ll assume that the electron momenta

p,p’ are on-shell, but ¢* is not, as in the ey scattering process. Then ¢* = 2m? —2p’ - p.

Before calculating the leading correction to the vertex I'* = * + O(e?), let’s think
about what the answer can be. It is a vector made from p, p’, ¥* and m, e and numbers.
It can’t have any 7° or €% by parity symmetry of QED. So on general grounds we
can organize it as

TH(p,p') = Ay +Blp+p ) +Cp—p)* (4.27)

where A, B, C' are Lorentz-invariant functions of p* = (p')> = m?, p-p/, p, ). But, for
example, py*u(p) = (my* — p")u(p) which just mixes up the terms; really A, B, C are
just functions of the momentum transfer ¢2. Gauge invariance, in the form of the Ward
identity, says that contracting the photon line with the photon momentum should give
Zero:

Ward

_ (4.27) _
0 "=" g.u(pIMu(p) =

a(p) [ A d +B(p+p) - (p— ) +Cq* | u(p)
a(p')...u(p) :mQ:er:O
=y —p = m—m=0

Therefore 0 = Cq?u(p’)u(p) for general ¢* and general spinors, so C' = 0. This is the
moment for the Gordon identity to shine:

w TR P17
1@ #utr) = ) (2 8 Y )

(where o = i[y#,4"]) can be used to eliminate the p+p’ term®. The Gordon identity

36 Actually this is why we didn’t include a o*” term. You could ask: what about a term like
o (p+p’)¥? Well, there’s another Gordon identity that relates that to things we’ve already included:

U0y (p1 + p2) ur = itz (g — (M1 — ma2)yu) Us.

It is proved the same way: just use the Dirac equation plul = mlul,ﬂgp2 = u9ms and the Clifford
algebra. We are interested here in the case where m; = mso.
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shows that the QED interaction vertex u(p’)y*u(p)A, contains a magnetic moment bit
in addition to the p + p’ term (which is there for a charged scalar field).

It is then convenient (and conventional) to parametrize the vertex in terms of the
two form factors F} o:

ichq,

T(p,p) =y Fi(¢*) + Fy(q?). (4.28)
This little monstrosity has the complete information about the coupling of the electron
to the electromagnetic field, such as for example a background electromagnetic field.
It is a parametrization of the matrix elements of the current between two one-electron
states, incorporating the fact of gauge invariance.

The first term at zero momentum eF;(¢?> = 0) is the electric charge of the electron
(if you don’t believe it, use the vertex (4.28) to calculate the Coulomb field of the
electron; there are some details on page 186 of Peskin). Since the tree-level bit of
Fy is 1, if by the letter e here we mean the actual charge, then we’d better include
counterterms (Lo 3 ¥5.7* A1) to make sure it isn’t corrected: F;(0) = 1.

The magnetic moment of the electron is the coefficient i of V(q) = —fi - B(q) +
.. in the non-relativistic effective potential. Comparing the non-relativistic limit of
u(pThu(p)Ailq) = —fi - E(q) + ..., (similarly to the homework problem with the ~°
interaction) shows that (see Peskin p. 187)

where § = 5*%5 is the electron spin. Comparing with the vertex function, this says
that the g factor is

g = 2(F1(0) + F5(0)) = 24 2F5(0) = 2 + O(w).

We see that the anomalous magnetic moment of the electron is 2F5(¢? = 0).

Now that we have some expectation about the form of the answer, and some ideas
about what it’s for, we sketch the evaluation of the one-loop QED vertex correction:

with ¥ =k + q.
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(1) Feynman parameters again. The one we showed before can be rewritten more

symmetrically as:
de | dy o ! ]
AB / QZ/ yo(r+y— )(:L'A—i—yB) l +y=1
- —* X

Now how can you resist the generalization®:

1
1 1 1 1 9 %‘?ﬂaj
— = d d dz o —1 S

el
X

So, set A= (k')> —=m2,B=k*—m?2,C = (p— k)> —m? (with the appropriate ies), so
that the integral we have to do is

d'kN"
/(k2+k.(...)+...)3'

(2) Complete the square, ¢ = k — zp + zq to get f ‘WN AP where

A= —zy¢® + (1 — 2)’m? + z2m?.

The ¢-dependence in the numerator is either 1 or ¢# or /*¢¥. In the integral over ¢, the
second averages to zero, and the third averages to 7]"”62%. As a result, the momentum

37Peskin outlines a proof by induction of the whole family of such identities on page 190. But here’s
a simpler proof using Schwinger parameters. You’ll agree that

1 oo
1 :/O ds e*4, (4.29)

Applying this identity to each factor gives

e — dsq - - - d -2 SiAi.
A Ay A, /0 o /0 o

Now use scaling to set 7= >, s,, and z; = s;/7. Then

1 > o -
I dTTnfl / dxlé T — 1 e T > IiAi.
o= [ T o ()

Now do the integral over 7, using [, dr7"le™ ™ = (”Tl (differentiate (4.29) wrt A), to arrive at

(n—1)!
A1A2 H/ a0 (Zzz ) cTi A"
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integrals we need are just

/ ale nd/ ale 2
@—a" " ) =A™

Right now we only need D = 4 and m = 3, but it turns out to be quite useful to think
about them all at once. Like in our discussion of the electron self-energy diagram, we
can evaluate them by Wick rotating (which changes the denominator to ¢4 + A) and
going to polar coordinates. This gives:

[ = o e (5) )

e D i T(m-Z2-1)/1\" "
[aap = S (&) 6

Notice that these integrals are not equal to infinity when the parameter D is not an

integer. This is the idea behind dimensional reqularization.

(0) But for now let’s persist in using the Pauli Villars regulator. (I call this step
(0) instead of (3) because it should have been there all along.) Here this means we
subtract from the amplitude the same quantity with m., replaced by A?. The dangerous
bit comes from the ¢* term we just mentioned, since m — D/2 —1=3-4/2—-1=0
means logs.

The numerator is

N“ZU( )" (k+g+me)7“(%+me)% (p)
=2 (Au(p")y"u(p) + Bu(p')o" qu(p) + Ca(p')q"u(p)) (4.32)

where

A= —%EQ +(1—2)(1—y)g® + (1 -4z +2Hm?

B =imz(1—z)

C=m(z—-2)(y—x). (4.33)
The blood of many men was spilled to arrive at these simple expressions (actually
most of the algebra is done explicitly on page 319 of Schwartz). Now you say: but you
promised there would be no term like C because of the Ward identity. Indeed I did and

indeed there isn’t because C is odd in x <+ y while everything else is even, so this term
integrates to zero. [End of Lecture 12]

The first term (with \A) is a correction to the charge of the electron and will be UV
divergent. More explicitly, we get, using Pauli-Villars,

& (2 i Ap
/d% ((62 —A)R (2 AA)3> = A,
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The other bits are finite, and we ignore the terms that go like negative powers of A.
More on this cutoff dependence soon. But first something wonderful:

4.7.1 Anomalous magnetic moment

The second term B contains the anomalous magnetic moment:

_2m

Fy(q*) = — - (the term with B)
e
2m date
= T—4¢® (im /dacd dzd(x+y+2—1)z(1 -z /—
W
( ) =374
a 2(1 -2
=— drdydzd -1 : 4.34
7Tm/ xdydzé(x +y + =z )(1—2)2m2—myq2 ( )
The correction to the magnetic moment is the long-wavelength bit of this:
Fo(g? =0) == 2/1d /1Zd © a
= = —m VA - = = —.
2\ T 0 0 Y (1—2)m? 2«
«
g=2+—+0(a?).
T
A rare opportunity for me to plug in numbers: g = 2.00232.
4.7.2 IR divergences mean wrong questions.
There is a term in the numerator from the A~* bit
/ a‘ 1
_— = C—
(2 —A)3 A
(with ¢ = —g5 again), but without the factor of z(1 — z) we had in the magnetic

moment calculation. It looks like we’ve gotten away without having to introduce a UV
regulator here, too (so far). But now look at what happens when we try to do the
Feynman parameter integrals. For example, at ¢*> = 0, we get (if we had set m., = 0)

21_4 2 1 1—2z -9 2(1 — 1 — 2
/dxdydzé(x+y+z—1)m( Z+Z):m2/ dz/ dy + E j)"’( z)
0 _
2

A 1 —2)?m?

1 R
= / dz(l — + finite, (4.35)

which diverges at the upper limit of integration. In fact it’s divergent even when ¢* # 0.
This is a place where we actually need to include the photon mass, m., for our own
safety.
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The (IR singular bit of the) vertex (to O(a)) is of the form
2
T — (1 - 23 Frr(d®) In <—q2)> + stuff which is finite as m, — 0. (4.36)
T My

Notice that the IR divergent stuff depends on the electron momenta p, p’ only through
¢, the momentum of the photon. So it looks like we are led to conclude

do do o 9 —q? 9
(m) pes—pe B (m) Mott <1 - ;fIR(q )ln (m_;)> " © <a )

which blows up when we remove the fake photon mass m., — 0. Notice that for ¢-
channel exchange, —¢? > 0, so the argument of the log is positive, the cross-section is
real. But notice that the one-loop correction is not only infinite, but negative infinity,
which simply cannot happen from the definition of the cross section. This is perturba-
tion theory’s way of telling us that the answer is 1 —a:- 0o+ O(a?) ~ 0 — the putatively
small corrections from radiative effects are actually trying to make the answer zero.

[Schwartz §20.1] I wanted to just quote the above result for (4.36) but I lost my
nerve, so here is a bit more detail leading to it. The IR dangerous bit comes from the
second term in 4 above. That is,

Fi(¢®) =1+ f(¢*) + 61 + O(a?)

2l 2 2 2 2
9 e 2N (1 —2z)(1—y)+mi(l — 4z + 2°)
() 5 /0 drdydzé(z+y+2z—1) <n + :

01 here is a counterterm for the U* A,V vertex.

We can be more explicit if we consider —¢® > m? so that we can ignore the electron
mass everywhere. Then we would choose the counterterm é; so that

2 2

me/q—0 e 1 A
1=F(0) = 6 =— (A P iy
1(0) 51 f(()) 8729 n m’gy

And the form of f(¢?) is

g (1—z—y)A? ¢*(1 —z)(1 - y)

F(@)me=0 = e—/dmdydz&(x +y+2—1)|In

87> - A @+ (l-z—ym
) ) ) IR finite
€ —q —q .
F1(C]2) me=0 = 1 — 6.2 (ln2 peoy +31n W) + finite.
Y il

In doing the integrals, we had to remember the ie in the propagators, which can be
reproduced by the replacement ¢> — ¢®+ie. This In*(¢?/m.,) is called a Sudakov double
logarithm. Notice that taking differences of these at different ¢® will not make it finite.
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Diversity and inclusion to the rescue. Before you throw up your hands in de-
spair, I would like to bring to your attention another consequence of the masslessness of
the photon: It means real (as opposed to virtual) photons can be made with arbitrarily
low energy. But a detector has a minimum triggering energy: the detector works by
particles doing some physical something to stuff in the detector, and it has a finite en-
ergy resolution — it takes a finite amount of energy for those particles to do stuff. This

means that a process with exactly one e and one p in the final state :I; cannot

be distinguished from a process ending in ep plus a photon of arbitrarily small energy,

such as would result from j{\ (final-state radiation) or i (initial-state

radiation). This ambiguity is present for any process with external charged particles.

Being more inclusive, then, we cannot distinguish amplitudes of the form

u(p ) Mo(p',p)u(p) = —i :
F R

from more inclusive amplitudes like

= WP gz Mo p)ulp) € (k) + a(p ) Mo (', p) s 7" ul(p) €, (k) -

Now, by assumption the photon is real (k?=0) and it is soft, in the sense that k* < E..,
the detector cutoff. So we can approximate the numerator of the second term as

Clifford (qu SEVE (_ﬁ + me))u(p) = quu(p).

=0

(p — Kk +me) v*u(p) ~ (p + me) 7" u(p)

In the denominator we have e.g. (p — k)*> —m? =p?> —m2 —2p -k + k* ~ —2p - k since
the electron is on shell and k& < p. Therefore

I % L ox

— / p € p-€
f = — 4.
M (ep + one soft v « ep) = eu(p") Mo (p', p)u(p) (p’ i ie) (4.37)
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This is bremsstrahlung. Before we continue this calculation to find the inclusive
amplitude which a real detector actually measures, let’s pause to relate the previous
expression to some physics we know. Where have we seen this kind of expression

p* " -
i L ()
p-k+ie p-k—ie e

before? Notice that the ie are different because one comes from final state and one
from initial. Well, this object is the Fourier transform j*(k) = [ d*x et j#(z) of the
current

du*
@) =e [ ar5 e - y(r)
dr
associated with a particle which executes a piecewise linear motion °

p—”T, T<0
y(r) = {”7 .

n
Lz 7>0
m

38

This is a good approximation to the motion a free particle which experiences a sudden
acceleration; sudden means that the duration of the pulse is short compared to w™!
for any frequency we're going to measure. The electromagnetic radiation that such

an accelerating charge produces is given classically by Maxwell’s equation: A“(k) =
— 5" (k).

I claim further that the factor fiz(¢°) = 2In (;—f) (which entered our lives in
(4.36)) arises classically as the number of soft photons produced by such a process in
each decade of wavenumber. You can figure this out by plugging fl“(k:) = —k—lzjf‘(k)
into the electromagnetic energy 1 [ d®z (E? + B?) = [d’khwyny. (Note that the in-

tegral over k here actually diverges; this is an artifact of the approximation that the
momentum change is instantaneous.) See Peskin §6.1 for help.

(d0_>E'y<Ec <d0’> ) /Ec dgk‘ 2p . €* 2p/ e 2 Bl /dgk
- — (= e _ = &k _
df} HeYsoft —pe A€ ] \jogs o 2B |2p-k 2p - k o k3

~ phase space

This is another IR divergence. (One divergence is bad news, but two is an opportunity
for hope.) Just like we must stick to our UV regulators like religious zealots, we must

38Check it:

. dyt (1) P (R ), 0 Bk -
/d4;vj”(w)e+‘k”” = e/dTiy () k(™) = e/ drb () +e/ dr (=1 — Gy,
dr 0 m m

— 00

Notice that the ie are convergence factors in the Fourier transforms.
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cleave tightly to the consistency of our IR regulators: we need to put back the photon

Ek = \/Ez—{—mﬂ

which means that the lower limit of the £ integral gets cut off at m.,:

/'Ec%_ (/m7+/'Ec> dk myﬁ—i_/vEC%
o B\ ) Ermr Lo omy )k

=1

mass:

Ec
mey

In

Being careful about the factors, the actual cross section measured by a detector with
energy resolution E, is*’

do ) observed ( do ) < do ) Ey<Ec
- =5 + =0 +0(a?)
( dQ Eps—pe dQ HeYsoft < HeE
2

do o —q a E?
— haadl 1__ 2 1 4 bt 2 l c
(dQ)Mott 7Tfm(q )In (m’yg) + 7Tfm(q ) In (m’yg)

Vv Vv
vertex correction soft photons

< ()., (5o ()

The thing we can actually measure is independent of the IR regulator photon mass m.,

S8

and finite when we remove it. On the other hand, it depends on the detector resolution.
Like in the plot of some kind of Disney movie, an apparently minor character whom
you may have been tempted to regard as an ugly detail has saved the day.

I didn’t show explicitly that the coefficient of the log is the same function frr(q?).
In fact this function is frr(¢?) = %log(—q2/m2), so the product firlng? ~ In?¢? is
the Sudakov double logarithm. A benefit of the calculation which shows that the same
frr appears in both places (Peskin chapter 6.5) is that it also shows that this pattern
persists at higher order in a: there is a 1n2(q2 /m,?) dependence in the two-loop vertex
correction, and a matching —In*(E?/m,?) term in the amplitude to emit two soft
photons. There is a % from Bose statistics of these photons. The result exponentiates,

and we get
e 2 fin(=¢*/m~?) =2 f(EZ/my?) _ =2 fIn(—¢?/E2)

39Notice that we add the cross-sections, not the amplitudes, for these processes with different final
states. Here’s why: even though we don’t measure the existence of the photon, something does: it
gets absorbed by some part of the apparatus or the rest of the world and therefore becomes entangled
some of its degrees of freedom; when we fail to distinguish between those states, we trace over them,
and this erases the interference terms we would get if we summed the amplitudes.
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You may be bothered that I've made all this discussion about the corrections from
the electron line, but said nothing about the muon line. But the theory should make
sense even if the electron and muon charges )., Q),, were different, so the calculation
should make sense term-by-term in an expansion in @),,.

Some relevant names for future reference: The name for the guarantee that this
always works in QED is the Bloch-Nordsieck theorem. Closely-related but more serious
issues arise in QCD, the theory of quarks and gluons; this is the beginning of the story
of jets (a jet is some IR-cutoff dependent notion of a QCD-charged particle plus the
cloud of stuff it carries with it) and parton distribution functions.

Sketch of exponentiation of soft photons. [Peskin §6.5] Consider a diagram
with n soft external photons, summed over ways of distributing them on an initial and
final electron line:

n

n "o Mo
> = a(p)iMou(p)e” [ | (p],?. - pé - )

ny=1 a=1

A,

Here the difference in each factor is just as in (4.37), one term from initial and one from
final-state emission; expanding the product gives the sum over ny = 1 —n,, the number
coming from the final-state line. From this expression, we can make a diagram with a
soft-photon loop by picking an initial line o and a final line g setting b, = —kg = k
and tying them together with a propagator and summing over k:

¢? —inee (P » \'( » p Y\’
= Ay o— [ dh—L2 — -
A 22/ 2 \p-k p-k — -k —p-k

The factor of % accounts for the symmetry under exchange of o <+ 5. For the case of

n = 2, this is the whole story, and this is

07’ R

r soft part

(where here ‘soft part’ means the part which is singular in m.,) from which we conclude

that
9

frr(¢*) In (m—%) + finite.

~

«Q
2T

X —
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Taking the most [R-divergent bit with m virtual soft photons (order ™) for each m

= 1
Mvirua soft — - — X"
el st m;) r«;r\% 2 X

f —_——
—_———
iMg eX

gives

where the 1/m! is a symmetry factor from interchanging the virtual soft photons.

Notice that this verifies my claim that the —oo in the one—loop answer is perturbation
0
theory’s way of trying to make the cross-section zero: since x " —00, AT exclusive X

m~—0
e2X L.

Now consider the case of one real external soft (E € [m.,, E.]) photon in the final
state. The cross section is

doyy, = /dH Z e M, M,

pols

——
:—nl»“J
/ I ! v
2 P PP
]du YMOU |/ 77,ul/ <p’-k: p/{:) (—p’-k —p~k>
= a0y

Y = —fIR( ?) In (g%) :

(The integral is done in Peskin, page 201.) Therefore, the exclusive cross section,
including contributions of soft real photons gives

i doy, = doy Z %Y" = dogeY.
n=0 n ’

Here the n! is because the final state contains n identical bosons.

Putting the two effects together gives the promised cancellation of m., dependence
to all orders in a:

do = doge*®e¥

« - « E2
= dO’O exXp (—;fm((f) IHW + ;f[R( )111 W)
v

2
o )
= dogexp <—Efm(q2) In E—qQ)

C

This might seem pretty fancy, but unpacking the sum we did, the basic statement
is that the probability of finding n photons with energy in a given (low-energy) range
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[E_7 E+] 1S

1 o E
P[E_,E+] = m)\nG_A, A= ;f]R(QQ) IHE—J: = <7’L> = <n2> — <n>2

a Poisson distribution. This is just what one finds in a coherent state of the radiation
field.

[End of Lecture 13]

4.7.3 Some magic from gauge invariance of QED

We found that the self-energy of the electron gave a wavefunction renormalization
factor

Y A?
g—p|¢:m0 +0(e") =1~ 12 4 finite + O(a?).

4t m?
We care about this because there is a factor of Z5 in the LSZ formula for an S-matrix
element with two external electrons. On the other hand, we found a cutoff-dependent
correction to the vertex ey*F}(q*) of the form

Zy=1+

Fi( 2)—1+glnA—2+ﬁnite~l—(’)(cy2)
= At m? '

Combining these together

Sucen = (VE@) (L4 (T E) +) )

- a, A 21 " A? ic"q,
—(1 —lnﬁ—f----)eu(p)(y (1+4W1nﬁ+~-~ +a o u(p)

the UV divergence from the vertex cancels the one in the self-energy. Why did this have
to happen? During our discussion of the IR divergences, I mentioned a counterterm o,
for the vertex. But how many counterterms do we get here? Is there a point of view
which makes this cancellation obvious? Notice that the --- multiplying the +* term
still contain the vacuum polarization diagram, which is our next subject, and which
may be (is) cutoff dependent. Read on.

4.8 Vacuum polarization

[Zee, II1.7] We've been writing the QED lagrangian as
_ 1. .
L=1 ((?9 +iek — m) b= 3 Fu .
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I've put tildes on the photon field because of what’s about to happen: Suppose we
rescale the definition of the photon field eA, = A,,eF),,, = F,,. Then the coupling e
moves to the photon kinetic term:

_ . 1 ,
Ezw(a—Fle—m)w—@FuyF“ .
With this normalization, instead of measuring the coupling between electrons and
photons, the coupling constant e measures the difficulty a photon has propagating
through space:
: 2
—in,e
(A A,) ~ —g
q
None of the physics is different, since each internal photon line still has two ends on a

W AY vertex.

But from this point of view it is clear that the magic of the previous subsection is
a consequence of gauge invariance, here’s why: the demand of gauge invariance relates
the coefficients of the @y and ¥ A terms®. Therefore, any counterterm we need for
the 1@y term (which comes from the electron self-energy correction and is traditionally
called §7,) must be the same as the counterterm for the 1) Ay term (which comes from
the vertex correction and is called 67;). No magic, just gauge invariance.

A further virtue of this reshuffling of the factors of e (emphasized by Zee on page
205) arises when we couple more than one species of charged particle to the electromag-
netic field, e.g. electrons and muons or, more numerously, protons: once we recognize
that charge renormalization is a property of the photon itself, it makes clear that quan-
tum corrections cannot mess with the ratio of the charges. A deviation from —1 of
the ratio of the charges of electron and proton as a result of interactions might seem
plausible given what a mess the proton is, and would be a big deal for atoms. Gauge
invariance forbids it.

Just as we defined the electron self-energy (amputated 2-point function) as =
—iX(p) (with two spinor indices implied), we define the photon self-energy as

L, (7) =~ B~ = D+ O(eY)

(the diagrams on the RHS are amputated). It is a function of ¢ by Lorentz symmetry.

(The reason for the difference in sign is that the electron propagator is +—7‘n while the

]ﬁ_

40Notice that the gauge transformation of the rescaled A, is A, — A, +9,\(z),¥(z) — i@y ()
so that D,y = (0 + ¢id) , ¥ — el Db where g is the charge of the field (¢ = —1 for the electron).
This is to be contrasted with the transformation of A, — A, — 9, \(x)/e.
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. =i .
photon propagator is q"g’“’ .) We can parametrize the answer as

1" (q*) = A(¢*)n" + B(¢*)q"q"-
The Ward identity says
0=¢ql"(¢®) = 0=A¢"+B¢¢" = B=-A/¢

Let A = II¢? so that

pwy o2\ 2\ 2 N q,u,qy
"*(q”) =1l(g")q" ( n —2 )

—AB
This object A4 is a projector
Al AL = AL, (4.38)
onto modes transverse to ¢*. Recall that we can take the bare propagator to be
—iA7p
7

AN\ —

without changing any gauge-invariant physics. This is useful because then

13 —iA —iA —iA A
S0 (vimpan (S50 ) ingar (Tt ) inear (50 4 )
q q q q

A2 =Ar —IAT —IAT
= 1+ I[IA+ + II2A ) = , 4.
g UrHAr+IPAr ) = —5= 1 M(¢*) (439

2
Does the photon get a mass? If the thing I called A above ¢*II(¢?) 730 Ay # 0
~ 2
(that is, if TI(¢?) ~ % or worse), then G 70 &;AO does not have a pole at ¢ = 0.
If TI(¢%) is regular at ¢*> = 0, then the photon remains massless. In order to get

such a singularity in the photon self energy IT(¢?) ~ % we need a process like 611 ~

AN A~  where the intermediate state is a massless boson with propagator

~ %. As I will explain below, this is the Anderson-Higgs mechanism (not the easiest
way to understand it).

The Ward identity played an important role here. Why does it work for the vacuum
polarization?

quﬂg”(qQ) = ¢~~~ X e? /d4ptr
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But here is an identity:
1 1 1
pra-mip—m p-m prg-m

Now, if we shift the integration variable p — p 4+ ¢ in the second term, the two terms
cancel.

(4.40)

Why do I say ‘if’? If the integral depends on the UV limit, this shift is not innocu-
ous. So we have to address the cutoff dependence.

In addition to the (lack of) mass renormalization, we’ve figured out that the elec-
tromagnetic field strength renormalization is

= Ty~ L0+ O(eh).

We need Z, for example for the S-matrix for processes with external photons, like
Compton scattering.
Claim: If we do it right*!, the cutoff dependence looks like**:
2 Qo 2 2 2
Ih(¢°) = — | —=InA” +2D(q")
47 3 ——

finite
where A is the UV scale of ignorance. The photon propagator gets corrected to

GgAT — ZgG%AT
¢ q?

9

and Z3 = #(0) blows up logarithmically if we try to remove the cutoff. You see

that the fine structure constant ag = é has acquired the subscript of deprecation: we
can make the photon propagator sensible while removing the cutoff if we are willing to
recognize that the letter ey we’ve been carrying around is a fiction, and write everything

41'What I mean here is: if we do it in a way which respects the gauge invariance and hence the
Ward identity. The simple PV regulator we’ve been using does not quite do that. However, an only
slightly more involved implementation, explained in Zee page 202-204, does. Alternatively, we could

use dimensional regularization everywhere.

42The factor in front of the In A can be made to look like it does in other textbooks using o = e

47
so that )
0 <2lnA2> - % InA

A7 \ 3 T 1272 '
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. 2 .
in terms of e = \/Z3eg where -~ = % is the measured fine structure constant (at low

energy). To this order, then, we write

2 1 ——1 A? 2. 4.41
ey = ( +47r3 )4—0(04) ( )

mo =m+ O(ag) = m+ O(a). (4.42)

Since the difference between ap and « is higher order (in either), our book-keeping is
unchanged. Inverting the relationship perturbatively, the renormalized charge is

2 _ 2
1— ——1 A+ O
‘ ( 47 3 +0la >)

—in QED, the quantum fluctuations reduce the charge, as you might expect from the

interpretation of this phenomenon as dielectric screening by virtual ete™ pairs.
In the example case of ep < ep scattering, the full one-loop UV cutoff dependence
then looks like

Sepen = \/ 22 (1 —MOmAz g %A(mo)) e

Am

Loa(y) {’y (1 + M+ 20 (B4 D)+ (—glnAQ)) "2“;%2—0(61 mo) | u(p)
= 2L, a(y) {w (1 + %(A Y B+ D)) + 2mq” o 0} u(p) + O(a?) (4.43)

where L, is the stuff from the muon line, and A, B, C, D are finite functions of m, ¢*.
In the second step, two things happened: (1) we cancelled the UV divergences from
the Z-factor and from the vertex correction: this had to happen because there was no
possible counterterm. (2) we used (4.41) and (4.42) to write everything in terms of the
measured e, m. This removes the remaining cutoff dependence.

2

Claim: this works for all processes to order a”. For example, Bhabha scattering

gets a contribution of the form

1 2

0(601——1—_[(0)6026 .

In order to say what is A4+ B+ D we need to specify more carefully a renormalization
scheme (other combinations of A, B, D can be changed by gauge transformations and
field redefinitions). To do that, I need to give a bit more detail about the integral.

120



4.8.1 Under the hood

The vacuum-polarization contribution of a fermion of mass m and charge e at one loop

‘NOM /(i—DktI‘<1€’}/> (k—l—m)(leryy)l(g—i_%—i_m))

18

L2 (q+ k)2 —m?

The minus sign out front is from the fermion loop. Some boiling, which you can find
in Peskin (page 247) or Zee (§II1.7), reduces this to something manageable. The steps
involved are: (1) a trick to combine the denominators, like the Feynman trick 45 =

2
fol dz (Mﬁ) . (2) some Dirac algebra, to turn the numerator into a polynomial
in k,q. As Zee says, our job in this course is not to train to be professional integrators.
The result of this boiling can be written

il (¢ / daPe / dx——

with £ = k + xq is a new integration variable, A = m? — z(1 — :C)q2, and the numerator
is

NW = 204" — " * — 22(1 — x)g"q” + 0" (m* + (1 — 2)¢*) + terms linear in ¢

At this point I can illustrate explicitly why we can’t use the euclidean momentum

cutoff in gauge theory. With a euclidean momentum cutoff, the diagram NQM gives
something of the form

A 2 v

{5.nt
IH/QUJ x 62/ d4€Eﬁ + ... €2A27]MV
% —

This is NOT of the form IT" = AZ'TI(p?); rather it produces a correction to the photon
mass proportional to the cutoff. What happened? Our cutoff was not gauge invariant.
Oops.*?

Fancier PV regularization. [Zee page 202] We can fix the problem by adding
also heavy Pauli-Villars electron ghosts. Suppose we add a bunch of them with masses

43Two points: How could we have predicted that the cutoff on euclidean momentum ¢2, < A? would
break gauge invariance? Its violation of the Ward identity here is a proof, but involved some work.
The idea is that the momentum of a charged field shifts under a gauge transformation. Second: it
is possible to construct a gauge invariant regulator with an explicit UV cutoff, using a lattice. The
price, however, is that the gauge field enters only via the link variables U(x, é) = e 5T A where 7 is a
site in the lattice and ¢ is the direction to a neighboring site in the lattice. For more, look up ‘lattice
gauge theory’ in Zee’s index. More on this later.
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m, and couplings ,/c.e to the photon. Then the vacuum polarization is that of the
electron itself plus

—za:ca / dPktr ((iew“)m(iey”) g_im ) N / oy (Z];ca . Zakcjmi .

a

So, if we take Y ¢, = —1 we cancel the A? term, and if we take Y, c,m?2 = —m?, we

also cancel the In A term. This requires at least two PV electron fields, but so what?
Once we do this, the momentum integral converges, and the Ward identity applies, so
the answer will be of the promised form T1"” = ¢*ITAL”. After some more boiling, the

answer 1s . e
My(¢?) = — | daa(l—2)1
20) 272 / (1l =)l m? —z(l —x)¢?
where In M? = — %" ¢, Inm?2. This M plays the role of the UV scale of ignorance
thenceforth.

Notice that this is perfectly consistent with our other two one-loop PV calculations:
in those, the extra PV electrons never get a chance to run. At higher loops, we would
have to make sure to be consistent.

Dimensional regularization. A regulator which is more automatically gauge
invariant is dimensional regularization (dim reg). I have already been writing many of
the integrals in D dimensions. One small difference when we are considering this as a
regulator for an integral of fixed dimension is that we don’t want to violate dimensional
analysis, so we should really replace

4—e
/d4€—>/d_€
i €

where D = 4 — € and ji is an arbitrary mass scale which will appear in the regulated

answers, which we put here to preserve dim’l analysis — 7.e. the couplings in dim
reg will have the same engineering dimensions they had in the unregulated theory
(dimensionless couplings remain dimensionless). g will parametrize our RG, i.e. play
the role of the RG scale. (It is often called p at this step and then suddenly replaced
by something also called p; I will instead call this i and relate it to the thing that ends
up being called p.)

[Zinn-Justin 4th ed page 233] Dimensionally regularized integrals can be defined
systematically with a few axioms indicating how the D-dimensional integrals behave
under

1. translations chDpf(p +q) = depf(p) "

44Note that this rule fails for the euclidean momentum cutoff. Also note that this is the property
we needed to demonstrate the Ward identity for the vertex correction using (4.40).
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2. scaling [d”pf(sp) = |s|™P f(IDpf(p)
3. factorization dep chqu f(TDpf deqg

The (obvious?) third axiom implies the following formula for the sphere volume as a
continuous function of D:

D/2 y o0 1 D
(E> = /dee_‘”C2 = QD—1/ 2P ldpe " = —q" =T (—) Qp_y . (4.44)
a 0 2 2

This defines (2p_; for general D.

In dim reg, the one-loop vacuum polarization correction does satisfy the gauge-
invariance Ward identity II"* = A% ¢*T15(¢?). A peek at the tables of dim reg integrals
shows that I, is:

eskin p. 82 1 F2—D2
T, (¢?) o 22 _L/ dra(l — x)————~t—2 ( /2) ;e
0

(47)D/2 A2-D/2 i
2" 1
D=4 —% dxx(1 — x) <— — log < )) (4.45)
™ Jo

where we have introduced the heralded pu:
u? = drpleE

where vg is the Euler-Mascheroni constant, which appears in the Taylor expansion
of the Euler gamma function; we define p in this way so that, like Rosencrantz and
Guildenstern in Hamlet, v both appears and disappears from the discussion in this
one scene.

In the second line of (9.9), we expanded the I'-function about D = 4. Notice that
what was a log divergence, becomes a % pole in dim reg. There are other singularities
of this function at other integer dimensions. It is an interesting question to ponder why
the integrals have such nice behavior as a function of D. That is: they only have simple
poles. A partial answer is that in order to have worse (e.g. essential) singularities at
some D, the perturbative field theory would have to somehow fail to make sense at
larger D.

Now we are in a position to choose a renormalization condition (also known as a
renormalization scheme), which will specify how much of the finite bit of I gets sub-
tracted by the counterterm. One possibility is to demand that the photon propagator
is not corrected at ¢ = 0, 7.e. demand Z, = 1. Then the resulting one-loop shift is

3TLs(q?) = Tla(g?) — Ty(0) = < /01 drz(1 — ) log (m2 U ‘”)‘f) .

272 m2
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We'll use this choice below.

Another popular choice, about which more later, is called the MS scheme, in which
IT is defined by the rule that we subtract the 1/€ pole. This means that the counterterm

is
R 2 D) 1
59248) = —6——/ drx(l —x).
0

=1/6

(Confession: 1 don’t know how to state this in terms of a simple renormalization
condition on II,. Also: the bar in MS refers to the (not so important) distinction
between i and p.) The resulting vacuum polarization function is

R 2 1 2 1— CE)(]Q
SIS (42 :e—/ dea(l — o) log [T .
2 (€)= 55 i zz(1 — z)log "

[End of Lecture 14]

4.8.2 Physics from vacuum polarization

One class of physical effects of vacuum polarization arise from attaching the corrected
photon propagator to a static delta-function charge source. The resulting effective
Coulomb potential is the fourier transform of

V(g) = qll _%W) = eegg”. (4.46)

This has consequences in both IR and UV.

In the TR (¢*> < m?), it affects the spectra of atoms. The leading correction is

 60m2m2

5T, (q) = ;—;/dxx(l—x) In <1 - 31—22:0(1 - x))) & 26—;2 /dmu_x) (_:1_22%(1 B I))) ¢

which means

and hence
Vi(r)=

é(r)+---=V+AV.

C4mr? 607m2m2
This shifts the energy levels of hydrogen s-orbitals (the ones with support at the origin)
by AE; = (s|AV/|s) which contributes to lowering the 25 state relative to the 2P state
(the Lamb shift).
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This delta function is actually a long-wavelength approximation to what is called the
Uehling potential; its actual range is 1/m., which is the scale on which Il varies . The

delta function approximation is a good idea for atomic physics, since ni L ayg = #,
the Bohr radius. See Schwartz p. 311 for a bit more on this.

In the UV limit (¢ > m?), we can approximate In (1 — 7‘fl—i:z(l — :E)) ~

In <_5L_22x(1 - f)) ~ In (-;%) to get®

) 62 1 q2 62 ! q2 62
HQ(q ) = ﬁ/o dxm(l—l’) In (1 — ﬁx(l — $)) = ﬁ/o dx:v(l—:c) In (_@) = 19272 In

Therefore, the effective charge in (4.46) at high momentum exchange is

g>>m? e?
~o

eeﬁ<q2) — 9 2\
1 £ ln( q>

T 1272 T m?

(4.47)

(Remember that ¢ < 0 for t-channel exchange, as in the static potential, so the
argument of the log is positive and this is real.)

Two things: if we make ¢? big enough, we can make the loop correction as big as
the 1. This requires |¢| ~ 10%%6 eV. Good luck with that. This is called a Landau pole.

The second thing is: this perspective of a scale-dependent coupling is very valuable,

1

and is a crucial ingredient in the renormalization group. The value a = 3= is the

extreme IR value, for ¢ < me.

45The last step is safe since the x(1 — z) suppresses the contributions of the endpoints of the x
integral, so we can treat (1 — z) as finite.
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5 Consequences of unitarity

Next I would like to fulfill my promise to show that conservation of probability guar-
antees that some things are positive (for example, Z and 1 — Z, where Z is the wave-
function renormalization factor). We will show that amplitudes develop an imaginary
part when the virtual particles become real. (Someone should have put an extra factor
of i in the definition to resolve this infelicity.) We will discuss the notion of density
of states in QFT (this should be a positive number!), and in particular the notion
of the density of states contributing to a correlation function G = (OQO), also known
as the spectral density of G (or of the operator ). In high-energy physics this idea
is associated with the names Kallen-Lehmann and is part of a program of trying to
use complex analysis to make progress in QFT. These quantities are also ubiquitous
in the theory of condensed matter physics and participate in various sum rules. This
discussion will be a break from perturbation theory; we will say things that are true
with a capital ‘t’.

5.1 Spectral density

[Zee T11.8, Appendix 2; Peskin §7.1; Xi Yin’s notes for Harvard Physics 253b] In the
following we will consider a (time-ordered) two-point function of an operator O. We
will make hardly any assumptions about this operator. We will assume it is a scalar
under rotations, and will assume translation invariance in time and space. But we
need not assume that O is ‘elementary’. This is an extremely loaded term, a useful
definition for which is: a field governed by a nearly-quadratic action. Also: try to keep
an eye out for where (if anywhere) we assume Lorentz invariance.

So, let
—iD(z) = (0| TO(z)O'(0) |0) .

Notice that we do not assume that O is hermitian. Use translation invariance to move
the left operator to the origin:  O(z) = ¢P*O(0)e~F2. This follows from the statement

that P generates translations *°

9,0(z) = i[P,, O(z)] .

46Note that P here is a D-component vector of operators
PM = (H7 P)M

which includes the Hamiltonian — we are using relativistic notation — but we haven’t actually required
any assumption about the action of boosts.
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And let’s unpack the time-ordering symbol:
—iD(x) = 0(t) (0] P 0(0)eF*O1(0) |0) + O(—t) (0] OF(0)eF*O(0)e = |0) . (5.1)

Now we need a resolution of the identity operator on the entire QFT H.:
1= "|n)(n.

This innocent-looking n summation variable is hiding an enormous sum! Let’s also
assume that the groundstate |0) is translation invariant:

P|0) = 0.

We can label each state |n) by its total momentum (since the components of P* com-
mute with each other):
P |n) = pji|n) .

Let’s examine the first term in (5.1); sticking the 1 in a suitable place:

(0] O (0)1eF*O7(0) 0) =D (0] O(0) |n) (n| e F*OT(0) |0) = > e #7|| O, ||* ,

n

with Op,, = (0| O(0) |n) the matrix element of our operator between the vacuum and
the state |n). Notice the absolute value: unitarity of our QFT requires this to be
positive and this will have valuable consequences.

Next we work on the time-ordering symbol. I claim that :

e—i—iwt +iwt

wﬁ):ﬂw:—d/&u : W—ﬂ=+{ﬁh

w — i€ w+ e

Just like in our discussion of the Feynman contour, the point of the ie is to push
the pole inside or outside the integration contour. The half-plane in which we must
close the contour depends on the sign of £. There is an important sign related to the
orientation with which we circumnavigate the pole. Here is a check that we got the

signs and factors right:

iwt
%(:) = —i0, /dw S /dwei‘“t = ().

W — 1€

Consider now the fourier transform of D(x) (for simplicity, I've assumed O = Of
here):

. (D-1)(7_ = (D-1)( 7 =
-iD() = [ aPac D) = i(om)” Y O P (L) IR

¢ —pptie  ¢*+p) —ie
(5.2)
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With this expression in hand, you could imagine measuring the Og,s and using that
to determine D.

Now suppose that our operator O is capable of creating a single particle (for ex-
ample, suppose, if you must, that O = ¢, a perturbative quantum field). Such a state

is labelled only by its spatial momentum: ‘/;> (here I briefly retreat to non-relativistic

normalization of states <l§|lg’> — 00~1(k — k). The statement that O can create this
state from the vacuum means
. Z2
<k‘ O(0) |0) = i (5.3)

D—-1
(27‘&') Qw]g

where Z # 0 and wy is the energy of the particle as a function of k. For a Lorentz
invariant theory, we can parametrize this as

Lorentz! -,
wp = \VE2+m?

in terms of m, the mass of the particle. ** What is Z? From (5.3) and the axioms of
QM, you can see that it’s the probability that O creates this 1-particle state from the
vacuum. In the free field theory it’s 1, and it’s positive because it’s a probability. 1— 2
measures the extent to which O does anything besides create this 1-particle state.

The identity of the one-particle Hilbert space (relatively tiny!) H; is
I = / P RIRY (R (R = 500G - ),
This is a summand in the whole horrible resolution:

47It’s been a little while since we spoke explicitly about free fields, so let’s remind ourselves about
the appearance of w™? in (5.3), recall the expansion of a free scalar field in creation an annihilation

operators:

ole) = ,/2; (ape + aje™)
For a free field ’E> = a;% |0}, and <E‘ #(0)]0) = ﬁ The factor of w™2 is required by the
Uy w};

ETCRs:
[6(&), 7(@)] = i6" (@ - &), [agal] ="'k -F),

where m = 0;¢ is the canonical field momentum. It is just like in the simple harmonic oscillator, where

[ h . [ hw
q= 72mw(a+aT), pP=1 7(a—aT).
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I mention this because it lets us define the part of the horrible ) in (5.2) which comes
from 1-particle states:

z PG - k)
(2m)P=12uw; \ ¢° — wp + ie

— —iD(q) = ..+i(2n)P! /JD_llz — (W — —wk))

.2 1 1
= ...+1 5 ol -
2wy \¢° —wg +1e ¢ +w, + 1€
Loréntz + i Z :
q> — m? +ie
(Here again ... is contributions from states involving something else, e.g. more than
one particle.) The big conclusion here is that even in the interacting theory, even if
O is composite and complicated, if O can create a 1-particle state with mass m with
probability Z, then its 2-point function has a pole at the right mass, and the residue

of that pole is Z. (This result was promised when we discussed LSZ.)"

The imaginary part of D is called the spectral density p (beware that different
physicists have different conventions for the factor of i in front of the Green’s function;
the spectral density is not always the imaginary part, but it’s always positive (in unitary

theories)!
Using
1
ImQ i +76(Q), (for @ real). (5.4)
we have

ImD(q) =« (2m)" " Z 1Oon |I? (67 (q — pu) + 6" (g + pn)) -

n

More explicitly (for real operators):

tmi [ % ¢ (0| TO@)0(0) 0) =7 (20 Y| Oual* | 670 =)+ 5(a 1)

=0 for ¢" > 0 since pY >0

The second term on the RHS vanishes when ¢ > 0, since states in H have energy
bigger than the energy of the groundstate. Therefore, the contribution of a 1-particle
state to the spectral density is:

ImD(q) = ... + ©26(q* — m?).

481f we hadn’t assumed Lorentz invariance, this would be replaced by the statement: if the operator
O can create a state with energy w from the vacuum with probability Z, then its Green’s function
has a pole at that frequency, with residue Z.
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This quantity ImD(q) (the spectral density of Q) is positive because it is the number
of states (with D-momentum in an infinitesimal neighborhood of ¢), weighted by the
modulus of their overlap with the state engendered by the operator on the groundstate.

Now what about multiparticle states? The associated sum over such states involves
multiple (spatial) momentum integrals, not fixed by the total momentum e.g. in ¢*

N

theory, ¢ can make a 3-particle state: 3 %—6 le, and the three particles must
ks

share the momentum ¢. In this case the sum over all 3-particle states is

3 al/dﬁd%d%éD%1+kz+k3—q)

n, 3-particle states with momentum g

(Note that I am not saying that a single real ¢ particle is decaying to three real 10)
particles; that can’t happen if they are massive. Rather, in the diagram -~ - - you
can think of the particle with momentum ¢ as virtual.)

Now instead of an isolated pole, we have a whole collection of I“"(Dq‘l))

poles right next to each other. This is a branch cut. In this

example, the branch cut begins at ¢> = (3m)%. 3m is the lowest ZT

energy ¢° at which we can produce three particles of mass m

(they have to be at rest). . @W)L

Note that in ¢* theory, we would instead find that the particle can decay into two
particles, and the sum over two particle states would look like

Z X /dlgldEQ5D(k‘1 + k’g — q)
n, 2-particle states with momentum ¢

so the branch cut would start at ¢* = (2m)?2.

Now we recall some complex analysis, in the form of the Kramers-Kronig (or dis-

ReG(z ——P/ oG W)
W —Z

(valid if ImG(w) is analytic in the UHP of w and falls off faster than 1/w). These
equations, which I think we were supposed to learn in E&M but no one seems to, and

persion) relations:

which relate the real and imaginary parts of an analytic function by an integral equa-
tion, can be interpreted as the statement that the imaginary part of a complex integral
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comes from the singularities of the integrand, and conversely that those singularities
completely determine the function.

An even more dramatic version of these relations (whose imaginary part is the
previous eqn) is

f(z) = l/alwM , plw) =TIm f(w + ie).

™ w—z

The imaginary part determines the whole function.

Comments:

e The spectral density ImD(q) determines D(q). When people get excited about
this it is called the “S-matrix program” or something like that.

e The result we’ve shown protects physics from our caprices in choosing field vari-
ables. If someone else uses a different field variable n = Z %qb + ad?, the result
above with O = 7 shows that

/ 4P 9" (T(z)n(0)

still has a pole at ¢> = m? and a cut starting at the three-particle threshold,
¢* = (3m)*.

e A sometimes useful fact which we’ve basically already shown (for real operators):

() = (21" 3 O (g ~ 1) + %0 + 1) = 5 [ de* (0] (0(2). OO)][0) -

We can summarize what we’ve learned in the Lorentz-invariant case as follows: In
a Lorentz invariant theory, the spectral density p for a scalar operator ¢ is a scalar
function of p* with

550 = 2l 0160)19) I = dbooto?).

Claims:

e p(s) = NImD for some number N (I believe N = 7 here), when s > 0.
e p(s) =0 for s < 0. There are no states for spacelike momenta.

e p(s) >0 for s > 0. The density of states for timelike momenta is positive or zero.
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e With our assumption about one-particle states, p(s) has a delta-function singu-
larity at s = m?, with weight Z. More generally we have shown that

1
2

D(k*) = /ds p(s)m.

This is called the Kallen-Lehmann spectral representation of the propagator; it
represents it as a sum of free propagators with different masses, determined by
the spectral density. One consequence (assuming unitarity and Lorentz symme-
try) is that at large |k?|, the Green’s function is bigger than 75, since each term
in the integral goes like 1%2 and p(s) > 0 means that there cannot be cancella-
tions between each ﬁ contribution. This means that if the kinetic term for
your scalar field has more derivatives, something must break at short distances.
Breaking Lorentz symmetry is the easiest way out, for example on a lattice; in
a Lorentz-invariant theory, this is an indication that non-renormalizable terms

imply more degrees of freedom at high energy. More on this in subsection §5.2.
Taking into account our assumption about single-particle states, this is

ol P /(°° 05 pe(s) g —

k? —m? + ie 3m)?2 k? — s+ ie

where p. is just the continuum part. The pole at the particle-mass? survives
interactions, with our assumption. (The value of the mass need not be the same
as the bare mass!)

e Sum rule. Finally, suppose that the field ¢ in question is a canonical field, in
the sense that

[6(x,t), 0y, 1)] = 16D (2 — y).

This is a statement both about the normalization of the field, and that its canon-
ical momentum is its time derivative. Then*’

1= /000 dsp(s). (5.6)

49 Here’s how to see this. For free fields (chapter 2) we have
<0H(j)(l’), ¢(y)]|0>free = A+(£U - Y, m?) - A+(y -, m2)a

where A (x) = f %e*ip‘”\pozwﬁ. For an interacting canonical field, we have instead a spectral

representation (by exactly the methods above):

(QU[b(2), $()]]2) = / 12002 (A (x — 9, 12) — Dy — 2,12%)) | (5.5)

where p is the same spectral density as above. Now take Jyo|z0—,0 of the BHS of (5.5) and use
O (@ = Y 1) oy = — 30 (& — ).
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If we further assume that ¢ can create a one-particle state with mass m, so that
p(s) = Z5(s—m?)+p.(s) where p.(s) > 0 is the contribution from the continuum
of > 2-particle states, then

1=7 —|—/ dspe(s)
t

hreshold

is a sum rule. It shows that Z € [0,1] and is just the statement that if the
field doesn’t create a single particle, it must do something else. The LHS is the
probability that something happens.

The idea of spectral representation and spectral density is more general than the
Lorentz-invariant case. In particular, the spectral density of a Green’s function is
an important concept in the study of condensed matter. For example, the spectral
density for the electron 2-point function is the thing that actually gets measured in
angle-resolved photoemission experiments (ARPES).

5.2 Cutting rules and optical theorem

[Zee §II1.8] So, that may have seemed like some math. What does this mean when we
have in our hands a perturbative QFT? Consider the two point function of a relativistic
scalar field ¢ which has a perturbative cubic interaction:

1
S = /dDa: (5 ((09)* + m?¢?) — %gb?’) .
Sum the geometric series of 1PI insertions to get

O=—+—@-+—®—‘@— =000 +. ..

i
¢ —m? —X(q) +ie

iDy(q) =

where 3(q) is the 1PI two point vertex.
|<

The leading contribution to > comes from the one loop
diagram at right and is

N | =

151 100p(¢%) = 'Q/JDk ! i :
11 100p(47) (ig) k2 —m?2 +ie(q— k)2 — m?2 + ie T q k. ]

The % is a symmetry factor from exchanging the two inter-
nal lines of the loop. Consider this function for real ¢, for
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which there are actual states of the scalar field — timelike ¢*, with ¢ > m. The real
part of X shifts the mass. But what does it mean if this function has an imaginary
part?

Claim: Im¥/m is a decay rate.

It moves the energy of the particle off of the real axis from m (in its rest frame) to

small Im¥ ~ g2
~

Im Y (m?)
i——— 7

2 1 ilm > (1m2
Vm? + ilm X (m?2) v

m

The fourier transform to real time is an amplitude for propagation in time of a state
with complex energy &: its wavefunction evolves like 9(t) ~ 7€ and has norm

[ ~ e 02 = e,

In our case, we have I' ~ ImX(m?)/m (I'll be more precise below), and we interpret
that as the rate of decay of the norm of the single-particle state. There is a nonzero
probability that the state turns into something else as a result of time evolution in
the QFT: the single particle must decay into some other state — generally, multiple
particles. (We will see next how to figure out into what it decays.)

The absolute value of the Fourier transform of this quantity () is the kind of
thing you would measure in a scattering experiment. This is

F(w) = /dt efiwtw(t) _ /OOO dt efiwtei(M—%iF)t _ :

1
P
(w— M)+ 1I?

is a Lorentzian in w with width I'. So I' is sometimes called a width.

| Flw)|* =

[End of Lecture 15]
So: what is Im>3; jo0p in this example?

We will use
1 1 . 2 2 .
=P —ind(k* —m*) =P —iA

k2 —m? +ie k2 —m?

where P denotes ‘principal part’. Then

1
Im¥; 100p(q) = —292/d€[) (P1Py — A1)

with d® =dPkd"ky(27)P6P (k1 + ky — q).
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This next trick, to get rid of the principal part bit, is from Zee’s book (the second
edition on p.214; he also does the calculation by brute force in the appendix to that
section). We can find a representation for the 1-loop self-energy in terms of real-space
propagators: it’s the fourier transform of the amplitude to create two ¢ excitations at
the origin at time zero with a single ¢ field (this is —ig), to propagate them both from
0 to  (this is (iD(x))?) and then destroy them both with a single ¢ field (this is —ig
again). Altogether:

1 :
iS(g) =5 / dz % (—ig)* iD(z)iD(z)
17, 1 1
= —¢* [ dO 5.7
29/ K2 —m2 + ikl —m3 + ie (5:7)

In the bottom expression, the ies are designed to produce the time-ordered D(x)s.
Consider instead the strange combination

1 A
0= D /ddx e <i9)2 iDadv(2)iDyet(2)
1, 1 1
= — dd 08
09 / k¥ —m?2 — oyie k2 — m3+o.ie -

where 019 = sign(k?g). This expression vanishes because the integrand is identically
zero: there is no value of ¢ for which both the advanced and retarded propagators are
nonzero (one has a 6(t) and the other has a (—t), and this is what’s accomplished by
the red os). Therefore, we can add the imaginary part of zero

1
m(0) = 1 / 4B (PyPy + 01051 Ay)
to our expression for Im>; .., to cancel the annoying principal part bits:
Ly
IIHEl-loop = 59 dd ((1 aF 0102) AlAg) .
The quantity (1+ 0103) is only nonzero (equal to 2) when k) and kS have the same
sign; but in d® is a delta function which sets ¢° = k{ + k9. WLOG we can take ¢° > 0

since we only care about the propagation of positive-energy states. Therefore both £
and kY must be positive.

The result is that the only values of £ on the RHS that contribute are ones with
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positive energy, which satisfy all the momentum conservation constraints:

1 1
Im¥ = g / dD20(ky)0 (k) A1 Az = 592 / dPO(kY)0(k3)wd(k} — m*)md (k3 — m?)

(2m)P 6P (ky + by — q) .

B 92 } /*d—D—IEId—D—llgz

22/ 2w 2w,
In the last step we used the identity 0(k°)d(k*—m?) = H(ko)%_kw’“). But this is exactly
(half) the density of actual final states into which the thing can decay! In summary:

1
Im¥ = o > | Agsn |> = mT. (5.9)

actual states n of 2 particles
into which ¢ can decay

In this example the decay amplitude A is just ig. And the % symmetry factor matches
the factor that accounts for identical particles in the final state. (The other factor of
two is part of the optical theorem, as we’ll see next.) In the last step we compared to
our expression for the decay rate (p. 94 of my 215A notes).

This result is generalized by the Cutkosky cutting rules < /
for finding the imaginary part of a feynman diagram de-
scribing a physical process. The rough rules are the fol- o
lowing. Assume the diagram is amputated — leave out the T 5
external propagators. Then any line drawn through the di- 9- k
agram which separates initial and final states (as at right) ff

will ‘cut’ through some number of internal propagators; re-
place each of the cut propagators by 0(p°)27wd(p* — m?) = H(po)%‘ﬁ. As Tony Zee
says: the amplitude becomes imaginary when the intermediate particles become real

(as opposed to virtual), aka ‘go on-shell’. This is a place where the ies are crucial.

There is a small but important problem with the preceding discussion (pointed out
by Brian Campbell-Deem): a single ¢ particle of mass m cannot decay into two ¢
particles each of mass m — the kinematics of this example do not allow any final state
phase space. But we can make the example viable (without changing the calculation
at all) by thinking about a theory of two scalar fields, one light ¢, one heavy ® with
lagrangian

1
L=3 ((09)* — M*® + (0¢)* — m*¢* — g¢°®)
and thinking about the self-energy for the (unstable) heavy particle.

The general form of (5.9) is a general consequence of unitarity. Recall that the
S-matrix is

Spi=(fle ™)) = (1 + iT) -
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H-H — 1=85 — 2m7=i(7" - 7) =5 77,

This is called the optical theorem and it is the same as the one taught in some QM
classes. In terms of matrix elements:

ATy = > T}, T

Here we’ve inserted a resolution of the identity (again on the QFT Hilbert space, the
same scary sum) in between the two T operators. In the one-loop approximation, in
the ¢? theory here, the intermediate states which can contribute to )" are two-particle

states, so that ) will turn into % ;fsz’ the two-particle density of states.

A bit more explicitly, introducing a basis of scattering states

FIT i)y =T =8 (g — p)Myis T, = 8" (o — p) M3,

we have
T = YT T [ G Honh (a7 1
n f=1
= T G = 5 00 Mg = S M
n f=1 f f

Now notice that we have a (54(pp — pr) on both sides, and

H/daqf5 pF_;qf):/dH

is the final-state phase space of the n particles. Therefore, the optical theorem says
(M = Men) = 3 [ AL My Mg

Now consider forward scattering, I = F (notice that here it is crucial that M is the
transition matrix, S = 1 +i7 = 1l + if(pr) M):

2Im My = Z/dnn|/\/1{qf}[|2.

For the special case of 2-particle scattering, we can relate the RHS to the total cross
section for 2 — anything:

Im./\/l(kl, kQ — ]{Zl, ]{Zg) = 2Ecmpcma(anything — ]Cl, ]{72)
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Recall that for real x the imaginary part of a function of one variable with a branch
cut, (like Im (z 4 ie)” = 5 ((z + ie)” — (z — i€)")) is equal to (half) the discontinuity of
the function ((z)¥) across the branch cut.

In more complicated examples (such as a box diagram contributing to 2-2 scatter-
ing), there can be more than one way to cut the diagram. Different ways of cutting
the diagram correspond to discontinuities in different kinematical variables. To get the
whole imaginary part, we have to add these up. A physical cut is a way of separating
all initial-state particles from all final-state particles by cutting only internal lines. So

for example, a t-channel tree-level diagram (like ;1 ) never has any imaginary

part; this makes sense because the momentum of the exchanged particle is spacelike.

Resonances. A place where this technology is useful is when we want to study
short-lived particles. In our formula for transition rates and cross sections we as-
sumed plane waves for our external states. Some particles don’t live long enough for

separately producing them: ~\< and then watching them decay: >'V ;

instead we must find them as resonances in scattering amplitudes of other particles:

w7

So, consider the case iM = (F|iT |I) where both I and F' are one-particle states.
A special case of the LSZ formula says

M= — (\/2)22 — 7% (5.10)

where —iY is the amputated 1-1 amplitude, that is, the self-energy, sum of all connected
and amputated diagrams with one particle in and one particle out. Let X(p) = A(p?) +
iB(p?) (not standard notation), so that near the pole in question, the propagator looks
like

TP R | T
p?—mi—3X(p)  (p*—=m?) (1 —0pA|2)—iB  (p> —m?) —iBZ’
_g-1

(5.11)
In terms of the particle width T, = —Z B(m?)/m, this is
iz
(p?* —m?) +iml,

G (p) =
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So, if we can make the particle whose propagator we're dis-
cussing in the s-channel, the cross-section will be propor-

giE)

tional to

2 22

R T

iz
(p?2 —m?) —imT,,

a Lorentzian or Breit-Wigner distribution: In the COM
frame, p?> = 4E? and the cross section o(F) has a reso-
nance peak at 2E = m, with width I',,. It is the width

in the sense that the function is half its maximum when

E=FEy =/ ") oom 4 T

This width is the same as the decay rate, because of the optical theorem:

BZ 1 optical 1 1
Iy = =200 —— (=ImM,; ) = Z/dﬂ |M{Qf}l

m m
the last equation of which is exactly our formula for the decay rate. If it is not the
case that I' < m, i.e. if the resonance is too broad, the Taylor expansion of the inverse
propagator we did in (5.11) may not be such a good idea.

Unitarity and high-energy physics. Two comments: (1) there had better not
be any cutoff dependence in the imaginary part. If there is, we’ll have trouble cancelling
it by adding counterterms — an imaginary part of the action will destroy unitarity. This
is elaborated a bit in Zee’s discussion.

(2) Being bounded by 1, probabilities can’t get too big. Cross sections are also
bounded: there exist precise bounds from unitarity on the growth of cross sections
with energy, such as the Froissart bound, oyai(s) < C In? s for a constant C'. Xi Yin’s
notes describe a proof.

On the other hand, consider an interaction whose coupling G has mass dimension
k. The cross section to which G' contributes has dimensions of area, and comes from
squaring an amplitude proportional to GG, so comes with at least two powers of G. At
E > anything else, these dimensions must be made up with powers of E:

o(E>..)~G*E 2%, (5.12)

This means that if & < —1, the cross section grows at high energy. In such a case,
something else must happen to ‘restore unitarity’. One example is Fermi’s theory of
Weak interactions, which involves a 4-fermion coupling G ~ My?. Here we know
what happens, namely the electroweak theory, about which more soon. In gravity,
Gy ~ Mg, we can’t say yet.
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5.3 How to study hadrons with perturbative QCD

[Peskin §18.4] Here is a powerful physics application of both the optical theorem and the
spectral representation. Consider the total inclusive cross section for ete™ scattering
at energies s = (k + ky)? > m?%:

O_anythingee“'e— optical thm %Im/\/l(eJre « e*e*) (513)
where on the RHS, M is the forward scattering amplitude (meaning that the initial and
final electrons have the same momenta). We've learned a bit about the contributions
of electrons and muons to the BHS of this expression, what about QCD? To leading
order in « (small), but to all orders in the strong coupling ay (big at low energies), the
contributions of QCD look like

e (e 0k (k) I (0) ok you(h)

Ward

with
i(¢*n" — ¢"¢")(q?)

«NOW - IHZl/((J)

the hadronic contribution to the vacuum polarization. We can pick out the contribution
of the strong interactions by just keeping these bits on the BHS of (5.13):

7 1 Im M 4o
hadrons<ete™ __ h
o =17 E 5~ s ImII,(s). (5.14)

spins

(The initial and final spins are equal and we average over initial spins. We can ignore the
longitudinal term ¢*¢” by the Ward identity. The spinor traceis » o a(k)y,0(ky)v(ky) v u(k) =
—2k - ky = —s.) As a reality check, consider the contribution from one loop of a heavy

lepton of mass M2 > m?:

Tm Il (s + ie) = —%F(MZ/S)

and )
UL*LW—e*e* _ 4—7Ta—F(M2/S)
3 s
with
0, s < (2M)?
F(M?/s) = ; 2 :
] a2 (1+%) —1+O(M?)s), s> (2M)’
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In perturbative QCD, the leading order result is the
same from each quark with small enough mass:

o4
0_(()1uarks<—e+e _ Z Qf W%F mf/s)

T
colors flavors, f J/b (28) T(18,25,35)

This actually does remarkably well as a crude ap-

proximation to the measured o(hadrons «— ete™) —
see Fig. 5.3 of Peskin, at right. (This figure does
not appear in the paper Peskin cites, I'm not sure

o(hadrons) /o (put p™)

%) w
e
——
A==
—
e
1

R

of the correct provenance. The key point is that
the ratio of the hadronic cross section to that for

3 4 5 6780910 20 30 40
Eem (GeV)

muons in the final state jumps at £ = 2my for each
new quark flavor (you can see m, ~ 1.3 GeV and
my ~ 4.5 GeV in the figure). See Peskin pp 139-141

for more.
[End of Lecture 16]

But Q: why is a perturbative analysis of QCD relevant here? You might think
asymptotic freedom means QQCD perturbation theory is good at high energy or short
distances, and that seems to be borne out by noticing that Il is a two-point function
of the quark contributions to the EM current:

T (q) = — ¢ / a0 QT ()J7(0) 19, J(a Zquf g (@).

(Here, the quark fields ¢ are Dirac spinors, with Lagrangian L, = Zf qr (1ID — mf) qr, D, =
Oy —iQsA, + ..., where the ... is the coupling to the gluon field which we’ll discuss

next chapter. They have a color index which runs from 1 to 3 which I've suppressed.)
Maybe it looks like we are taking  — 0 and therefore studying short distances. But

if we are interested in large timelike ¢* here, that means that dominant contributions

to the x integral are when the two points are timelike separated, and in the resolution

of the identity in between the two Js includes physical states of QCD with lots of real
hadrons. In contrast, the limit where we can do (maybe later we will learn how) per-
turbative QCD is when ¢ = —Q2 < 0 is spacelike. (Preview: We can use the operator
product expansion of the two currents.)

How can we use this knowledge to find the answer in the physical regime of ¢ > 07
The fact that II; is a two-point function means that it has a spectral representation.
It is analytic in the complex ¢? plane except for a branch cut on the positive real axis
coming from production of real intermediate states, exactly where we want to know the
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answer. One way to encode the information we know is to package it into moments:

dg®>  TI,(¢?) 4
I, = —4ra — = — 0,2)" Iy 2 _ 2.
$. omi g = 0 e

The idea here is that the RHS can be computed by perturbative QCD. On the other

hand, we know from the (appropriate generalization to currents of the) spectral repre-
lg[>...
sentation sum rule (5.6) that IT,(¢?) < log(q?), so for n > 1, the contour at infinity

can be ignored.

Therefore

d¢®>  TI,(¢?
I, = —ira 7{ do M)
Pacman 271 (q2 + QO)TH_l

4 / dg*  Discll,
47i (g% + Q3)" !

(5-_4) 1 > S hadrons<ete™
U e )
Sthreshhold 0

On the RHS is (moments of) the measurable (indeed, measured) cross-section, and on
the LHS is things we can calculate (later). If the convergence of these integrals were
uniform in n, we could invert this relation and directly try to predict the cross sec-
tion to hadrons. But it is not, and the correct cross section varies about the leading
QCD answer more and more at lower energies, culminating at various Breit-Wigner
resonance peaks at gg boundstates.
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6 Gauge theory

6.1 Massive vector fields as gauge fields

Consider a massive vector field B, with Lagrangian density
1 pv 1 2 W

where (dB),, = 0,B, — 0,B,. (Note the funny-looking sign of the mass term which
comes from B*B, = Bj — B?.) The mass term is not invariant under B, — B, +
Oy, the would-be gauge transformation. We can understand the connection between
massive vector fields and gauge theory by the ‘Stueckelberg trick’ of pretending that
the gauge parameter is a field: Let B, = A, — 0,0 where 0 is a new degree of freedom.
Since B is invariant under the transformation

Au(2) = Au(x) + M), () = 0(x) + A(x),

so is any functional of B. Notice that the fake new field # transforms non-linearly
(i.e. its transformation is affine). This was just a book-keeping step, but something
nice happens:

(dB),, = 0,A, — 0,A, =F,,

is the field strength of A. The mass term becomes
B,B" = (A, — 0,0)(A" — 0"0).

This contains a kinetic term for #. We can think of this term as (energetically) setting
0 equal to the longitudinal bit of the gauge field. One nice thing about this reshuffling
is that the m — 0 limit decouples the longitudinal bits. Furthermore, if we couple a
conserved current (0*j, = 0) to B, then

/ d’x j,B" = / dPxj, A"

it is the same as coupling to A,,.

Who is 87 Our previous point of view was that it is fake and we can just choose the
gauge parameter \(x) to get rid of it, and set f(x) = 0. This is called unitary gauge,
and gives us back the Proca theory of B = A. Alternatively, consider the following
slightly bigger (more dofs) theory:

1 L1
Lh= =3 FuF" + S |D,® — V(|8)
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where ® is a complex, charged scalar field whose covariant derivative is D,® =
(0, —iA,) @, and let’s take

V(I®]) = s(|@f* —v*)*

for some couplings ,v. This is called an Abelian Higgs |
model. This potential has a U(1) symmetry ® — el®®, ‘H'\

and a circle of minima at |®|*> = v® (if v > 0, which '~
we'll assume).

In polar coordinates in field space, ® = pe'?, the Lagrangian is

1 , 1
Ln= =5 Fwl™ + 5,02(,4# — 9,0)* + (9p)* = V(p).
This differs from the action for B written in terms of A, # only in the addition of the
Higgs mode p. Again we can go to unitary gauge and set § = 0. We find a massive

gauge field A, plus a massive scalar p whose mass (expanding V'(p) about p = v) is

K>1
8§V|p:v = mi =8r? > m% = (p)? =%

That is: in the limit of large x, the excitations of p are hard to make, and we get back

Lp. For any value of k, we can say that the gauge field eats the would-be Goldstone

boson # and becomes heavy, in a manner consistent with gauge invariance®’. This is

the Anderson-Higgs mechanism.

The description of massive gauge fields in terms of £, via the Anderson-Higgs
mechanism is more useful than Lg for thinking about the renormalization of massive
gauge fields: for example it is renormalizible, even if we couple A to other charged
fields (e.g. Dirac fermions). This mechanism also works in the case of non-Abelian
gauge fields and is an important ingredient in the (electroweak sector of the) Standard
Model.

It is also a description of what happens to the EM field in a superconductor: the
photon gets a mass; the resulting expulsion of magnetic flux is called the Meissner
effect. For example, if we immerse a region z > 0 with ® = v in an external constant
magnetic field By, 0 = 9, " —m?A” —> B(z) = Be ™. Another consequence of the
mass is that if we do manage to sneak some magnetic flux into a superconductor, the
flux lines will bunch up into a localized string, as you’ll show on the homework. This
is called a vortex (or vortex string in 3d) because of what ® does in this configuration:
its phase winds around the defect. In a superconductor, the role of ® is played by

50You can check that the mixing with 6 is exactly what’s required to make I1(g) singular enough at
g =0 to give A a mass consistent with the Ward identity, as in our discussion at (4.39).
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the Cooper pair field (which has electric charge two). On the homework, you’ll see a
consequence of the charge of ® for the flux quantization of vortices. I hope to say more
about its origins in terms of electrons later in §9.8.1.

I mention here the Meissner effect and the resulting collimation of flux lines partly
because it will be helpful for developing a picture of confinement. In particular: think
about the energetics of a magnetic monopole (suppose we had one available®) in a
superconductor. If we try to insert it into a superconductor, it will trail behind it a
vortex string along which all of its exiting magnetic flux is localized. This string has
a finite tension (energy per unit length), as you’ll study on the homework. If we make
the superconducting region larger and larger, the energy of the monopole configuration
grows linearly in the size — it is not a finite energy object in the thermodynamic limit.
If monopoles were dynamical excitations of rest mass M,,, it would eventually become
energetically favorable to pop an antimonopole out of the vacuum, so that the flux
string connects the monopole to the antimonopole — this object can have finite energy
inside the superconductor.

6.2 Festival of gauge invariance

Consider a collection of N complex scalar fields (we could just as well consider spinors)
with, for definiteness, an action of the form

N
L= 0,0.0"P, — V(2;Ps) (6.1)

a=1

(or £ = ¥,0,¥,). The model actually has an O(2N) symmetry except that for
kicks I grouped the scalars into pairs, and made the potential out of the combina-
. N .
tion ) ., PrD,.

Lighting review of Lie groups and Lie algebras. (6.1) is invariant under the

U(N) transformation
D, Ayp®s, ATA =1 (6.2)

Any such U(N) matrix A can be parametrized as
A= AQ) = DA MTAG

A\Y parametrizes a U(1) factor which commutes with everyone; we already know some-
thing about U(1) gauge theory from QED, so we won’t focus on that. We'll focus on the
non-abelian part: the T4 are the generators of SU(V), and are traceless, so SU(N) >

51 Here is the paper about the only one that’s been detected by humans so far.
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A(X? = 0) has det A(A° = 0) = 1. Here the index A =1: N? — 1 = dim(SU(N)); the
matrices T4 (and hence also A) are N x N, and satisfy the Lie algebra relations

(T4, T8 =ifapcT¢ (6.3)

where fapc are the structure constants of the algebra. For the case of SU(2), T4 =
%O‘A, A =1,2,3, and fapc = €apc. The infinitesimal version of (6.2), with A close to
the identity, is

Dy > By + INT P (6.4)

The N x N representation is called the fundamental representation of SU(N). Other
representations of the group come from other sets of T4's which satisfy the same algebra
(6.3), but can have other dimensions. For example, the structure constants themselves
(T

adj) = —ifapc furnish the representation matrices for the adjoint representation.

AC T

Local invariance. The transformation above was global in the sense that the
parameter A was independent of spacetime. This is an actual symmetry of the physical
system associated with (6.1). Let’s consider how we might change the model in (6.1)
to make it invariant under a [ocal transformation, with A = A(z). In the Abelian case,
we have learned the recipe

& = DD (x), A, Ay + O\, 9,D ~ D,® = (8, —iA,)P — MDD, b,

In words: by replacing partial derivatives with covariant derivatives, we can make
gauge-invariant Lagrangians. The same thing works in the non-abelian case:

(D,®), = 0,Pa — 1AL T ;D5

O &+ i (@) TP, AL A + 0,0 — fapc A" AS (). (6.5)

The difference is that there is a term depending on A in the shift of the gauge field A.
The following Yang-Mills Lagrangian density is a natural generalization of Maxwell:

2

1 1 v
Ly = ~iP O A — 0, AL + fABCAngl = —4—g2trFWF“ : (6.6)
! ~Ff~—F
The field strength
Fi = Fio 4 fapcAPFS, = Fo, + 1N (TR) . Ff (6.7)

is designed so that it transforms in the adjoint representation, and therefore Sy, is
gauge-invariant. (Regarding F as an N x N matrix F' = FAT# the finite version of
(6.7) is F '+ AFA~! (compare (6.4)), which makes it manifest that trF? is invariant.)
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6.3 Interlude on differential forms (and algebraic topology)

[Zee section IV.4] We interrupt this physics discussion with a message from our math-
ematical underpinnings. This is nothing fancy, mostly just some book-keeping. It’s
some notation that we’ll find useful, which I would find it rather inhibiting not to be
able to use in the next section. As a small payoff we can define some simple topological
invariants of smooth manifolds.

Suppose we are given a smooth manifold X on which we can do calculus. For now,
we don’t even need a metric on X. Suppose z# are some local coordinates on X.

A p-form on X is a completely antisymmetric p-index tensor,

1
A= —'Am__mpdxm1 A ..o Adx™r.
p!

The coordinate one-forms are fermionic objects in the sense that dz™ Adx™? = —dz™2A
dx™' and (dx)2 = 0. The point in life of a p-form is that it can be integrated over
a p-dimensional space. The order of its indices keeps track of the orientation (and it
saves us the trouble of writing them). It is a geometric object, in the sense that it is
something that can be (wants to be) integrated over a p-dimensional subspace of X,
and its integral will only depend on the subspace, not on the coordinates we use to
describe it.

Familiar examples include the gauge potential A = A,dxz*, and its field strength
F = %Fwdx“ Ada”. Given a curve C' in X parameterized as z*(s), we have

/C A= /C dat A () = / dS%AH(x(S))

and this would be the same if we chose some other parameterization or some other
local coordinates.

The wedge product of a p-form A and a ¢g-form B is a p + ¢ form

ANB = Apm,B dz™ A ... ANdx™rre

Mpt1...Mp+q

°2 The space of p-forms on a manifold X is sometimes denoted QP(X), especially when
it is to be regarded as a vector space (let’s say over R).

52The components of A A B are then

(p+q)
plq!

(A/\B)ml...mp+q = A[ml_“mpB

Mpt1.-Mppq)

where [..] means sum over permutations with a —1 for odd permutations. Try not to get caught up in
the numerical prefactors. In my expression below for the exterior derivative also there is an annoying
combinatorial prefactor.
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The ezterior derivative d acts on forms as

d: OP(X) — Qrf(X)
A — dA
by

dA:la

! mi ( )mz...mp+1

dz™ A ... A dx™Mett.
You can check that
=0

basically because derivatives commute. Notice that F' = dA in the example above.
Denoting the boundary of a region D by 0D, Stokes’ theorem is

/ da = / a.
D oD
[End of Lecture 17]

And notice that QP>4m(X)(X) = 0 - there are no forms of rank larger than the
dimension of the space.

A form wy, is closed if it is killed by d: dw, = 0. w, closed means that | c, Wp depends
only on the topology of C), in the sense that

Stokes
/wp—/wp:/ wp:/ wp = / dw, = 0.
Cp ;) CP_CI/J ORp+1 Rp+1

A form w, is ezact if it is d of something: w, = da,_;. That something must
be a (p — 1)-form. w, is exact means it is a total derivative, a boundary term, so

Stokes . . 5
fcp wy = [, oc, -1 vanishes if €}, doesn’t have a boundary.

Because of the property d? = 0, it is possible to define cohomology — the image of
one d : O — QP! is in the kernel of the next d : QP — QP2 (j.e. the (OPs form a

chain complez). The pth de Rham cohomology group of the space X is defined to be

HP(X) = closed p-forms on X ker (d) € O
~ exact p-forms on X Im(d) € O’

That is, two closed p-forms are equivalent in cohomology if they differ by an exact
form:

[wp] — [wp + day,—1] =0 € HP(X),

where |w,| denotes the equivalence class. The dimension of this group is ” = dimH?(X)
called the pth betti number and is a topological invariant of X. The euler characteristic

148



of X, which you can also get by triangulating X and counting edges and faces and stuff,

is
d=dim(X)

X(X)= > (1)

p=0

Here’s a very simple example, where X = S is a circle. x ~ z + 27 is a coordinate;
the radius will not matter since it can be varied continuously. An element of Q°(S') is
a smooth periodic function of z. An element of Q(S?) is of the form A;(x)dx where
Ay is a smooth periodic function. Every such element is closed because there are no
2-forms on a 1d space. The exterior derivative on a 0-form is

dAp(z) = Aydx

Which 1-forms can we make this way? The only one we can’t make is dz itself, because

x is not a periodic function. Which 0-forms are closed? Aj = 0 means A, is a constant.
Therefore b°(S!) = b*(S?) = 1.

Now suppose we have a volume element on X, i.e. a way of integrating d-forms.
This is guaranteed if we have a metric, since then we can integrate [ +/detg..., but is
less structure. Given a volume form, we can define the Hodge star operation x which
maps a p-form into a (d — p)-form:

*: QP — QTP

(*A(p))m---ud—p = 6#1..-udA(p) Hd=pi1-id

An application: consider the Maxwell action, }IF w . You can show that this is
the same as S[A] = [ F AxF. (Don’t trust my numerical prefactor.) You can derive
the Maxwell EOM by 0 = g—i. [ F'AF is the 0 term; notice that it doesn’t involve the
metric at all. The magnetic dual field strength is F' = xF. Many generalizations of
duality can be written naturally using the Hodge * operation.

As you can see from the Maxwell example, the Hodge star gives an inner product
on O?: for two p-forms a, 8 (a, B) = [a A xS, (a, ) > 0. We can define the adjoint
of d with respect to this inner product by

/dTaA*B: (d'a, B) = (o, dB) :/a/\*dﬁ
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Combining this relation with integration by parts, we find d = + % dx.

We can make a Laplacian on forms by
A =dd' +d'd.

This is a supersymmetry algebra, in the sense that d,d’ are grassmann operators.

Any cohomology class [w] has a harmonic representative, [w] = [©] where in addition
to being closed dw = d@ = 0, it is co-closed, 0 = d'®, and hence harmonic A® = 0.

An application of this is Poincare duality: oP(X) = b P(X) if X has a volume form.
This follows because the map H? — H%~P which takes |w,] + [*w,] is an isomorphism.
(Choose the harmonic representative, it has d x @, = 0.)

The de Rham complex of X can be realized as the groundstates of a physical system,
namely the supersymmetric nonlinear sigma model with target space X. The fermions
play the role of the dx*s. The states are of the form

d

A) = Ay ()10 - pr |0)

p=1

where 1 are some fermion creation operators. This shows that the hilbert space is the
space of forms on X, that is H ~ Q(X) = ¢,07(X). The supercharges act like d and
d" and therefore the supersymmetric groundstates are (harmonic representatives of)
cohomology classes.

The machinery of differential forms is very useful.

6.4 Gauge fields as connections

The formulae in §6.2 are not too hard to verify, but where did they come from? Suppose
we wanted to attach an N-dimensional complex vector space to each point in spacetime;
on each vector space we have an action of SU(N), by ®,(z) — Ays(z)®(x). Suppose
we would like to do physics in a way which is independent of the choice of basis for this
space, at each point. We would like to be able to compare ®(z) and ®(y) (for example
to make kinetic energy terms) in a way which respects these independent rotations. To
do this, we need more structure: we need a connection (or comparator) Wy, an object
which transforms like W, — A(z)W,, A~ (y), so that ®T(x)W,,®(y) is invariant. The
connection between two points W,, may depend on how we get from = to y. We
demand that W (@) = 1, W(Cq 0 Cy) = W(Co)W(C}) and W(—C) = W~(C), where
—(' is the path C' taken in the opposite direction.
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But if we have a W, for any two points, you can’t stop me from considering nearby
points and defining

W(z,z + Az)®(x + Azx) — O(x)

D,®(x) = Aliglo Aoh — A(z)D,®(z) . (6.8)
Expanding near Ax — 0, we can let
W(z,z + Az) = 1l — ieAz" A, (z) + O(Az?) (6.9)

this defines the gauge field A, (sometimes also called the connection). To make the
gauge transformation of the non-abelian connection field A — A* obvious, just re-
member that the covariant derivative of a field is designed to transform like the field:
D,® — D;:‘A (AD) Z A (D;!®) which means A = AA,A™" — (9,A) A~'. (This formula
also works in the abelian case A = e**, and knows about the global structure of the
group A ~ A + 27.)

—ie [, Au(@)dit

The equation (6.9) can be integrated: W, e where C,, is a path in

spacetime from x to y. What if G is not abelian? Then I need to tell you the ordering
in the exponent. We know from Dyson’s equation that the solution is

Wa:y = Pe_ie fcwy Ap(@)dar
where P indicates path-ordering along the path C,,, just like the time-ordered expo-

nential we encountered in interaction-picture perturbation theory.
To what extent does W,, depend on the path? In the abelian

C. case,
C /

Wo = Wereledo—cr 4 Stokes Wenele Jn Fuvdattda”

where OR = C' — (" is a 2d surface whose boundary is the differ-
ence of paths.

Imagine inserting an infinitesimal rectangle to the path which
moves by dx* then by dz” and then back and back. The difference

v . . .
/}//“IZ /1/ in the action on @ is

dz'dxz"|D,, D,|® = —iedz"dz" F,,,®.

The commutator of covariant derivatives is not an operator, but a function [D,, D,] =

53Which 2d surface? Let me speak about the abelian case for the rest of this footnote. The difference
in phase between two possible choices is el Jron B 51 pie [ dF where 9V = R — R' is the 3-volume
whose boundary is the difference of the two regions. The integrand vanishes by the Bianchi identity,
which is actually an identity if ' = dA and A is smooth. You might think this prevents magnetic
sources, which appear on the RHS of the Maxwell equation dF' = xj,,. But actually fv dF only

appears in the combination e'® Jv aF , so magnetic sources are perfectly consistent with independence
of the choice of R, as long as their charge ¢ = fv dF = fav F' is quantized ge € 2nZ. This is Dirac

quantization.
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—ieF),,. (Note that this same maneuver defines the Riemann tensor in terms of deriva-
tives covariant with respect to coordinate changes.) This same relation holds in the
non-abelian case:

F,uu = é[Dlh Dv] - a#AV - aVAH - ie[Al“ AV]‘

This object is Lie-algebra-valued, so can be expanded in a basis: F),, = F jjTA, SO

more explicitly,
Ffv = auAf - 0VAZ‘ - iefABcAng.

Since it is made from products of covariant derivatives, [D, D|® — A[D, D|®, it must
transform in the adjoint representation, F' + AFA~!, which in infinitesimal form
returns us to (6.7)
A A ABC\B 12C
FW»—>FW—f A F,.

6.5 Actions for gauge fields

The Yang-Mills (YM) action (6.6) is a gauge invariant and Lorentz invariant local
functional of A. If the gauge field is to appear in D = d + A it must have the same
dimension as 0, so Ly,; has naive scaling dimension 4, like the Maxwell term, so it
is marginal in D = 4. Notice that unlike the Maxwell term, Ly, is not quadratic in
A: it contains cubic and quartic terms in A, whose form is determined by the gauge
algebra fapc. Non-abelian gauge fields interact with themselves in a very definite way.

In even spacetime dimensions, another gauge invariant, Lorentz invariant local func-
tional of A is the total-derivative term Sy = 9ftr§ ANAY % with D/2 factors of
F'. Because it is exact, this doesn’t affect the equations of motion or perturbation
theory (e.g. in D = 4, in the abelian case, F A F' = d(A A F'), or in components,
e EFy = 20, (7 A F,,;)) but it does matter non-perturbatively. We’'ll see
(when we study anomalies) that for smooth gauge field configurations in a closed space-
time, this functional is an integer. This coupling 6 violates CP symmetry (notice that
F A F has one time derivative and three spatial derivatives). In QCD, this coupling
of the gluons is constrained to be very small because it would give an electric dipole
moment to the neutron, which the neutron doesn’t seem to have; this mystery is called
the strong CP problem.

In odd spacetime dimensions, we should consider the Chern-Simons term (the
D = 2 + 1 version of which we just encountered) which in the abelian case looks like
Scs[A4] abglien JANE N AL with (D —1)/2 factors of F. (In the non-Abelian case,
there is an extra term: in 3d, Scg[A] o< [tr (AAF +2AANANAA).) This term does
affect the equations of motion. It breaks parity symmetry. Notice that in D =2 + 1
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it is more relevant than the Maxwell or Yang-Mills term. It is important in quantum
Hall physics in D = 2 4 1, where it gives the gauge field fluctuations a mass.

In general dimension, we can make more couplings out of just A if we take more
derivatives, but they will have higher dimension.

We can couple YM gauge fields to matter by returning to our starting point: e.g. if
Y(x) — Agy(z) is a Dirac field transforming in some representation R of the gauge
group, then D, = (8M —iT &?Aﬁ) 1 also transforms in representation R, so

&VMDMb + V(@EQ/J)

is a gauge-invariant lagrangian density. The lowest-dimension couplings of A to matter
are determined by the representation matrices T, which generalize the electric charge.

You might expect that we would starting doing perturbation theory in ¢ now. There
is lots of physics there, but it takes a little while to get there. Given how limited our
time is this quarter, we will instead think about how we might define the thing non-
perturbatively and see what we learn from that. [End of Lecture 18]

6.6 Fermion path integrals

We’ll need these for our discussion of anomalies, and they are extremely useful for
doing perturbative gauge theory for QCD (which differs from Yang-Mills theory by the
addition of fermionic quarks), and even for pure Yang-Mills theory.

[e.g. Schwartz §14.6] Canonical fermion operators satisfy anticommutation relations
like {¢(z),v(y)} = ihd%(z — y). If we consider A — 0, the fermi fields are a bunch
of objects which anticommute and square to zero. Such things are called Grassmann
numbers

Qié’j = —QJQZ s 1=1..n

and the set of objects we get by multiplying and adding them (with coefficients in
C) is a Grassmann algebra. For n = 1, the most general element of the algebra is
g(0) =a+bf. Forn =2, it is

9(91, (92) =a-+ b@l + 062 + d9192. (610)

A Grassmann algebra has an even part (made of products of even numbers of thetas,
which therefore commute) and an odd part. I've named the object in (6.10) g(61,62) as
if it is a function of the Grassmann variables. This doesn’t really mean anything, but if
we go along with it, then (6.10) is actually Taylor’s theorem for Grassmann variables.
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It’s very simple, there are only two terms in the expansion for each variable, 2™ terms
altogether. A realization of Grassmann algebra that we’ve already seen is differential
forms.

Integration is just as easy and in fact is the same as taking derivatives:

/wdw:L /mp:o.

With more than one grassmann we have to worry about the order:
1= [ dududi = [ dvaia

So
/dwl o dihy X = Oy, -+ Oy, X

Notice that there are no limits of integration. All Grassmann integrals are like the
analog of

/OO def(z) = /OO def(x + a), if 0ya = 0.

In fact the analogous condition is true:

/(A + BO)do = /de(A +B(0+a)) if d,a = 0.

The only integral, really, is the gaussian integral:

e~ dihdip = a.
=1—agy

Many of these give

i MM Mo M ) 1
[ oo Tl av = [0 T]don (1640 + goaviao )
=1 =1 =1 =1

(6.11)
= % > (—1)7Asg, Asgy -+ Anra, (6.12)
= detpA. | (6.13)
Ay A -+ i
Here ¢)- A9 = (151, e ,zZM) Ay e : | . Another way to get this expres-

Yu

sion is to change variables to diagonalize the matrix A. Notice that

/ei-A-wdlzdw — det A — ettrlogA
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involves a sign in the exponent relative to the bosonic answer
1
—¢* AP g 1% — _ —trlog A
e do*dp = —— =ce :
/ ¢dg det A
This is the same sign as the minus sign associated to fermion loops.

Correlation functions look like:

S J e dgdy 1
()= [ e=aedipdy) Ok

If for many grassman variables we use the action S = ). a; (diagonalize A
above) then

(Futy) = 2 = @) (6.4
or, in a general basis,
(Viv;) = Ajt
Wick’s theorem here is

(Vi) = (il) (jk) — (ik) (jI) .

With sources, the general gaussian integral is
. M M
/6—1/11‘Az‘j'111j+77i¢i+¢i77i H d&z H dwz — 677147177 / H d@[,dwe—(@—nz‘l’l)A(H—A’ln) — eﬁAAU det A.
i=1 i=1

Now we can take a continuum limit: ; ~ ¥(x), f(0) ~ f[]. The partition
function for a free fermion field is

Zln) = [ (DG A5 m) e irici) (6.15)
= det (i — m) ¢/ 4" P (-m+ic) (o) (6.16)

If we couple 1) minimally to a gauge field, the determinant (which here is an irrelevant
constant) becomes an effective potential for the gauge field.

6.7 Lattice gauge theory

The following beautiful construction was found by Wegner and Wilson and Polyakov;
a good review is this one by Kogut.

Consider discretizing euclidean spacetime into a hypercubic lattice (for simplicity).
On each link xy of the lattice we place a G-valued matrix Ugf/’. We demand that
Uy = U;yl, as we did for the comparator in (6.9). Three good examples to keep in
mind (in decreasing order of difficulty) are:
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U(NV), in which case each U is a complex N x N matrix with UUT = 1. Here
=1..N.

@II

2. G = U(1), in which case U is just a phase (a 1x 1 matrix) U,, = % 6,, € [0, 27).

3. G = Z,, in which case U = ¢*™/" { = 1,---n, is a phase with U" = 1. For
n = 2, this is a classical spin.

Please think of U,, = Pells 44" a5 the comparator (or Wilson line) along the link
(except that there is no such thing as A,(r) at other values of 7). As such, we impose
the gauge equivalence relation U,, — ¢iU,,q,, where g, € G for each z. We will
accomplish this by two steps: by writing an action S[U] which has this invariance, and
by integrating over {U} with an invariant measure:

:\/HdUge_S[U}
4

Here [ dU is the G-invariant (Haar) measure on G, which can be defined by the desider-
ata

/GdU: 1, /Gde(m :/Gde(VU) :/Gde(UV),VVe G.

For G = U(1), it is just fozwdgo; for G = Z,, it just >_,_,. You can figure out what it is
for SU(2) (locally, it’s the round measure on S*). Notice the following lovely advantage
of these conditions: there is no need to gauge fix anything.

This is a statistical mechanics problem of the thermodynamics of a bunch of classical
rotors (slightly fancy ones in the SU(N) case). The review by Kogut does a great job
of highlighting the fact that this class of problems is susceptible to all the tools of
statistical mechanics.

What action should we use? Here is a good way to make something invariant under
the gauge group: Consider the comparator for a closed path C,, which starts at x and
ends at x:

W(Chy) = Pe Hew 4
How does this transform? W (C,,) — g, 'W(Cyz)g., but, for non-abelian G, it’s still a
matrix! A gauge-invariant object is

W(C) = trW (Chy) = trPe How 4

where the g, and g, ! can eat each other by cylicity of the trace. We can make something
gauge invariant and as local as possible by considering a path C' which goes around a
single plaquette of the lattice: C' = 00. This is Wilson’s action:

S[U Z So, Sp = ReW(@D) Retr H U, = Retr (Um,x—i-dmUm+dw,r+d:p+dyUz+dx+dy,m+dwa+dy,w) :

{eon

212
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Now let’s focus on he G = SU(IV) case, and take seriously the idea that U, , 44, =
e i Anda” " where A,(x) is an element of the Lie algebra su(N). An application of

- 52 .
the CBH™ formula e*4esB = ¢s4tsB+5[ABI+0() ghows that for a plaquette oriented

in the pv plane O,,, with lattice spacing a,

1 102
S, TN ___Retr (eﬂ“ Fur (’)(a3))

2f?
1 . 1
= Q—fZRetr (]1 —id’F, — §a4FWFW - O(a5))
1 at
= 2_f2 trl — ?trFWFW + ... | = Lyn(O) + const.

The coupling g is related to f in some way that can be figured out. So it is plausible
that this model has a continuum limit governed by the Yang-Mills action. Realizing
this possibility requires that the model defined by Z have a correlation length much
larger than the lattice spacing, which is a physics question.

Before examining the partition sum, how would we add charged matter? If we
place fundamentals ¢, — ¢.q, at each site, we can make gauge invariants of the form
¢t Uy Uy U, Or most simply, we can make a kinetic term for ¢ by

1
Sq = a_# Zéqul?,.T"quaH-Z = /de qT<x> (lp - m) q([L’) + ...

where D, = 0, —iA,, is the covariant derivative, and we used its definition (6.8). The
expression I've written is for a grassmann, spinor field; for bosonic fields the second-
order terms are the leading terms which aren’t a total derivative. There is some drama
about the number of components of the spinor field one gets. It is not hard to get a
massive Dirac fermion charged under a U(1) gauge field, like in QED. It is impossible
to get a chiral spectrum, like a single Weyl fermion, from a gaussian, local lattice
action; this is called the Nielsen-Ninomiya theorem. You might think ‘oh that’s not a
problem, because in the Standard Model there is the same number of L and R Weyl
fermions,” but it is still a problem because they carry different representations under
the electroweak gauge group. The word ‘gaussian’ is a real loophole, but not an easy
one.

How do we get physics from the lattice gauge theory path integral Z? We need to
find some gauge-invariant observables (since anything we stick in the integrand that
isn’t gauge-invariant will average to zero). In the pure YM theory, a good one is
our friend the Wilson loop W (C) = tr ([T,cc Ue) =~ trPelfc 4. What physics does it

encode? Recall what happened when we added an external source to measure the force

54Charlie-Baker-Hotel? Campbell-Baker-Hausdorff.
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mediated by various fields, for example in the Maxwell theory:

T—o00

lim Z~! /DA eiSMaxwen[Al+H [ Ay J# _ —iV(R)T

Here we took J*(z) = nt0 (64(Z) — 6*(Z — (R, 0,0))) for ¢ in an interval of duration T,
and zero before and after, two charges are held at distance R for a time 7. V(R) is the
energy of the resulting configuration of (here, electromagnetic) fields, i.e. the Coulomb
potential. If instead we let the charge and anticharge annihilate at t = 0 and ¢t = T,
this is a single charge moving along a rectangular loop Cr«7 in spacetime, with sides
R and T, and the result is just the expectation value of the associated Wilson loop.
Going back to Euclidean spacetime, this is

(W(Cprxr)) =2~ / HdU o 37 Lo RS0y 1 () TZR VT

where the LHS is the expectation value of a gauge invariant operator. There can be
some funny business associated with the corners and the spacelike segments, and this
is the reason that we look for the bit of the free energy which is extensive in 7. [End
of Lecture 19]

In the case of the Maxwell theory in the continuum, this is a gaussian integral,
which we can do (see the homework), and log <el§cRXTA> ~ —E(R)T — f(T)R with

E(R) ~ %, goes something like the perimeter of the loop C. In the case of a short-
ranged interaction, from a massive gauge field, the perimeter law would be more literally

satisfied.

T>R
In contrast, a confining force between the charges would obtain if (W (Crxr)) z

e VBT with instead

ov
V(R)=0R = F——ﬁ_—a.
This is a distance-independent attractive force between the charges. In this case
log (W) ~ RT goes like the area of the (inside of the) loop, so confinement is as-
sociated with an area law for Wilson loops. A constant force means a linear potential,
so it is as if the charges are connected by a string of constant tension (energy per unit

length) o.

A small warning about the area law: in general, the existence of an area law may
depend on the representation in which we put the external charges:

W (C,R) = trgPelfe AATR

where Tj%4 are the generators of G in some representation R; this is the phase associated
with a (very heavy and hence non-dynamical) particle in representation R. For some
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choices of R, it might be possible and energetically favorable for the vacuum to pop
out dynamical charges which then screen the force between the two external charges
(by forming singlets with them). G = SU(N) has a center Zy C SU(N) under which
the adjoint is neutral, so a Wilson loop in a representation carrying Zy charge (such as
the fundamental, in which it acts by Zy phases times the identity) cannot be screened
by pure glue. QCD, which has dynamical fundamentals, is more subtle.

This point, however, motivates the study of the dynamics of lattice gauge theories
to address the present question: Where might such an area law come from? T’ll give
two hints for how to think about it.

Hint 1: Strong coupling expansion. In thinking about an integral of the form
/ DU €21 ()

it is hard to resist trying to expand the exponential in .

Unlike the perturbation series we’'ve been talking about for months, this series
has a finite radius of convergence. To understand this, it is useful to recognize that
this expansion is structurally identical to the high-temperature expansion of a thermal
partition function. For each configuration C, the function e #M%) is analytic in 8 about
B = 0 (notice that e~ T is analytic about 7' = oo!). The only way to get a singularity at
B = 0 would be if the sum over configurations (in the thermodynamic limit) did it; this
would be a phase transition at 7" = oo; that doesn’t happen because the correlation
length inevitably goes to zero at T' = oco: every site is so busy being buffeted by thermal
fluctuations that it doesn’t care about the other sites at all.>

In the non-abelian case, we get to do all kinds of fun stuff with characters of the
group. For simplicity, let’s focus on an abelian example, which will have a similar
structure (though different large-3 (weak coupling) physics). So take U, = €i% € U(1),
in which case

So,Ul == (1 =cosbu), Ou(r)=0,(v4+v)=0,(x)=0,(x+p)+0,(x) = A0,—AL0,(x).

First let’s consider the case where the world is a single plaquette. Then, using the
identity [27df ¢ = 4,,

(W(o)) = /I;IdUe UU,UsUy (1 +B(So + SE) + %52 (S+ 51"+ %53 (S+ 50+ )

= B {S0S-n) +_3 (SapS_an) + O(8°) = YO (14 O(B%)) = e/ (PArea (6.17)
—_— 2

=1

55For a much more formal and, I think, less illuminating proof, see for example J-M Drouffe and
J-B Zuber, Physics Reports 102 (1983) section 3.1.2. Thanks to Tarun Grover for framing the above
argument.
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with f(f) = |In /| in this crude approximation. Here the area of the loop was just 1.
I've written Ssg = SZ, which is only true in abelian cases.

If instead we consider a loop which encloses many plaquettes, we

must pull down at least one factor of 55& for each plaquette, \ ) ,
in order to cancel the link factors in the integrand. We can get 2k
more factors of beta if we pull down more cancelling pairs of

BrSES™,, but these terms are subleading at small 3. The leading

contribution is (W (C)) = e~f(®Area (1 1 O(5?)), an area law. 7

Since the series converges, this conclusion can be made completely rigorous. In
what sense is confinement a mystery then? Well, a hint is that our argument applies
equally well (and in fact the calculation we did was) for abelian gauge theory! But
QED doesn’t confine — we calculated the Wilson loop at weak coupling and found a
perimeter law — what gives?

The answer is that there is a phase transition in between weak and

confinement, coulomb phase,

strong coupling, so weak coupling is not an analytic continuation aeaaw = peimetorjaw

of the strong coupling series answer. Ruling out this possibility - B~ >
in Yang-Mills theory would be lucrative.

In fact, though, the Wilson loop expectation itself can exhibit a phase transition,
even if other observables don’t. I’ve drawn the pictures above as if the world were two-
dimensional, in which case we just cover every plaquette inside the loop. In D > 2, we
have to choose a surface whose boundary is the loop. Rather, (W) is a statistical sum
over such surfaces, weighted by £#*. Such surface models often exhibit a roughening
transition as [ becomes larger and floppy surfaces are not suppressed.

By the way, the same technology can be used to study the spectrum of excitations
of the gauge theory, by considering correlations like

(Sr)SHO)) =3 |efifPemm="" <

where Sg is the trace of a Wilson loop in representation R, around a single

plaquette, and the two loops in question are separated only in time and

are parallel. The subscript ¢ means connected. o
The right hand side is a sum over intermediate, gauge invariant states with the right
quantum numbers, and m,(R) are their masses. This is obtained by inserting a com-
plete set of energy eigenstates.
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!

In strong coupling expansion, we get a sum over discretized tubes of pla-
quettes, with one boundary at each loop (the connected condition prevents

/

<\

el
disconnected surfaces), the minimal number of plaquettes for a hypercubic -:‘:‘f
lattice is 4t, “\:_/)

¢

giving
(Sr(t)S(0)) ~ 48" (1+0(8%)

and the smallest glueball mass becomes mg ~ 4|ln |, similar to the scale of the
string tension. Actually, the corrections exponentiate to give something of the form

mo(R) = —4In B+ Y, my(R)S".
Hint 2: monopole condensation and dual Meissner effect.

[Banks’ book has a very nice discussion of this.] Recall that a single magnetic
monopole is not a finite energy situation inside an infinite superconductor, because it
has a tensionful Abrikosov flux string attached to it. A monopole and an antimonopole
are linearly confined, with a constant force equal to the string tension.

On the other hand, electric-magnetic duality is a familiar invariance of Maxwell’s
equations:
a#F,u,y = J;Ee)a 8#Fuy = J,Em) (618)

is invariant under the replacements

Cuvpo FP7, T — J.

N | —

F, — F;w =

In doing a weak-coupling expansion (e.g. as we did in QED), we make a choice (having
not seen magnetic charges, they must be heavy) to solve the second equation of (6.18)
by introducing a smooth vector potential A, via

1 m g

Fu(x) = 0,4, —0,A, + §€uup0 / d4yJ( )(y) fflx —y)

with 9, f*(z) = §*(x). Here we are treating the magnetic sources as fixed, e.g. because
they are heavy. The support of the function f” is called the Dirac string. A monopole
is placed at the end of a long and infinitely thin solenoid, which carries away its mag-
netic flux fsphere around monopole B = fcross—section of solenoid b= 95 and is invisible classically.
Quantumly, it could be detected by Aharonov-Bohm effect of a charged particle going
around it ¥4 = ¢le/ B = ¢i¢9 ynless eg € 2nZ, Dirac quantization again. (For par-
ticles with both electric and magnetic charge (they are called dyons), the condition is
G1mo — qamy € 277Z.)
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So, the duality interchanges electric and magnetic things. So, if condensation of
electric charge (meaning (|®|) = v for some electrically charged field ®) means that
A,, is massive (Anderson-Higgs effect) and that monopoles are confined by tensionful
magnetic flux tubes, then we can just replace the relevant words to learn that: Conden-
sation of magnetic charge (|®,,|) # 0 means that some dual photon (A, with dA = F)
is massive, and that electric charges are linearly confined by tensionful electric flux
tubes.

This was pointed out by Mandelstam and 't Hooft in 1974. In 1994 Seiberg and Wit-
ten (hep-th/9407087) showed in detail that this happens in a highly supersymmetric
example. In abelian lattice models, we can actually implement the duality transforma-
tion explicitly by various path integral tricks. One path through this story (found in
1978 by Banks, Myerson, Kogut and also Peskin) is described in Banks’ book. Along
the way, one encounters dualities with many familiar statistical mechanical models,
such as the XY model.
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7 Non-abelian gauge fields in perturbation theory

7.1 Gauge fixing and Feynman rules

Gauge fixing. [Peskin §16.2, Scwhartz §25] Consider the partition function for Yang-
Mills theory (it will be easy to add the quarks later):

1 ASIA]
Z voI(G) /[DA] )

We assume that S[A] is some gauge-invariant functional of A, such as the Yang-Mills

action. The integral over [DA] goes over all configurations of the gauge field A. Here
vol(G) is the volume of the gauge group — a copy of G for each point in space. We divide
by it to cancel out the contributions from gauge-equivalent configurations of A. We
would like to make this cancellation (which is co/o00) more explicit by fixing a gauge,
G(A) = 0. Perhaps surprisingly, this will be an application of fermion path integrals.

Note that the gauge-fixing function G(A) must be a function of A which is not gauge
invariant, such as 9" A,. To do so, we will insert the following form of the number 1:

1= AA] / (Dald[G(A™)]. (7.1)
Here
AY = (AZ)eT = cioT (Au + éau) oo (72)
- (AZ 4 é@uoﬂ 4 f“bCAZaC) T 1+ O(a?) (7.3)
= (A; + épﬂoﬂ> T+ O(a?) (7.4)

is the gauge-image of A under a gauge transformation with parameter a(x) — at the
last step D is the covariant derivative on a field in the adjoint representation. The

(Fadeev-Popov) determinant A defined by (7.1) is a Jacobian A[A] = det (%). A

crucial property of A is that it is gauge invariant:
A[A«]t @D / [Da)5[G(A+e1)] = / D (a + a1)|5[G(A)] = A[A]. (7.5)

(Here we used the fact that the measure on the group is invariant, [Da] = [D (a + aq)].)
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Inserting this form of 1 (7.1) into Z (and changing the order of integration) gives:

7 = V011< 3 / [Da) / [DA)S[G(A™)| A[A]eS (7.6)
_ v011<g) / [Dal / [DAIS[G(A%) A[A%]SA (7.7)
= (Vo%(g) / [Da])J / [DA]S[G(A)A[A]SHA) . (7.8)

~~

In the first step we use the fact that [[DA] = [[DA?], S[A] = S[A%] and (7.5). In the
second step we change integration variables to A® = A, and promptly drop the tilde.
So we’ve cancelled the offending volume of the gauge group, and inserted a gauge-fixing
delta function in the path integral.

The only price is the FP determinant A that we’ve acquired. What is it? It depends
on the choice of gauge fixing function. Let’s choose

G[A] = 0" Al (z) — w'(x).

Rather than picking a particular w, let’s average over all possibilities with gaussian

measure:
w?(x)

1=N(§) /[Dw]eifd%zé.

The normalization factor is just a constant which we can forget. Therefore

7Z = N(¢) / [DA] / [Dw]é[0- A —w]e ] %A[A]eisw (7.9)
— N(©) / [DA]A[A]J(S[A” ), (7.10)

Finally we must figure out what is A[A]. Comparing to (7.4) (and remembering that
there is a factor of §[G| multiplying everything), A is the determinant of the operator

SGIAT] 1,
G = 0D

Notice that in the abelian case, this is independent of A (the covariant derivative D

acting on the adjoint representation of U(1) is just d) and we can forget about it; that’s
why we didn’t bother doing this for QED.

1 o
A = det (—aﬂpu) _ / [DeDaet 47w Du)e.
g
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At the last step we used the integration formula for gaussian grassmann integrals (and
absorbed a factor of ¢ into the definition of ¢, and ignored a constant factor). ¢ here is
a new complex scalar field in the theory (¢ = ¢f). Since D is the covariant derivative in
the adjoint, it’s a field in the adjoint of the gauge group. There’s just one weird thing
about it — it’s a fermionic field with second-order kinetic terms, a ghost!

We saw all kinds of bad things about fermions with second-order kinetic terms in
our discussion of spin-statistics. But those bad things only happen if the particles
occur in external states. One purpose of a lot of the fancy stuff on this subject (such as
BRST symmetry) is guaranteeing that we’ll never make ghost particles while scattering
the real particles. The loops of the ghosts, though, are crucial for getting correct
and unitary answers. In particular, the optical theorem relates scattering states to
particles appearing in loops. The contributions to the imaginary part of loops from the
ghosts are required to cancel the unitarity-violating contributions from the unphysical
polarization states of the gluons. (For the details of what is being cancelled see Peskin
pp. 508-511, and for the cancellation itself, see 515-516.)

Altogether,

i(S141-f @524 f e(-0D,)e)

7= / (DADeDde (7.11)

More generally, the ghosts are negative degrees of freedom whose role in life is to cancel
the unphysical contributions of the timelike and longitudinal components of the gluon
field. For example, in the free (¢ = 0) path integral in Feynman gauge, we have

dim(G)

7 = (det (~0%) " det (—0%) ")

The contribution of the ghosts cancels two components’ worth of the contribution from
the gluons.

Feynman rules. More explicitly, the ghost action is
Lapons = & (=026 — g [ a7 ) "
The ghost propagator is then:

a ~b _ —ik(z—y) —1i ab
<C (z)c (y>> = /d4k ¢ ! 2 _|_i€6 :

Let us use the lovely Yang-Mills action, S[A] = [ Lyn

1 a rapv a a a abe ¢
Lyy = _ZFNVF . ) F/w = aMAV - aVAM +gf ' AZAV'
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The resulting gluon propagator is
(Al (z)AL(y)) = / Fp etk 1 sab o — (1— €) kK,
: ) k? + ie w L2

The gluon propagator is just like the photon one, times a § which conserves the color.
¢ =1 is Feynman gauge, which I'll use everywhere below.

The new Feynman rules are

i
abc
PaasL.gie e pr— _’ } = — ku7

/‘“"Lk
KV)?QKVL = gfabc (nul/(kl - k?))\ + nV)\(kQ - kB)u + nAu(kS - kl)u) 5
L

vy vl
fx = _i92 (fabefcde (nuAnup - n,upnl/)\) + fadebee (np)\nup - nuunp)\) + facefbde (nuun)\p - n,upnu)\)) .
b e

(Patterns: in the cubic coupling, the three terms cyclically permute the color and
kinematic indices. In the quartic coupling, the second term is obtained from the first
by the interchange (b, v) <> (d, p), and the third is obtained from the first by (b,v) <>

(e, A).)
Including quarks doesn’t mess with the gauge-fixing stuff. We’ll take
Lauarks = @ (i) —m) q = G (v (10,6:; + gAItS) — mdy;) g5

Here i,j are color indices. For QCD, i,j = 1..3 and and ¢f; are the generators of

SU(3) in the fundamental representation (a good basis of which are called Gell-Mann
ap

matrices). Then there’s also a quark propagator, and the qqg vertex, /)\ = igyHt®.

We'll also need to add some counterterms
@ = —i (K2 — KRY) 665~

—~—@—<— = ifd, Y adh N

}\ :igt“fy“él < z’z&\—i_ A

On the right, I've indicated which one-loop diagrams require us to add these respective

counterterms.
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7.2 QCD beta function

We're going to calculate the beta function for the QCD coupling g. We’ll use dim reg,
so the beta function is defined as 3(gr) = 10,9r, where p is the scale that appears
when we replace 4-dimensional integrals with D-dimensional integrals, and where gr
is the renormalized coupling. Here is a good device for working out the beta function
in dim reg. Very explicitly, the whole Lagrangian is

1
L= —ZZg(aA)Q + Z5q (i — Zwmpg) q — Zs.c*Oc" (7.12)
1
o Iue/QgRZABfabc(aHAg)ApbAuc o ZMGQ%ZAAL (fabcAZAlc/) (fadeAudAue) (713)
+ uPgrZy ALyt g + p g 21 f 0, ALt (7.14)
Here I've written the counterterms in terms of Z = 1 — §. Notice that there are

four counterterms (21, Z a3, Z 44, Z3.) all of which describe corrections to g — they are
related by gauge invariance, just like how in QED the vertex correction and the electron
self-energy were related.”®

The bare fields are the ones whose quadratic terms are just (0A%)? and ¢%i@q®,
i.e. A = /Z3A,,¢° = /Z5q, " = \/Zscc. The bare coupling is the coefficient of the
interaction written in terms of the bare fields, e.g.

Logg = ,u%gl:ngZglmZQ_1 Azaqovutaqo.

=90

Now here comes the trick: the bare coupling doesn’t know anything about our choice
of 11.°" Therefore

€

0 = p0ugo = 10y (:u%gRZIZg_l/QZQ_IZ1> =% | 3

1 1
+ — pOugr +1o, (51 — 503 — 52)
9JR >~~~ 2
=B(gr)
Now the counterterms ¢ will depend on p through ggr(), so we can use the chain rule:

dgn O 96
9,0 = n—2 = 5 = -
HOWO = 1 B ﬂ(gR)agR

56Note that I also include the dimensional-analysis-restoring dim reg factor of p/? explicitly in £.

We can see that this is the right thing to do by rescaling A= gA so that the coupling appears only in
—étrF? In that case, the action and the coupling g are both dimensionless in D = 4 — ¢ dimensions
if we write S = — [ dDgc“f—;trFQ. This is the same as replacing g — u/2g.

57This is a different perspective than we have when the scale introduced in the renormalization
scheme is a UV cutoff. There, if we hold fixed the physical coupling we must vary the bare coupling
with the UV cutoff, and in fact its variation defines the beta function, as in §4.2 The two perspec-
tives are related to each other like active and passive transformations; the object under study is the
transformation itself which here is encoded in the beta function.
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So we have

1
Blgr) = —%93 — gr1O, (51 — 50— 52) (7.15)
€ 1
= —59r ~ YR B(gr)  Ogg (51 — =03 — 52) (7.16)
—— 2
=—£9r+0(9%)
€ € o 1 4

At the last step we solved the equation perturbatively. So we need to know how the
counterterms 0, 23 depend on the coupling. We could have chosen a different term to
focus on, which would have required knowing a different set of the counterterms; we’d
have to get the same answer.

Gluon vacuum polarization. The Ward identity in QCD still implies that the
gluon self-energy is transverse:

il (q) = —illa (¢°n" — ¢"¢")
=M§F+w(}h—+ SZ O e e
= M, + Mz + My + Mghost — i (k:277’“’ — kz“k”) 5705

through one loop. In Feynman gauge, we have

IME(q) =~ = —trp(t°") (ig)* * " / "k ! Lt [y (K= g+m)r (m)]

(q_k)Q_kaQ_mQ

There are no surprises here — it looks just like the electron loop contribution to the
photon vacuum polarization. The color trace is trpg(t%°) = Tpé® = %5“1’ for the
fundamental representation. Since we’re interested in the UV singular structure, we
can simplify our lives by setting the quark masses to zero. Using exactly the same
tricks as for QED, the answer is then, near D = 4 — ¢,

abg2(81 20 4. u2

: vab _ 2 v v
M) = NiTr (0" — 4"¢") 8" 1o (—5- — 5 — 3o

3¢ 9 3 _—q2 + O(E)) (718)

where Ny is the number of flavors of quarks (e.g. up, down...), counting Dirac multi-
plets,
More novel are the gluon and ghost loops:

i i

MG = e = (<D(=0)? [ APk (= )

—4-D 1 2—-D/2
(1.19) 5 fI ab v 1 w (Ip(o_D o _ _D
=g (47T)D/2(5 CZ(G)/0 dx (A) (77 (2F (2 5 A)+¢"¢" | z(1l—x)[ (2 5
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The big (—1) is because the ghosts are fermionic. To get to the second line, we used
Feynman parameters and completed the square and did the integral over ¢ = k + xq.
A = z(z — 1)¢*. The new ingredient is the color stuff.

Quadratic Casimir. Recall that the total angular momentum J? = j(j 4 1)1 has
[J2, f] = 0 — it’s a Casimir for SU(2), proportional to the identity on each irrep. This
works for any Lie algebra:

T? =T°T" satisfies [T°, 7% = 0, Vb.

In any representation r then we have TT* = Cy(r )]ld(r yxd(r)- In particular, for the
adjoint rep,

TogiTag; = (F el f*)ea = f0f7 = Co(G)8™. (7.19)
Cy(r) is related to the normalization of the generators: trTeT? = ¢(r)d*® (remember,
we chose c(fundamental) = 3). Contracting with 6*° gives d(r)Cs(r) = d(G)c(r). For
the SU(NV), c3(G) = N. See Peskin page 502 for a derivation.

2 . .
. prab _ _ g_—4—D Dk,__l —1 acd bchuV 2
iMy T 5 H /d EN - q)zf f (7.20)

1 2-D/2
N ) o
2 (47T)D/25 bCZ(G)/O dr <Z> (1" A+ q"q¢" B+ 0" ¢*C) . (7.21)

The % is a symmetry factor, since gluons are real, the two internal gluon lines can be
exchanged. A = x(x — 1)¢? is the same as before.

D D

2

A=3(D-1)T (1 — —) A, B = (6(x*~2+1)—D(1-22)*)T (2 — —) ,C = (—22°422x—5)T (

2

The term with A represents a would-be-quadratic divergence. In dim reg this shows
up as a pole at D = 2.

In the diagram which uses the quartic coupling, too, we find a quadratic divergence

My ~ d%NAZ:

. 9
iMZVab _ f ? — %Iazl—D /de e np)\é‘cd (fabefcde (5#51/ 5;;5;)

+fadefcbe ((SK(SZ o np,unp)\) + facefbde (n;wn)\p _ 555K))
Pk

= —@5pCy(G) (D — P [

2-3).
2

1 2-D/2
= —g%6"" " Cy(G) (D — 1)/14_D/ dx (l> (—QF (1 - 2) A+ (1—-1)%¢T (2 _D
; A 2 2 2

(7.22)
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The monstrosity in the first line is just the quartic vertex. The first term vanishes by
antisymmetry 6°f°% = 0. At the second line we multipled by 1 = in order to

put the integral into the same form as the other terms. °®

The glue contributions to the gluon vacuum polarization (not including quarks yet,
since those are optional) are then

puvab uvab ab 9 ﬂ4—D 1 1 2-D/2
M ( ) (M3 + My + Mghost) =9 CZ(G>g de | — .
0

glue (47T)D/2 A
uw D 1 3(D — 1) D(D — 1) y D v 2
T 1—5 A —§+ 5 - 5 +q"¢"T 2—5 a+n"q¢ T (2 —

Herea = —3(z? —2+1)+2(1-2z)*+z(l—2) and b =2’ —z+ 3 — (1 —2)*(D - 1).
The coefficient of T’ (1 %) has a factor of D — 2, which cancels the pole at D = 2.
Then using I' (1 — £) (D — 2) = —2I' (2 — £), this term combines with the other two.
After some boiling using the x <> 1 — z symmetry, this is

2

D)b

-Mﬁf@w:&%quszsgjim(%)%QQWW—qur(z—g)((r—g)u—am?+@

—4—c 2 101 31 5 2
TGO 0 - )8 s (5o S a1 0(9).

(4m)?
Notice that compared to (7.18), the coefficient of the log (and of the pole in €) has
the opposite sign. From this we conclude that to cancel the ¢! pole in the vacuum
polarization we must take

1 g? 10 8
%= 16x2 (302@ 3 fTF> '

We're almost there. To get the beta function we also need §; and ds.

Quark self-energy. This determines d; and d,, (the latter we won’t need). The
UV bit doesn’t care about the mass, so let’s set m = 0. Again it is just like QED
except for the color factors. The one-loop correction to the quark self-energy is

- . i _jgb
g
122 (ﬁ) /d kfzkﬁy k2 + ]Lljf)/“ (k _ p)2 + ie

58 Actually, there is a sense in which this contribution is zero in dim reg. After the rewriting, it’s
still zero, but only after doing the x integral. How can it affect anything then? The difference after
the rewriting is merely that the cancellation of the pole at D = 2 happens in the integrand of the z

integral, rather than only after integration.
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The color factors are

17,078 = " (t11%),; = Co(F)dy;

a

where Cy(F) is the quadratic Casimir in the fundamental representation, which for
SU(N) is Cy(F) = =1 The momentum integral is the same as in QED and we find

2N
’ 7 1
ij . 7 .
The quark wavefunction renormalization counterterm d, contributes as X% = ... + dap,
so we must set
A N Ea)
> e16m2 2 '

Vertex correction. The vertex correction gets two contributions at one loop.

a

— ig(tntatb)]Jéch/éED

b

where o
10
Coen = Fu(p* )" + 5 —p P (p”)

is identical to the QED answer (notice that it’s useful to keep the quark mass around
for a bit here) and the color factors are

1060 = Pt = PP P[0 1] = Oy (F)T* +ifeet’te.
By antisymmetry of £, the second term is
j fabegbpe — ifabc%[tb, 1] = _%fabcjcbcdtd _ —%CQ(G)t“.
Altogether, the divergent bit of this diagram is

a

: 1 an 9 (2 e .
=19 (CQ(F) — 502((5)) tij"}/“@ (E + In —_])2 + finite | .

The other diagram is new:

=g (1), T

new
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with

i —i

—ioT* 2:-24—D/de,in _ .
iglew (P7) = (i9)°gp VB G — k)

(" (2q+d + k) +0"" (—q+ ¢ = 2k)" + 0™ (k —2¢ — q)")

(I find the opposite sign from Schwartz here. This sign cancels against the one in
(7.24).) The horrible numerator comes from the 3-gluon vertex, but in computing the
UV divergence we can set the external momenta to zero. This gives

new L6

2-4—-D de 2_ 1 P Lt

4 ak
— 42 4— — /J,—4D/
g ( 5 ) 1" -
2 2
2 g 6 14 .
=g l’y“ 16,ﬂ_2 (E + 310g j —+ ﬁnlte)

Tl (0) = gt P / R LA T

where at the last step we put back the gluon momentum to make up the dimensions.
Finally the color factor is

, 1 1
fab(:(t(:tb) — éifabcfd)dtd _ _i§CQ(G)ta (724)

Altogether, the divergent part of the qqg vertex at one loop is then

%igt?jfy“ <(2 <02(F) - %(JQ(G)) + 302(G)> %; + (516) = § = élg; (—2C2(F) = 2C5(G)).

Combining all of this information using (7.17), the QCD beta function is (dropping
the R subscripts on gg)

€

1
Blg) =—=g+ 292% (51 — 50— 52) + O(g")

2
3
D—4 g 1 /710 8 ,
= Ton2 (‘QCQ(F) —205(6) = 3 <§C2(G) -3 fTF) - (—QC’Q(F))) + O(¢")
3
g 11 4
= — - _INT
1672 (3 (@) — 3Ny F)
SU(N) with fundamental quarks g3 11 2
1672 \ 3 3

If there are not too many species of quarks (N; < 6N = 18, which is true in the SM),
[ is negative, in which case such a non-Abelian gauge theory is asymptotically free, as
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promised many times. Defining a running coupling as in (4.47), we find a crucial plus
sign relative to (4.47)
2 11
2 . g%\’ ¢= 3
1+ 55Clog (W)

92:(q%) =

and the coupling grows as ¢ decreases, and shrinks at large ¢. Actually it is a bit tricky
to define the effective coupling in QCD, but (a more precise version of) this curve has
been measured (see Peskin fig. 17.23 and Schwartz §26.3).

Qualitative picture of asymptotic freedom. [Peskin §16.7] The sign of the
beta function in QED can be understood as charge screening by the vacuum — electron-
positron pairs fluctuate into existence, and respond to the presence of a source in such
a way as to decrease its field at long distance.

How does non-Abelian gauge theory manage to produce antiscreening? There is
certainly still screening from the quarks, and since the gluons are charged, they will
also produce screening. So it makes sense that too many quarks will spoil the soup.
But whence the terms of the opposite sign in the beta function?

Following Peskin §16.7, consider pure (no quarks) SU(2) gauge theory, in Coulomb
gauge 0; A = 0. In this gauge, we sacrifice Lorentz covariance for more manifest uni-
tarity — no ghosts, and no longitudinal and timelike polarization states. The equation
of motion for A% is the Gauss law (in terms of E* = F%®):

gpa — DiEz’a — aiEia + gf=¢zbc14§7Evz'c7

where p is the charge density (e.g. the number density of quarks if we included them in
the theory), and for SU(2), the structure constants are f%¢ = ¢2%. Instead of dynamical
quarks, let’s consider a static color source particle: p®(z) = 0©)(#)§*" pointing in a
particular color direction, so the equation we wish to solve is

OE™ = g6 ()" + gf AV E". (7.25)
Let’s solve this perturbatively in ¢ in several steps.

1. At leading order, the source produces a Coulomb field:

E"(,z') = 9‘2: Z So far, this is just classical physics. < \ff?‘
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2. The quantum mechanics comes in here:

consider a fluctuation of the vector potential in the 2d o y

color direction A*~%!(7), with support localized some- N/ .
where, call it x(, away from the origin. Suppose it points < \‘/—oﬁ E
in some direction, somewhat aligned with 7, its displace- / \\ D

ment from the source.

3. Here comes the iteration.

—. 3 // S
The second term on the RHS of (7.25) is then ge®cA" . ./ //f\
E¢ o —6°¢ A%. E', asink for the color-electric field in the 1\71{‘\ 7 Z
3rd color direction. \

4 This produces a new Coulomb field ~ —% g2 A"
" pointing towards z. % E
5. Now look at the second term on the RHS of (7.25) again:
= Ton o /
V-E'=.. +ge? A 5/ ‘.
: ~ /% 9 A
it is a source (sink) for the color field in direction | where N G 9
A% and ' are parallel (antiparallel). AN

But if the fluctuation A’ points away from the source,

. . Y -
then in the region closer to the source, A? - > 0, /-g" A
and farther from the source they are anti-aligned. This

5

N

=y
!

produces a dipole source for £ which points toward the 6 /y
original charge, and therefore anti-screens its field.

Warning: on the other hand, if the fluctuation A2 points toward the original source
then this process produces a dipole pointing away from the original source, which
contributes to screening. I'm not sure if this picture can be made quantitative.

Disclaimer. This discussion just scratches the surface of the physics of QCD!
Many measurable phenomena can be calculated using the machinery we've set up.
Please see Peskin §17 and Schwartz §32.
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8 Anomalies and fermion path integrals

8.1 Coherent state path integrals for fermions

[Peskin, §95, Shankar, Principles of M, path integrals revisited. In this chapter of
his great QM textbook, Shankar sneaks in lots of insights useful for modern condensed
matter physics.]

Consider the algebra of a single fermion mode operator®®:
{c,e} =0, {c',c} =0, {c,cl}=1.
With a single mode, the general Hamiltonian is
H = c'c(w — p)

(wp and p are (redundant when there is only one mode) constants). This algebra is
represented on a two-state system |1) = ¢f]0). We might be interested in its thermal
partition function
Z=tre 7

(In this example, it happens to equal Z = 1 + e T, as you can see by computing
the trace in the eigenbasis of n = c'c. But never mind that; the one mode is a proxy
for many, where it’s not quite so easy to sum.) How do we write this trace as a
path integral? We can do this by insertion lots of resolutions of the identity (this is
sometimes called ‘Trotterizing’), using any resolution of the identity on #, so there can
be many very-different-looking answers to this question.

Let’s define coherent states for fermionic operators:

cli) =) (8.1)

Here ¢ is a c-number (not an operator), but acting twice with ¢ we see that we must
have 92 = 0. So ¢ is a grassmann number. These satisfy

P11y = =)y, e = —cyp (8-2)

— they anticommute with each other and with fermionic operators, and commute with
ordinary numbers and bosons. They seem weird but they are easy. We'll need to
consider multiple grassmann numbers when we have more than one fermion mode,

59For many modes,
{cic;} =0, {c[.el} =0, {e;,cl} =15 .
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where {cy, ca} = 0 will require that they anticommute {t¢1,1%,} = 0 (as in the definition
(8.2)); note that we will be simultaneously diagonalizing operators which anticommute.

The solution to equation (8.1) is very simple:

[¥) = 10) =4 1)
where as above |0) is the empty state (c|0) = 0) and |1) = c'|0) is the filled state.
(Check: cip) = ¢|0) — ey [1) = +yc[1) = ¢ [0) = ¢ [¢) )
Similarly, the left-eigenvector of the creation operator is
(Wl el = (v, (& =0 = (1] = 0]+ (1].

Notice that these states are weird in that they are elements of an enlarged hilbert space

with grassmann coefficients (usually we just allow complex numbers). Also, 1 is not
the complex conjugate of ¥ and <1E} is not the adjoint of |¢)). Rather, their overlap is

(D) =14 dip = .

Grassmann calculus summary. In the last expression we have seen an example
of the amazing simplicity of Taylor’s theorem for grassmann functions:

J@W) = fo+ fiv .

Integration is just as easy and in fact is the same as taking derivatives:

/wdsz /uw:o.

With more than one grassmann we have to worry about the order:
1= [ Gududi = [ duaids
The only integral, really, is the gaussian integral:
/ e~ dipdip = a.
Many of these give
/ e~ AY dibdyp = det A.

Ay Agg - (5
Here ¢ A -1 = (z/_;l, e ,QEM) Agp "rooee : |. One way to get this expression
Ym
is to change variables to diagonalize the matrix A. Notice that

/ei-A-wdlzdw — det A — ettrlogA
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involves a sign in the exponent relative to the bosonic answer
N -1
/ e " Adp*de = det A = e 108,
This is the same sign as the minus sign associated to fermion loops.

_ o [e apdy 1 .
(y) = [e~abvdpdyy — a (W9
If for many grassman variables we use the action S = ). a;inh; (diagonalize A
above) then

0 5@ ~ .
(Basyy = 2 = i) (53)
and Wick’s theorem here is

(ihwihn) = (i) (Gk) — (ik) (L) -

Back to quantum mechanics: The resolution of 1 in this basis is

1= [ abav ¥ 1w (il (8.4)

And if A is a bosonic operator (made of an even number of grassmann operators),
trA = /cwdw e‘W<—1ﬂA!w) :

(Note the minus sign; it will lead to a deep statement.) So the partition function is:

Sl

2= [ bty e (i) &

<t o
-(1-A7H)--- (1 — ATH)

(.

~\~
M times

Now insert (8.4) in between each pair of Trotter factors to get

M-1 B ~ B
7Z = / [T dwdupe™" (ra| (1 — ATH) [y) .
=0

Because of the —) in (8.4), to get this nice expression we had to define an extra letter

U = —vo, Yu = —1o (8.5)
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so we could replace <—@Z_JO‘ = <@Z_)M‘

Now we use the coherent state property to turn the matrix elements into grassmann-
valued functions:

(] (1 - ATH(c',¢)) [¢) = (Y| (1 = ATH (Ui, 00)) |tr) A0 gl gm ArHb),

It was important that in H all cs were to the right of all cfs, i.e. that H was normal
ordered.)

So we have

M-1
/= / H dr(zldwle—d’lwl61ZJ1+11/116—ATH(1Z;H1,W)
=0

= i =
— / H diydipexp | AT % Uy — H (i1, 0)
1=0 f;z—’

B /T _ B _
~ / (DIDY] exp ( /0 dr () <—aT—wo+u>w<T>> - / (DIDYle S (8.6)

Points to note:

e In the penultimate step we defined, as usual, continuum fields

W(m = ATl) =y, U(m = ATl) = ;.

e We elided the difference H (1y11,%;) = H (3, ;) + O(AT) in the last expression.
This difference is usually negligible and sometimes helpful (an example where it’s
helpful is the discussion of the number density below).

e The APBCs (8.5) on (7 + 7) = —t(7) mean that in its fourier representation®
Y =Ty pwe™ 7, §r)=TY Pw)e (8.7)

the Matsubara frequencies
wp=02n+1)7T, neZ
are odd multiples of 7T

e The measure [Dy D] is defined by this equation, just as in the bosonic path
integral.

604)) is still not the complex conjugate of 1) but the relative sign is convenient.
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e The derivative of a grassmann function is also defined by this equation; note that
Y41 — 1y is not ‘small’ in any sense.

e In the last step we integrated by parts, i.e. relabeled terms in the sum, so

Z (Vi1 — ) o = Z Driathi— Z i =Y b 1—2 Yy == (Y — i) .
!

U'=l-1

Note that no grassmanns were moved through each other in this process.

The punchline of this discussion for now is that the euclidean action is

SI3, 4] = / dr (§0,0 + H(5, )

The first-order kinetic term we’ve found 19,4 is sometimes called a ‘Berry phase term’.
Note the funny-looking sign.

Continuum limit warning (about the red ~ in (8.6)). The Berry phase term is
actually

N-1
D i (=) =T Z D(wn) (1= €7) p(wy)
1=0
and in (8.6) we have kept only the leading nonzero term:
(1 - ei””) — 1w, T.
Clearly this replacement is just fine if
w,T K 1

for all w, which matter. Which w, contribute? I claim that if we use a reasonable
H = Hyadratic +Hint, reasonable quantities like Z, <OTO>, are dominated by w,, < 771

There’s more we can learn from what we’ve done here that I don’t want to pass up.
Let’s use this formalism to compute the fermion density at T" = 0:

1
(N) = Etre_H/TcTc.

This is an example where the annoying A7s in the path integral not only matter, but
are extremely friendly to us.

Frequency space, T — 0.
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Let’s change variables to frequency-space fields, which diagonalize S. The Jacobian

is 1 (since fourier transform is unitary):

Di(7)D Hdw wn)dip(wn) = DY (w) Dip(w).

The partition function is

= /Dw(w)D@/J(w) exp (TZ @E(wn) (iwn — Wwp + ,U) 7vZJ(Wn)> .

Wn,

Notice that in the zero-temperature limit

T%: / /dw

(This is the same fact as V'Y, +— [d’k in the thermodynamic limit.) So the zero-
temperature partition function is

7 T=0 /Dw )Dib(w) exp (/Oodwz/_;(w) (iw — wo + p) ”‘MW)-

—0o0

Using the gaussian-integral formula (8.3) you can see that the propagator for 1 is

- Owr w 27
w w = L2 - . 8.8
(Banplen)) = 252 (59
T:;Oé(o.u—wz)
In particular (Y (w)Y(w)) = iw%ZJ/OTw. d(w = 0) = 1/T is the ‘volume’ of the time

direction.

Back to the number density. Using the same strategy as above, we have

M- 1+1
/ H dipidiye” Wm) H (1|1 —ATH(CTC))|¢Z> <%EN+1|CTC|¢NZ ,

=1 _ _v
=YN+1¥N=Y(TN+AT)Y(TN)

where 7y is any of the time steps. This formula has a built-in point-splitting of the
operators!

Ny = © / DODS S 1y + Aryi(ry)

elwAT
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Which is the right answer: the mode is occupied in the groundstate only if wy < pu.
In the last step we used the fact that A7 > 0 to close the contour in the UHP; so
we only pick up the pole if it is in the UHP. Notice that this quantity is very UV
sensitive: if we put a frequency cutoff on the integral, [ A %“ ~ log A, the integral
diverges logarithmically. For most calculations the A7 can be ignored, but here it told

us the right way to treat the divergence. %!

8.2 Anomalies

[Zee §IV.7; Polyakov, Gauge Fields and Strings, §6.3; K. Fujikawa, Phys. Rev. Lett. 42
(1979) 1195; Argyres, 1996 lectures on supersymmetry §14.3; Peskin, chapter 19]

Topology means the study of quantities which can’t vary smoothly, but can only
jump. Like quantities which must be integers. Anomalies are an example of a topo-
logical phenomenon in QFT, which is therefore robust against any change in the QFT
which can be made continuously (like varying masses or couplings, or the cutoff or the
resolution of our description, i.e. a renormalization group transformation).

Suppose we have in our hands a classical field theory in the continuum which
has some symmetry. Is there a well-defined QFT whose classical limit produces this
classical field theory and preserves that symmetry? The path integral construction of
QFT offers some insight here. The path integral involves two ingredients: (1) an action,
which is shared with the classical field theory, and (2) a path integral measure. It is
possible that the action is invariant but the measure is not. This is called an anomaly.
It means that the symmetry is broken, and its current conservation is violated by a
known amount, and this often has many other consequences that can be understood
by humans.

Notice that here I am speaking about actual, global symmetries. I am not talking
about gauge redundancies. If you think that two field configurations are equivalent
but the path integral tells you that they would give different contributions, you are
doing something wrong. Such a ‘gauge anomaly’ means that the system has more
degrees of freedom than you thought. (In particular, it does not mean that the world
is inconsistent. For a clear discussion of this, please see Preskill, 1990.)

61The calculation between the first and second lines of (8.9) is familiar to us — it is a single Wick
contraction, and can be described as a feynman diagram with one line between the two insertions.
More prosaically, it is

iw, AT

iwAT
B (8.7) 9 i(wn—wm)T iwn AT /.7 (8.8) e I'—0 / 61
Wp, m - 1 o '7_.
<1/J(TN + AT)’I/}(TN)> =1 ng e <'l/}( )T/J(W )> ; iw, —wo + 1w — wo + K@
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You could say that we have already seen a dramatic example of an anomaly: the
violation of classical scale invariance (e.g. in massless ¢* theory, or in massless QED)
by quantum effects.

Notice that the name ‘anomaly’ betrays the bias that we imagine constructing a
QFT by starting with a continuum action for a classical field theory; you would never
imagine that e.g. scale invariance was an exact symmetry if you instead started from
a well-defined quantum lattice model.

The example we will focus on here is the chiral anomaly. This is an equation for the
violation of the chiral (aka axial) current for fermions coupled to a background gauge
field. The chiral anomaly was first discovered in perturbation theory, by computing
a certain Feynman diagram with a triangle; the calculation was motivated by the
experimental observation of the process 7° — v, which would not happen if the chiral
current were conserved. (The relationship between the chiral current and the pion is
explained in §9.7.)

I will outline a derivation of this effect (using the fermionic path integral) which is
more illuminating than the triangle diagram. It shows that the one-loop result is exact
— there are no other corrections. It shows that the quantity on the right hand side of
the continuity equation for the would-be current integrates to an integer. It gives a
proof of the index theorem, relating numbers of solutions to the Dirac equation in a
background field configuration to a certain integral of field strengths. It butters your
toast.

8.2.1 Chiral anomaly

Chiral symmetries. In even-dimensional spacetimes, the Dirac representation of
SO(D — 1,1) is reducible. This is because

D-1

7= H " # 1, satisfies {7°, 7"} = 0,Vpu

p=0

which means that v° commutes with the Lorentz generators
1

b2 =0, =gk
A left- or right-handed Weyl spinor is an irreducible representation of SO(D — 1,1),
YR = % (1 £ ~5) 1. This allows the possibility that the L and R spinors can transform
differently under a symmetry; such a symmetry is a chiral symmetry.

Note that in D = 4k dimensions, if ¢y is a left-handed spinor in representation r
of some group G, then its image under CPT, ¥¢F7(t, 7) = iy° (Y. (—t, —T))", is right-
handed and transforms in representation T of G. Therefore chiral symmetries arise
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when the Weyl fermions transform in complex representations of the symmetry group,
where T # r. (In D = 4k + 2, CPT maps left-handed fields to left-handed fields. For
more detail on discrete symmetries and Dirac fields, see Peskin §3.6.)

Some more explicit words (of review) about chiral fermions in D = 3 + 1, mostly
notation. Recall Peskin’s Weyl basis of gamma matrices in 341 dimensions, in which
~° is diagonal:

0 ot 10
o Ho— =5\ M FH = -y 5 _
v (0 7). e=aar er=aear (")

This makes the reducibility of the Dirac representation of SO(3,1) manifest, since the
Lorentz generators are o [y*, "] block diagonal in this basis. The gammas are a map
from the (1, 2g) representation to the (2r, 1) representation. It is sometimes useful to
denote the 2g indices by o, 8 = 1,2 and the 2y, indices by &, 8 = 1,2. Then we can
define two-component Weyl spinors 91,/r = Pr/rt) = % (1 £+5) ¢ by simply forgetting
about the other two components. The conjugate of a L spinor x = v (L means
¥>x = x) is right-handed:
x=x"" " =x"""=-x"""=-x""=-x

We can represent any system of Dirac fermions in terms of a collection of twice as many
Weyl fermions.

For a continuous symmetry G, we can be more explicit about the meaning of a
complex representation. The statement that 1) is in representation r means that its
transformation law is

577Z)a = iEA (tf>ab 1/}17
where t4, A = 1..dim G are generators of G in representation r; for a compact lie group

G, we may take the t* to be Hermitian. The conjugate representation, by definition,
is one with which you can make a singlet of G — it’s the way ¢*7 transforms:

T N (- IR
So:
H=— ("

The condition for a complex representation is that this is different from t2 (actually
we have to allow for relabelling of the generators and the basis). The simplest case is
G = U(1), where t is just a number indicating the charge. In that case, any nonzero
charge gives a complex representation.
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Consider the effective action produced by integrating out Dirac fermions coupled
to a background gauge field (the gauge field is just going to sit there for this whole
calculation):

piSelA] — / (DYDY (SiAl

We must specify how the fermions coupled to the gauge field. The simplest example is
if Aisa U(1) gauge field and v is minimally coupled:

Sl A] = / iy, Do = (0, +iA,) .

We will focus on this example, but you could imagine instead that A, is a non-
Abelian gauge field for the group G, and v is in a representation R, with gauge gener-
ators TA(R) (A = 1...dimG), so the coupling would be

@Eilpﬁb = &aV” (auéab + iA;‘TA(R)ab) ¢b . (810)

Much of the discussion below applies for any even D.

In the absence of a mass term, the action (in the Weyl basis) involves no coupling
between L and R:

S[, ¥, A] = / aPx (fio" Dy, + v}ic" Dyn)
and therefore is invariant under the global chiral rotation
Y= ey, Pt = e g et That is: Y — €Yr, g — e “Yp.
(The mass term couples the two components
Ly =) (Rem + Imm75) ) = m@/)zwg + h.c.;

notice that the mass parameter is complex.) The associated Noether current is jZ =

¥y°,1, and it seems like we should have O* jg Z 0. This follows from the massless

(classical) Dirac equation 0 = 7#0,1. (With the mass term, we would have instead
5 2 o 5

Mg, = 2iY (Remy” + Imm) . )

Notice that there is another current j* = yy*1). j* is the current which is coupled
to the gauge field, L > A,j#. The conservation of this current is required for gauge
invariance of the effective action

Set|Au] = Se| A, + 9\ ~ log <eif A<ﬂv>f"w“> + SeaA,].
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No matter what happens we can’t find an anomaly in j#. The anomalous one is the
other one, the azial current.

To derive the conservation law we can use the Noether method. This amounts to
substituting ¢/(z) = @7 (z) into the action:

Selo) = [ @Paiet = ipe’y — [P (Gipu + Gin® (Ba) 0) " Seluli [ a(e)0tein 0.

Then we can completely get rid of a(x) if we can change integration variables, i.e. if

(D] < [D1]. Usually this is true, but here we pick up an interesting Jacobian.

Claim:
piSelA] _ / (D D51 — / [ Dy D SFIHT 4Pra() (203t ~A)

where

Alr) =) 66, (8.11)

where &, are a basis of eigenspinors of the Dirac operator. The contribution to A can
be attributed to zeromodes of the Dirac operator.

The expression above is actually independent of «, since the path integral is in-
variant under a change of variables. For a conserved current, a would multiply the
divergence of the current and this demand would imply current conservation. Here
this implies that instead of current conservation we have a specific violation of the
current:

8“]’2 = A(x).

What is the anomaly A? [Polyakov §6.3] An alternative useful (perhaps more
efficient) perspective is that the anomaly arises from trying to define the axial current
operator, which after all is a composite operator. Thus we should try to compute

(0.58) = 0u (V(2)V"7 ()
— the coincident operators on the RHS need to be regulated.

The classical (massless) Dirac equation immediately implies that the axial current
is conserved

au (&7“75@&) = 0.

Consider, on the other hand, the (Euclidean vacuum) expectation value
75 = (dayynti(@) = 271 A / (DY D579 15 (2)
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QO+ O+ 7+
= —Tr . 7,7/° G (z, z) (8.12)

where GG is the Green’s function of the Dirac operator in the gauge field background
(and the figure is from Polyakov’s book). We can construct it out of eigenfunctions of
i):

. IRy S =

lwfn(x) = ann(ﬂf), Sn(x)lfyu (_ 8u + 1Au> = 6nSn (813)

in terms of which%?

1 _
G(z,a') =) e—fn(:c)én(x’). (8.14)
(I am suppressing spinor indices all over the place, note that here we are taking the
outer product of the spinors.)

We want to define the coincidence limit, as ' — x. The problem with this limit
arises from the large |e,| eigenvalues; the contributions of such short-wavelength modes
are local and most of them can be absorbed in renormalization of couplings. It should
not (and does not) matter how we regulate them, but we must pick a regulator. A
convenient choice here is heat-kernel regulator:

and

The anomaly is

—se;,

e

oIy =0"(jhy =Y 10" (&uvuy°6n)

€n

The definition (8.13) says

i0* (gn’)/f)’mfn) = 25n€n75£n

using {75, v*} = 0. (Notice that the story would deviate dramatically here if we were
studying the vector current which lacks the +°.) This gives

('WJZ’ =2Tr 75e_s(im

62 Actually, this step is full of danger. (Polyakov has done it to me again. Thanks to Sridip Pal for
discussions of this point.) See §8.2.2 below.
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with

(D) = — (3 (B + 14 = — (0 + AL — D P

where Y, = 1[y,,7,] is the spin Lorentz generator. This is (8.11), now better defined
by the heat kernel regulator. We’ve shown that in any even dimension,

O (jp(x)) = 2Tr a’y‘r’esgj2 (8.15)

This can now be expanded in small s, which amounts to an expansion in powers of
A, F. If there is no background field, A = 0, we get

—s(ig)” _sp? I p=t 1
<x\e (1) ]x>:/dee P = Kp DR - g2 (8.16)

_9p1
(@mD

as before

This term will renormalize the charge density

pla) = (V1 (2)) = 17°G(z, ),

for which we must add a counterterm (in fact, it is accounted for by the counterterm
for the gauge field kinetic term, i.e. the running of the gauge coupling). But it will not
affect the axial current conservation which is proportional to

tr (Y’ G(z, 2)) |azo x tr7° = 0.

Similarly, bringing down more powers of (0 + A)2 doesn’t give something nonzero
since the 7° remains.

In D = 4, the first term from expanding >, F'* is still zero from the spinor trace.
(Not so in D = 2.) The first nonzero term comes from the next term:

N2 _ 2
tr <75es<ld> ) = <x|e_s(‘D)2|x> % (i) tr (VPSME) - tre (FuFpy) + O(sh) .
. —A4ehvpA color
(8;()) 16#1252 +O(571)

In the abelian case, just ignore the trace over color indices, tr.. The terms that go like
positive powers of s go away in the continuum limit. Therefore

1 52 1 y
3,“]? = -2 W . g . 4€uyp)\trch/Fp)\ + O(Sl) = —@terj (*F)'u . (817)
(Here (xF)" = %eﬂ”p’\F »a-) This is the chiral anomaly formula. It can also be usefully
written as: ) ]
8MJ§ = —@trF/\ F= _327T2E - B.
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e This object on the RHS is a total derivative. In the abelian case it is
FANF=d(ANF) .

Its integral over spacetime is a topological (in fact 167% times an integer) char-
acterizing the gauge field configuration. How do I know it is an integer? The
anomaly formula! The change in the number of left-handed fermions minus the
number of right-handed fermions during some time interval is:

FAF
AQAEA(NL—NR):/dtath:/ 8“J3:2/ /\2
M, M, 167

where M, is the spacetime region under consideration. If nothing is going on at

the boundaries of this spacetime region (i.e. the fields go to the vacuum, or there
is no boundary, so that no fermions are entering or leaving), we can conclude
that the RHS is an integer.

e Look back at the diagrams in (8.12). Which term in that expansion gave the
nonzero contribution to the axial current violation? In D = 4 it is the diagram
with three current insertions, the ABJ triangle diagram. So in fact we did end
up computing the triangle diagram. But this calculation also shows that nothing
else contributes, even non-perturbatively.

e We chose a particular regulator above. The answer we got did not depend on the
cutoff; in fact, whatever regulator we used, we would get this answer.

e Consider what happens if we redo this calculation in other dimensions. We only
consider even dimensions because in odd dimensions there is no analog of ~°
— the Dirac spinor representation is irreducible. In 2n dimensions, we need n
powers of F' to soak up the indices on the epsilon tensor. Actually there is an
analogous phenomenon in odd dimensions (sometimes called parity anomaly) of
an effect that is independent of the masses of the fields which you’ll study on the
homework. Instead of F™, the thing that appears is the Chern-Simons term.

o If we had kept the non-abelian structure in (8.10) through the whole calculation,
the only difference is that the trace in (8.17) would have included a trace over
representations of the gauge group; and we could have considered also a non-
abelian flavor transformation

50 a0 a
Yr — (eng> (o8}
17
for some flavor rotation generator 7*. Then we would have found:

1
-5a vp\ A 1B AmB__a
8M']M = @6“ P FWFp)\trc,a (T T°T ) .
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A similar statement applies to the case of multiple species of fermion fields: their
contributions to the anomaly add. Sometimes they can cancel; the Electroweak
gauge interactions are an example of this.

8.2.2 Zeromodes of the Dirac operator

Do you see now why I said that the step involving the fermion Green’s function was full
of danger? The danger arises because the Dirac operator (whose inverse is the Green’s
function) can have zeromodes, eigenspinors with eigenvalue €, = 0. In that case, ilp is
not invertible, and the expression (8.14) for G is ambiguous. This factor of ¢, is about
to be cancelled when we compute the divergence of the current and arrive at (8.11).
Usually this kind of thing is not a problem because we can lift the zeromodes a little
and put them back at the end. But here it is actually hiding something important. The
zeromodes cannot just be lifted. This is true because nonzero modes of i]) must come
in left-right pairs: this is because {7°,i)} = 0, so i]p and 7° cannot be simultaneously
diagonalized in general. That is: if i]D€ = €€ then (7°¢) is also an eigenvector of iD€,
with eigenvalue —e. Only for € = 0 does this fail, so zeromodes can come by themselves.
So you can’t just smoothly change the eigenvalue of some &y from zero unless it has a
partner with whom to pair up. By taking linear combinations

XL/ = ; (1£4°)&,

these two partners can be arranged into a pair of simultaneous eigenvectors of (ip)?
(with eigenvalue €2) and of v° with 7° = 4 respectively.

This leads us to a deep fact, called the (Atiyah-Singer) index theorem: only zero-
modes can contribute to the anomaly. Any mode £, with nonzero eigenvalue has a
partner (with the same eigenvalue of (i/0)?) with the opposite sign of 4°; hence they
cancel exactly in

try’e —s(ip)? Z XL/R g L/R % + zeromodes .
n,L/R

So the anomaly equation tells us that the number of zeromodes of the Dirac operator,
weighted by handedness (i.e. with a + for L and - for R) is equal to

1
NL—NR:/deA(x):/WF/\F.

A practical consequence for us is that it makes manifest that the result is indepen-
dent of the regulator s.
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8.2.3 The physics of the anomaly

[Polyakov, page 102; Kaplan 0912.2560 §2.1; Alvarez-Gaumé| Consider non-relativistic
free (i.e. no 4-fermion interactions) fermions in 141 dimensions, e.g. with 1-particle
dispersion wy = ﬁ/? The groundstate of N such fermions is described by filling the
N lowest-energy single particle levels, up the Fermi momentum: |k| < kp are filled.
We must introduce an infrared regulator so that the levels are discrete — put them in a
box of length L, so that k,, = %T" (In Figure 3, the red circles are possible 1-particle
states, and the green ones are the occupied ones.) The lowest-energy excitations of
this groundstate come from taking a fermion just below the Fermi level k = |kp — k|
and putting it just above, k = |kp + ks|; the energy cost is

(kF - k’g)Q ~ kF (]{31 - k’g)

1 1
Ekl—kg = % (k’F + ]{51)2 — 9 E

2m
The energy — we get relativistic dispersion with velocity vp = %F The fields near these
Fermi points in k-space satisfy the Dirac equation®’:

(w — UF(SI{J) 'LbL = 0, (w + Upék’) ¢R =0

where 0k =k — kp.

63This example is worthwhile for us also because we see the relativistic Dirac equation is emerging
from a non-relativistic model; in fact we could have started from an even more distant starting point
— e.g. from a lattice model, like

H=—-t Z lecn+1 + h.c.
n

where the dispersion would be wy, = —2t (coska — 1) ~ 5= k* + O(k*) with 5= = ta®.
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It would therefore seem to imply a conserved
axial current — the number of left moving fermions
minus the number of right moving fermions. But
the fields vy and g are not independent; with |
high-enough energy excitations, you reach the bot-

tom of the band (near & = 0 here) and you can’t ¢
tell the difference. This means that the numbers €
are not separately conserved.

We can do better in this 1+1d example and
show that the amount by which the axial current
is violated is given by the anomaly formula. Con-

sider subjecting our poor 14-1d free fermions to an

k
electric field E,(t) which is constant in space and kF_tht kpiop
slowly varies in time. Suppose we gradually turn

Figure 3: Green dots represent oc-

it on and then turn it off; here gradually means cupied 1-particle states. Top: In the

slowly enough that the process is adiabatic. Then groundstate. Bottom: After applying
each particle experiences a force dyp = eF, and its (t)
= (t).

net change in momentum is
Ap = e/thm(t).
This means that the electric field puts the fermions in a state where the Fermi surface

k = kr has shifted to the right by Ap, as in the figure. Notice that the total number
of fermions is of course the same — charge is conserved.

Now consider the point of view of the low-energy theory at the Fermi points. This
theory has the action

W] = [ dadti (1949,
where ~* are 2 x 2 and the upper/lower component of ¢ creates fermions near the
left /right Fermi point. In the process above, we have added Ng right-moving particles
and taken away Ny, left-moving particles, that is added Ny, left-moving holes (aka anti-
particles). The axial charge of the state has changed by

A L L
AQa = AN, —Ng) =2-—L = ZAp= —e/thx(t) - E/dtdex - 23 /EWF“”
i

2r/L 7 T T
On the other hand, the LHS is AQ4 = f@’ﬂ]j‘. We can infer a local version of this

equation by letting E vary slowly in space as well, and we conclude that

€ v
(3,“]“ = %EMVFM .

This agrees exactly with the anomaly equation in D = 1+1 produced by the calculation
above in (8.15) (see the homework).
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9 Effective field theory

9.1 A parable on integrating out degrees of freedom

Here’s a second parable from QM which gives some useful perspective on renormaliza-
tion in QFT and on the notion of effective field theory.

[Banks p. 138] Consider a system of two coupled harmonic oscillators. We will as-
sume one of the springs is much stiffer than the other: let’s call their natural frequencies
wo, §2, with wg < €. The euclidean-time action is

S1Q.q] = / dt [% (@ +dd?) + 5 (0 +92Q7) + g@qﬂ = Seola] + S0[Q) + (@, gl

(The particular form of the ¢°Q coupling is chosen for convenience. Don’t take too
seriously the physics at negative ().) We can construct physical observables in this
model by studying the path integral:

7 = / [dQdqg]e51@4.

Since I put a minus sign rather than an i in the exponent (and the potential terms in
the action have + signs), this is a euclidean path integral.

Let’s consider what happens if we do the path integral over the heavy mode (), and
postpone doing the path integral over ¢. This step, naturally, is called integrating out
@, and we will see below why this is a good idea. The result just depends on ¢; we can
think of it as an effective action for q:

e Setld] . /[dQ]e_S[q’Q]

— ¢ Swoldl <€—Smc[Q,Q]>Q

Here (...),, indicates the expectation value of ... in the (free) theory of @, with the
action Sq[Q]. It is a gaussian integral (because of our choice of Siy:

<6—Sint[QaQ]>Q - /[dQ]e—SQ[Q]—IdsJ(s)Q(s) — Nt dsdtI()G(st)J (1)

This last equality is an application of the ‘fundamental theorem of path integrals,’
i.e. the gaussian integral. Here J(s) = gq(s)?. The normalization factor N is indepen-
dent of J and hence of q. And G(s,t) is the inverse of the linear operator appearing in
Sq, the euclidean Green’s function:

5alQ) = / dsdtQ ()G (s, )Q(1).
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More usefully, G satisfies
(=02 + Q%) G(s,t) =d(s — 1)

The fact that our system is time- translation invariant means G(s,t) = G(s —t). We

can solve this equation in fourier space: G(s) = [dwe ™*G,, makes it algebraic:
1
G, = w2+ 02
and we have .
G(S) = /dwelwsm. (91)
So we have:
o~ Sentla] — o Suolal o [ dtds % q(s)*G(s,)a(t)?
or taking logs
2
g
als) qe Serr[q] = Suola] + / dtdsq(s)°G(s, 1)q(t)” - (9.2)

~N— (4 () mediates an interaction of four ¢gs, an anharmonic term, a
7(’- ) G(-ﬂﬁ=<QUle)Q ? self-interaction of ¢. In Feynman diagrams, the leading inter-
action between ¢’s mediated by () comes from the diagram
at left.
And the whole thing comes from exponentiating disconnected copies of this diagram.
There are no other diagrams: once we make a () from two ¢s what can it do besides
turn back into two ¢s? Nothing. And no internal ¢ lines are allowed, they are just

sources, for the purposes of the () integral.

But it is non-local: we have two integrals over the time in the new quartic term.
This is unfamiliar, and bad: e.g. classically we don’t know how to pose an initial value
problem using this action.

But now suppose we are interested in times much longer than 1/), say times com-
parable to the period of oscillation of the less-stiff spring 27 /w. We can accomplish
this by Taylor expanding under the integrand in (9.1):

£>1/Q | 1 1
G(s) = /dwe_“"s— ” ~ —i(s) + —8525()
2 1+ g 02 04
——

Plug this back into (9.2):

Sarld = Sualal + [ )+ [ v
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The effects of the heavy mode () are now organized in a derivative expansion, with
terms involving more derivatives suppressed by more powers of the high energy scale

?{:E)

\0
+

3(s) <asiquy §¢4

A useful mnemonic for integrating out the effects of the heavy field in terms of Feynman
diagrams: to picture @) as propagating for only a short time (compared to the external
time t — s), we can contract its propagator to a point. The first term on the RHS shifts
the ¢* term, the second shifts the kinetic term, the third involves four factors of g...

On the RHS of this equation, we have various interactions involving four gs, which
involve increasingly many derivatives. The first term is a quartic potential term for
q: AV = %q‘l; the leading effect of the fluctuations of () is to shift the quartic self-
coupling of ¢ by a finite amount (note that we could have included a bare A\oq* potential
term).

Notice that if we keep going in this expansion, we get terms with more than two
derivatives of q. This is OK. We've just derived the right way to think about such
terms: we treat them as a perturbation, and they are part of a never-ending series of
terms which become less and less important for low-energy questions. If we want to
ask questions about x at energies of order w, we can get answers that are correct up

w

to effects of order (5)% by keeping the nth term in this expansion.

Conversely if we are doing an experiment with precision A at energy w, we can
measure the effects of up to the nth term, with

(5~

Another important lesson: Seg[q] contains couplings with negative dimensions of
energy

. 1
Z Cn (a?Q)2 q27 with Cp ~ Wa

exactly the situation where the S-matrix grows too fast at high energies that we dis-
cussed at (5.12). In this case we know exactly where the probability is going: if we
have enough energy to see the problem E ~ 2, we have enough energy to kick the
heavy mode () out of its groundstate.
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9.1.1 Attempt to consolidate understanding

We've just done some coarse graining: focusing on the dofs we care about (¢), and
actively ignoring the dofs we don’t care about (Q)), except to the extent that they
affect those we do (e.g. the self-interactions of ¢).

Above, we did a calculation in a QM model with two SHOs. This is a paradigm
of QFT in many ways. For one thing, free quantum fields are bunches of harmonic
oscillators with natural frequency depending on k, 2 = v/ k2 + m2. Here we kept just
two of these modes (one with large k, one with small k) for clarity. Perhaps more
importantly, QM is just QFT in 0+1d. The more general QFT path integral just
involves more integration variables. The idea of the Wilsonian RG (for continuum
field theory) is essentially to do the integrals over the modes in descending order of
wavenumber, and at each stage make the expansion described above to get a local
action. And notice that basically all possible terms are generated, consistent with the
symmetries (here for example, there is a Zs symmetry under which ¢ — —g, so there
are no odd powers of ¢). Alas, this is all I'll say about it until Physics 217 in Fall 2018.

The result of that calculation was that fluctuations of @ mediate various ¢* inter-
actions. It adds to the action for ¢ the following: ASegg] ~ [ dtdsq®(t)G(t — s)¢*(s),
as in Fig. 9.3.

If we have the hubris to care about the exact answer, it’s nonlocal in time. But
if we want exact answers then we’ll have to do the integral over ¢, too. On the other
hand, the hierarchy of scales wy < €2 is useful if we ask questions about energies of
order wy, e.g.

(g(t)g(0)) with ¢ ~ wi >0

Then we can Taylor expand the function G(t — s), and we find a series of corrections
in powers of - (or more accurately, powers of %)

(Notice that it’s not so useful to integrate out light degrees of freedom to get an
action for the heavy degrees of freedom; that would necessarily be nonlocal and stay
nonlocal and we wouldn’t be able to treat it using ordinary techniques.)

The crucial point is that the scary non-locality of the effective action that we saw

only extends a distance of order &; the kernel G(s — t) looks like this:

Gis—t)

The mechanism we’ve just discussed is
an essential ingredient in getting any physics
done at all. Why can we do physics despite
the fact that we do not understand the the-
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https://mcgreevy.physics.ucsd.edu/f18/

ory of quantum gravity which governs Planck-
ian distances? We happily do lots of physics
without worrying about this! This is because
the effect of those Planckian quantum gravity
fluctuations — whatever they are, call them ) — on the degrees of freedom we do care
about (e.g. the Standard Model, or an atom, or the sandwich you made this morning,
call them collectively ¢) are encoded in terms in the effective action of ¢ which are
suppressed by powers of the high energy scale Mpia,q, whose role in the toy model is
played by €2. And the natural energy scale of your sandwich is much less than Mpyapcx.

I picked the Planck scale as the scale to ignore here for rhetorical drama, and
because we really are ignorant of what physics goes on there. But this idea is equally
relevant for e.g. being able to describe water waves by hydrodynamics (a classical
field theory) without worrying about atomic physics, or to understand the physics of
atoms without needing to understand nuclear physics, or to understand the nuclear
interactions without knowing about the Higgs boson, and so on deeper into the onion
of physics.

This wonderful situation, which makes physics possible, has a price: since physics
at low energies is so insensitive to high energy physics, it makes it hard to learn about
high energy physics! People have been very clever and have learned a lot in spite of
this vexing property of the RG called decoupling. We can hope that will continue.
(Cosmological inflation plays a similar role in hiding the physics of the early universe.
It’s like whoever designed this game is trying to hide this stuff from us.)

The explicit functional form of G(s) (the inverse of the (euclidean) kinetic operator
for Q) is:

_ e—iws | 1
Do it by residues: the integrand has poles at w = £i€). The absolute value of |s| is
crucial, and comes from the fact that the contour at infinity converges in the upper

(lower) half plane for s < 0 (s > 0).

Next, some comments about ingredients in this discussion, which provide a useful
opportunity to review/introduce some important QFT technology:

e Please don’t be confused by the formal similarity of the above manipulations with
the construction of the generating functional of correlation functions of @:

Z[J] = <efdtQ<t>J<t>> (Q(t)Q(t2)..) = . log Z[J]

)
Q
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It’s true that what we did above amounts precisely to constructing Z[J], and
plugging in J = goq¢®. But the motivation is different: in the above ¢ is also a
dynamical variable, so we don’t get to pick ¢ and differentiate with respect to it;
we are merely postponing doing the path integral over ¢ until later.

e Having said that, what is this quantity G(s) above? It is the (euclidean) two-
point function of Q:

) 4]

G(s,t) = (Q(s)Q(t)) = 5J(1) 3 (s)

log Z1J].

The middle expression makes it clearer that G(s,t) = G(s — t) since nobody
has chosen the origin of the time axis in this problem. This euclidean Green’s
function, the inverse of —9? 4+ Q?, is unique, once we demand that it falls off at
large separation (unlike the real-time Green’s function).

e Adding more labels. Quantum mechanics is quantum field theory in 0+1
dimensions. Except for our ability to do all the integrals, everything we are
doing here generalizes to quantum field theory in more dimensions: quantum
field theory is quantum mechanics (with infinitely many degrees of freedom).
With more spatial dimensions, we’ll want to use the variable = for the spatial
coordinates (which are just labels on the fields!) and it was in anticipation of
this step that I used ¢ instead of x for my oscillator position variables.

9.2 Introduction to effective field theory

[Some nice lecture notes on effective field theory can be found here: J. Polchinski,
A. Manohar, I. Rothstein, D. B. Kaplan, H. Georgi. Aneesh Manohar has written an
excellent and provocative new set of lectures from last year’s Les Houches school which
should appear on the arXiv sometime soon. |

Diatribe about ‘renormalizability’. Taking the example of the previous subsec-
tion to its logical conclusion, we are led to the idea of an effective field theory (EFT).
(The Wilsonian perspective on renormalization — namely that we should include all
possible operators consistent with symmetries and let dimensional analysis and the
dynamics decide which are important at low energies — makes this idea even more
inevitable.) There is no reason to demand that a field theory that we have found to
describe physics in some regime should be a valid description of the world to arbitrarily
short (or long!) distances. This is a happy statement: there can always be new physics
that has been so far hidden from us. Rather, an EFT comes with a regime of validity,
and with necessary cutoffs. As we will discuss, in a useful implementation of an EFT,
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the cutoff implies a small parameter in which we can expand (and hence compute). (In
the example of Seg[g| of the previous subsection, the small parameter is w/(2.)

Caring about renormalizibility is pretending to know about physics at arbitrarily
short distances. Which you don't.

Even when theories are renormalizable, this apparent victory is often false. For
example, QED requires only two independent counterterms (for the mass and for the
fine structure constant), and is therefore by the old-fashioned definition renormalizable,
but it is superseded by the electroweak theory above 80GeV. Also: the coupling in QED
actually increases logarithmically at shorter distances, and ultimately reaches a Landau
pole at SOME RIDICULOUSLY HIGH ENERGY (of order e*a where a ~ 317 is the
fine structure constant (e.g. at the scale of atomic physics) and ¢ is some numerical
number. Plugging in numbers gives something like 1033 GeV, which is quite a bit
larger than the Planck scale). This is of course completely irrelevant for physics and
even in principle because of the previous remark about electroweak unification. And
if not because of that, because of the Planck scale. A heartbreaking historical fact is
that Landau and many other smart people gave up on QFT as a whole because of this
silly fantasy about QED in an unphysical regime.

We will see below that even in QFTs which are non-renormalizable in the strict
sense, there is a more useful notion of renormalizability: effective field theories come
with a small parameter (often some ratio of mass scales), in which we may expand the
action. A useful EFT requires a finite number of counterterms at each order in the
ETPansion.

Furthermore, I claim that this is always the definition of renormalizability that
we are using, even if we are using a theory which is renormalizable in the traditional

sense, which allows us to pretend that there is no cutoff. That is, there could always

n
be corrections of order (%) where F is some energy scale of physics that we are

doing and F,. is some UV scale where new physics might come in; for large enough
n, this is too small for us to have seen. The property of renormalizibility that actually

matters is that we need a finite number of counterterms at each order in the expansion

E

m Foow

Renormalizable QFTs are in some sense less powerful than non-renormalizable ones
— the latter have the decency to tell us when they are giving the wrong answer! That
is, they tell us at what energy new physics must come in; with a renormalizable theory
we may blithely pretend that it is valid in some ridiculously inappropriate regime like
10330 GeV.

Notions of EFT. There is a dichotomy in the way EFTs are used. Sometimes one
knows a lot about the UV theory (e.g.
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electroweak gauge theory,

e QCD,

electrons in a solid,

...) but it is complicated and unwieldy for the questions one wants to answer, so instead
one develops an effective field theory involving just the appropriate and important dofs
(e.g., respectively,

e Fermi theory of weak interactions,
e chiral lagrangian (or HQET or SCET or ...),

e Landau Fermi liquid theory (or the Hubbard model or a topological field theory
or ...),

...). As you can see from the preceding lists of examples, even a single UV theory
can have many different IR EFTs depending on what phase it is in, and depending on
what question one wants to ask. The relationship between the pairs of theories above
is always coarse-graining from the UV to the IR, though exactly what plays the role
of the RG parameter can vary wildly. For example, in the example of the Fermi liquid
theory, the scaling is w — 0, and momenta scale towards the Fermi surface, not k=0.

A second situation is when one knows a description of some low-energy physics up
to some UV scale, and wants to try to infer what the UV theory might be. This is a
common situation in physics! Prominent examples include: the Standard Model, and
quantized Einstein gravity. Occasionally we (humans) actually learn some physics and
an example of an EFT from the second category moves to the first category.

Instructions for EFT. Answer the following questions:
1. what are the dofs?
2. what are the symmetries?

3. where is the cutoff on its validity?

Then write down all interactions between the dofs which preserve the symmetry in an
expansion in derivatives, with higher-dimension operators suppressed by more powers

of the UV scale.
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I must also emphasize two distinct usages of the term ‘effective field theory” which
are common, and which the discussion above is guilty of conflating (this (often slip-
pery) distinction is emphasized in the review article by Georgi linked at the beginning
of this subsection). The Wilsonian perspective advocated above produces a low-energy
description of the physics which is really just a way of solving (if you can) the original
model; very reductively, it’s just a physically well-motivated order for doing the inte-
grals. If you really integrate out the high energy modes exactly, you will get a non-local
action for the low energy modes. This is to be contrasted with the local actions one
uses in practice, by truncating the derivative expansion. It is the latter which is really
the action of the effective field theory, as opposed to the full theory, with some of the
integrals done already. The latter will give correct answers for physics below the cutoff
scale, and it will give them much more easily.

Some interesting and/or important examples where EFT has been useful (most of
which we will not discuss explicitly) and where you can learn about them:

e Hydrodynamics [Kovtun]
e Fermi liquid theory [J. Polchinski, R. Shankar, Rev. Mod. Phys. 66 (1994) 129]
e chiral perturbation theory [D. B. Kaplan, §4]

e heavy quark effective theory [D. B. Kaplan, §1.3, Manohar and Wise, Heavy
Quark Physics|

e random surface growth (KPZ) [Zee, chapter VI|

e color superconductors [D. B. Kaplan, §5]

e gravitational radiation from binary mergers [Goldberger, Rothstein, Porto]

e soft collinear effective theory [Becher, Stewart]

e magnets [Zee, chapter VL5, hep-ph/9311264v1]

o effective field theory of cosmological inflation [Senatore et al, Cheung et al, Porto]

o cffective field theory of dark matter direct detection [Fitzpatrick et all

There are many others, the length of this list was limited by how long I was willing to
spend digging up references.

200


http://arxiv.org/abs/arXiv:1205.5040
http://arxiv.org/abs/hep-th/9210046
http://rmp.aps.org/pdf/RMP/v66/i1/p129_1
http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/hep-ph/0701129
https://arxiv.org/abs/1601.04914
http://www.phys.ethz.ch/~banfi/gaugetheory/Becher/
http://stellar.mit.edu/S/course/8/sp13/8.851/courseMaterial/topics/topic5/lectureNotes/scetnotes_v1/scetnotes_v1.pdf
http://arxiv.org/pdf/hep-ph/9311264v1.pdf
http://arxiv.org/abs/arXiv:1009.2093
http://arxiv.org/abs/arXiv:0709.0293
https://arxiv.org/abs/1601.04914
http://arxiv.org/abs/arXiv:1203.3542

9.3 Fermi theory of Weak Interactions

[from §5 of A. Manohar’s EFT lectures| As a first example, let’s think about part of
the Standard Model.

Lew > —% (0. W,F —0,WF) ("W — "W ) + My W, W+ (9.5)
_ 19

V2

Yy PL; W, Vi + terms involving Z bosons

Some things intermediate, off-shell W bosons can do: p decay, AS = 1 processes,
neutron decay

If we are asking questions with external momenta less than My, we can integrate
out W and make our lives simpler:

. 2 .
0Sepp ~ <%) ViiVi /deﬁ (Vv Prab;) (p) (Wey” Pribe) (—p)
(I am lying a little bit about the W propagator in that I am not explicitly projecting
out the fourth polarization with the negative residue. Also hidden in my notation is
the fact that the W carries electric charge, so the charges of v; and ; in (9.5) must
differ by one.) This is non-local at scales p & My, (recall the discussion of the previous
subsection). But for p? < M3,

1 P2 Mav 1 p2 p4
— >~ —— |1+ 4+ —+ .. (9.6)
poag © T | g T
derivativgrcouplings
4GF * 4 n T 1 . . .
Sp = __\/5 Vi,V | dx (@/)ﬂ“ pL¢j) (z) (%% PLW) (x)+0O I +kinetic terms for fermions
w

(9.7)

where Gr/vV2 = 89T22 is the Fermi coupling. We can use this (Fermi’s) theory to
w

compute the amplitudes above, and it is much simpler than the full electroweak theory
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(for example I don’t have to lie about the form of the propagator of the W-boson like I
did above). It was discovered first and used quite effectively long before the existence
of W's was suspected.

On the other hand, this theory is not the same as the electroweak theory; for
example it is not renormalizable, while the EW theory is. Its point in life is to help
facilitate the expansion in 1/My,. There is something about the expression (9.7) that
should make you nervous, namely the big red 1 in the 1/M3, corrections: what makes
up the dimensions? This becomes an issue when we ask about ...

94

9.5. Suppose we try to define the Fermi
theory Sp with a euclidean momentum cutoff |kg| < A. We expect that we’ll have to
set A ~ My,. A simple example which shows that this is problematic is to ask about
radiative corrections in the 4-Fermi theory to the coupling between the fermions and
the Z (or the photon).

We are just trying to estimate the magnitude of this correction, so don’t worry
about the factors and the gamma matrices:

~ MQ/d%——tr ) O(1).
o<G

P~ kdk~A2~M2

¢
Even worse, consider what happens if we use the vertex coming from the <]\’4’—22>
w

correction in (9.6)

~ I = M2/d4 ! (Al;) ~O(1)

— it’s also unsuppressed by powers of ... well, anything. This is a problem.

Fix: A way to fix this is to use a “mass-independent subtraction scheme”, such as
dimensional regularization and minimal subtraction (MS). The crucial feature is that
the dimensionful cutoff parameter appears only inside logarithms (log 1), and not as
free-standing powers (u?).
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With such a scheme, we’d get instead

mQ m2 l+1
I ~—1lo Iy~ | — lo
where m is some mass scale other than the RG scale u (like a fermion mass parameter,
or an external momentum, or a dynamical scale like Agep).

We will give a more detailed example next. The point is that in a mass-independent
scheme, the regulator doesn’t produce new dimensionful things that can cancel out the
factors of My, in the denominator. It respects the ‘power counting’ if you see 2¢
powers of 1/Myy in the coefficient of some term in the action, that’s how many powers
will suppress its contributions to amplitudes. This means that the EFT is like a
renormalizable theory at each order in the expansion (here in 1/My/), in that there is
only a finite number of allowed vertices that contribute at each order (counterterms
for which need to be fixed by a renormalization condition). The insatiable appetite for
counterterms is still insatiable, but it eats only a finite number at each order in the
expansion. Eventually you’ll get to an order in the expansion that’s too small to care
about, at which point the EFT will have eaten only a finite number of counterterms.

There is a price for these wonderful features of mass-independent schemes, which
has two aspects:

e Heavy particles (of mass m) don’t decouple when u < m. For example, in a
mass-independent scheme for a gauge theory, heavy charged particles contribute
to the beta function for the gauge coupling even at p < m.

e Perturbation theory will break down at low energies, when p < m; in the example
just mentioned this happens because the coupling keeps running.

We will show both these properties very explicitly in the next subsection. The solution
of both these problems is to integrate out the heavy particles by hand at © = m, and
make a new EFT for 4 < m which simply omits that field. Processes for which we
should set © < m don’t have enough energy to make the heavy particles in external
states anyway. (For some situations where you should still worry about them, see
Aneesh Manohar’s notes linked above.)

9.4.1 Comparison of schemes, case study

The case study we will make is the contribution of a charged fermion of mass m to the
running of the QED gauge coupling.
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Recall that the QED Lagrangian is

1 <.

_ZF;WF;W - w (lw - m)w

with D, = 0, —ieA,. By redefining the field F,, = 0,4, — ?VAM by a constant factor
we can move around where the e appears, i.e. by writing A = eA, we can make the
gauge kinetic term look like ﬁFWFW. This means that the charge renormalization
can be seen either in the vacuum polarization, the correction to the photon propagator:

O

So the information about the running of the coupling is encoded in the gauge field

. I will call this diagram iIl,,.

two-point function:

L, = (A, (p)A(0)) = (Pupy — PPg) $(p + OIL(P?) .

The factor P,, = p.p, — p*g, is guaranteed to be the polarization structure by the
gauge invariance Ward identity: p* (A,(p)A,(¢)) = 0. That is: p*P,, = 0, and there
is no other symmetric tensor made from p* which satisfies this. This determines the
correlator up to a function of p?, which we have called IT(p?).

The choice of scheme shows up in our choice of renormalization condition to impose
on I1(p?):

Mass-dependent scheme: subtract the value of the graph at p*> = —M? (a very
off-shell, euclidean, momentum). That is, we impose a renormalization condition which
says

M(p? = —M?) =1 (9.8)

(which is the tree-level answer with the normalization above).

The contribution of a fermion of mass m and charge e is (factoring out the momentum-
conserving delta function):

MOM / d"ktr (

The minus sign out front is from the fermion loop. Some boiling, which you can find

Sieyr) TR

ier¥) —i(p+F —|—m)>

(p+k)? —m?

in Peskin (page 247) or Zee (§II1.7), reduces this to something manageable. The steps
involved are: (1) a trick to combine the denominators, like the Feynman trick 45 =

2
fol dx <m> . (2) some Dirac algebra, to turn the numerator into a polynomial
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in k,p. As Zee says, our job in this course is not to train to be professional integrators.
The result of this boiling can be written

i = / dare / dp——
62

with ¢ = k+ xp is a new integration variable, A = m? — x(l —2)p?, and the numerator
is

NW = 204" — g"(* — 22(1 — z)p"p” + g™ (m® + x(1 — z)p”) + terms linear in .

In dim reg, the one-loop vacuum polarization correction satisfies the gauge in-
varaince Ward identity 11" = P11, (unlike the euclidean momentum cutoff which
is not gauge invariant). A peek at the tables of dim reg integrals shows that oIl is:

eskin 2 1 I'2—D/2
ST, (p?) Peskin p. 252 _L/ dzx(l _x)Mﬂe
0

(47T)D/2 AQ—D/2
2 1
D—4 € 2 A
2t dez(l—2) (2 —log (= 9.9
21 Jo wa(l =) (6 o (N2>) 89)

where we have introduced the heralded pu:
u? = drpleE

where g is the Euler-Mascheroni constant. In the second line of (9.9), we expanded
the I'-function about D = 4; there are other singularities at other integer dimensions.

Mass-dependent scheme: Now back to our discussion of schemes. I remind you
that in a mass-independent scheme, we demand that the counterterm cancels dI1, when

we set the external momentum to p? = —M?, so that the whole contribution at order
e?is : '
0 "' (p? = —%) = 5 6T,
~—

counterterm coefficient for iFM,,F‘“’

2 2 21— a)p?
> Uo7 07) = 5 [ dee(l—)log { Z i — 5

Notice that the us go away in this scheme.

Mass-Independent scheme: This is to be contrasted with what we get in a mass-
independent scheme, such as MS, in which II is defined by the rule that we subtract
the 1/€ pole. This means that the counterterm is

N 2 9 1
(5%{8) = _e__/ dxx(l —x).
0

272 €

=1/6
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(Confession: I don’t know how to state this in terms of a simple renormalization
condition on II,. Also: the bar in MS refers to the (not so important) distinction
between i and p.) The resulting vacuum polarization function is

— 2 1 2 _ 1 _ ’
H(QMS)(pQ) = e_/ drx(l — x)log (m xliz o ) '
0

o2

Next we will talk about beta functions, and verify the claim above about the failure
of decoupling. First let me say some words about what is failing. What is failing — the
price we are paying for our power counting — is the basic principle of the RG, namely
that physics at low energies shouldn’t care about physics at high energies, except for
small corrections to couplings. An informal version of this statement is: you don’t need
to know about nuclear physics to make toast. A more formal version is the Appelquist-
Carazzone Decoupling Theorem, which I will not state (Phys. Rev. D11, 28565 (1975)).
So it’s something we must and will fix.

Beta functions. : First in the mass-dependent scheme. Demanding that
physics is independent of our made-up RG scale, we find

aM o e oM

d 9 9 )
0= M——T8Mp?) = (M ﬁgme—) $™ (p?) = <M o TN 2 ) IES

to this order
where I made the high-energy physics definition of the beta function®*:

1 0,
B = - (MOye) = —%e, M=e"M,.

Here 7 is the RG time again, it grows toward the IR. So we find

-3 (2) [ (2 o

m<M
~

2

62 1 [
= o [y dea(l —x) = 5
(9.10)
m>M 2z(1—z e
~ %fol dxx(l —x)M nﬁi ) — 60;%—22

~a d _ s 0 = 0 R 9 -
. 0= NJ@HQMS) (p?) = (M@ n ﬁéMS)€&> Hng) (p?) = (Ma_u A0S o

to this order

64]'ve defined these beta functions to be dimensionless, i.e. they are Oiog M log(g); this convention

is not universally used.
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Figure 4: The blue curve is the mass-dependent-scheme beta function; at scales M < m, the mass
of the heavy fermion, the fermion sensibly stops screening the charge. The red line is the MS beta
function, which is just a constant, pinned at the UV value.

Also, the MS vacuum polarization behaves for small external momenta like

2 [l m2
y(p> <m?)~ ——— [ drx(l —2) log —
2m* Jo p?
~——
>1,for p<m! bad!
As I mentioned, the resolution of both these prob- e
lems is simply to define a new EFT for p < m [Lt
which omits the heavy field. Then the strong cou- | y
pling problem goes away and the heavy fields do
decouple. The price is that we have to do this by 1 -N
hand, and the beta function jumps at u = m; the mM [

coupling is continuous, though.

9.5 The Standard Model as an EFT.
The Standard Model. [Schwartz, §29]
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L:(”L> ern | vn Q:(“L> up | dp | H
€r, dL

|

O

SU(3) - - |- o| o -
SU(2) O - - - | - | O
U1)y —3 —1]0 5 l-3l3

Table 1: The Standard Model fields and their quantum numbers under the gauge group. O indicates
fundamental representation, - indicates singlet. Except for the Higgs, each column is copied three
times; each copy is called a generation. Except for the Higgs all the matter fields are Weyl fermions
of the indicated handedness. Gauge fields as implied by the gauge groups. (Some people might leave
out the right-handed neutrino, vg.)

Whence the values of the charges under the U(1) (“hypercharge”)? The condition
Y., + 3Yy = 0 (where Y is the hypercharge) is required by anomaly cancellation. This
implies that electrons and protons p = €;;,u;u;d, have exactly opposite charges of the
same magnitude.

The Lagrangian is just all the terms which are invariant under the gauge group
SU(3) x SU(2) x U(1) with dimension less than or equal to four — all renormalizable
terms. This includes a potential for the Higgs, V(|H|) = m%|H|*> + M\ H|*, where it
turns out that m?% < 0. The resulting Higgs vacuum expectation value breaks the

Electroweak part of the gauge group
SU(2) x U(1)y & U(1)par.

The broken gauge bosons get masses from the Higgs kinetic term

1
D, H?| with D, H = (au — igWare — 519’1@) H

where Y, is the hypercharge gauge boson, and W% a = 1,2,3 are the SU(2) gauge
bosons. There are two massive W-bosons with electric charge +1 (as described in
§9.3), with My, = %. The photon and Z boson are the linear combinations of ¥ and
W3 which diagonalize the remaining mass terms:

AN\ ([ cosBy, sinb,\ (W)

Z,) \~—sinb, cosf, Y, /)’
Here tanf, = % defines the Weinberg angle. The masses are M, = 0 and My =
Mw My

cos Oy

Fermion masses come from (dimension-four) Yukawa couplings

EYukawa = _Y;gz-/zHeig - YZ;QZHd% - Y;gl ) (iT2H*) ’U/% + h.c.
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The contortion with the 72 is required to make a hypercharge invariant. Plugging in
the Higgs vev to e.g. the lepton terms gives —m.éreg+h.c. with m, = yev/\/i There’s
lots of drama about the matrices Y which can mix the generations. the mass for the
vr (which maybe could not exist — it doesn’t have any charges at all) you’ll figure out
on the homework.

Here is a useful mnemonic for remembering the table of quantum numbers (possibly
it is more than that): There are larger simple Lie groups that contain the SM gauge
group as subgroups:

SUB3) xSU2) xU(l)y <  SU(B) C SO(10)
one generation = 10501 = 16

The singlet of SU(5) is the right-handed neutrino, but if we include it, one generation is
an irreducible (spinor) representation of SO(10). This idea is called grand unification.
It is easy to imagine that the gauge group is actually the larger groups on the right,
and another instance of the Higgs mechanism accomplishes the breaking down to the
Standard Model. (The running of the respective gauge couplings go in the right direc-
tion with approximately the right rate to unify to a single value at Mgy ~ 1015GeV )
Notice that this idea means leptons and quarks are in the same representations — they
can turn into each other. This predicts that the proton should not be perfectly stable.
Next we’ll say more about this.

Beyond the Standard Model with EFT. At what energy does the Standard
Model stop working? Because of the annoying feature of renormalizibility, it doesn’t
tell us. However, we have experimental evidence against a cutoff on the Standard
Model (SM) at energies less than something like 10 TeV. The evidence I have in mind
is the absence of interactions of the form

L= 375 (940) - (9Bv)

(where 1 represent various SM fermion fields and A, B can be various gamma and
flavor matrices) with M < 10 TeV. Notice that I am talking now about interactions
other than the electroweak interactions, which as we’'ve just discussed, for energies
above My, ~ 80GeV cannot be treated as contact interactions — you can see the W'
propagate!

If such operators were present, we would have found different answers for exper-
iments at LEP. But such operators would be present if we consider new physics in
addition to the Standard Model (in most ways of doing it) at energies less than 10
TeV. For example, many interesting ways of coupling in new particles with masses
that make them accessible at the LHC would have generated such operators.
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A little more explicitly: the Standard Model Lagrangian Ly contains all the renor-
malizable (i.e. engineering dimension < 4) operators that you can make from its fields
(though the coefficients of the dimension 4 operators do vary through quite a large
range, and the coefficients of the two relevant operators — namely the identity operator
which has dimension zero, and the Higgs mass, which has engineering dimension two,
are strangely small, and so is the QCD 6 angle).

To understand what lies beyond the Standard Model, we can use our knowledge
that whatever it is, it is probably heavy (it could also just be very weakly coupled,
which is a different story), with some intrinsic scale Ay, S0 we can integrate it out
and include its effects by corrections to the Standard Model:

L oo > 00+

Anew A3

new

L=1ILo+

i

where the Os are made of SM fields, and have the indicated engineering dimensions, and
preserve the necessary symmetries of the SM (Lorentz symmetry and gauge invariance).

In fact there is only one kind of operator of dimension 5 meeting these demands:
0(5) = C5€45 (ch)z HjEkZLkHl

where H' = (h*, h%)" is the SU(2) gw Higgs doublet and L = (v, er)" is an SU(2) g
doublet of left-handed leptons, and L¢ = LTC where C is the charge conjugation
matrix. (I say ‘kind of operator’ because we can have various flavor matrices in here.)
On the problem set you get to see from whence such an operator might arise, and what
it does if you plug in the higgs vev (H) = (0,v). This term violates lepton number
symmetry (L — L, Q — Q,H — H).

At dimension 6, there are operators that directly violate baryon number, such as

€apy(Ur)o(ur)s (UR),, €x-
You should read the above tangle of symbols as ‘qqqf’ — it turns three quarks into a
lepton. The epsilon tensor makes a color SU(3) singlet; this thing eqqq has the quantum
numbers of a baryon, such as the proton and neutron. The long lifetime of the proton
(you can feel it in your bones — see Zee p. 413) then directly constrains the scale of
new physics appearing in front of this operator.

Two more comments about this:

e If we didn’t know about the Standard Model, (but after we knew about QM and
GR and EFT (the last of which people didn’t know before the SM for some rea-
son)) we should have made the estimate that dimension-5 Planck-scale-suppressed
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1
M Planck

operators like pO would cause proton decay (into whatever O makes). This

predicts T'), ~ Mg:’mk ~ 10713571 which is not consistent with our bodies not glow-
ing. Actually it is a remarkable fact that there are no gauge-invariant operators
made of SM fields of dimension less than 6 that violate baryon number symmetry
(L - L,Q — €*8Q, H — H). This is an emergent symmetry, expected to be
violated by the UV completion.

1
MPlanck

2
Surely nothing can prevent AL ~ ( ) qqql. Happily, this is consistent

with the observed proton lifetime.

There are ~ 10? dimension 6 operators that preserve baryon number, and therefore

are not as tightly constrained®. (Those that induce flavor-changing processes in the
SM are more highly constrained and must have Ao > 10* TeV.) Two such operators

are considered equivalent if they differ by something which vanishes by the tree-level

SM equations of motion. This is the right thing to do, even for off-shell calculations

(like green’s functions and for fields running in loops). You know this from a previous
problem set: the EOM are true as operator equations — Ward identities resulting from

being free to change integration variables in the path integra

166

65Recently, humans have gotten better at counting these operators. See this paper.
66 There are a few meaningful subtleties here, as you might expect if you recall that the Ward identity

is only true up to contact terms. The measure in the path integral can produce a Jacobian which

renormalizes some of the couplings; the changes in source terms will drop out of S-matrix elements
(recall our discussion of changing field variables in the Consequences of Unitarity section.) but can
change the form of Green’s functions. For more information on the use of eom to eliminate redundant
operators in EFT, see Arzt, hep-ph/9304230 and Georgi, “On-Shell EFT”.
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9.6 The color of the sky

[from hep-ph/9606222 and nucl-th/0510023] Why is the sky blue? Basically, it’s be-
cause the blue light from the sun scatters in the atmosphere more than the red light,
and you (I hope) only look at the scattered light.

Here is an understanding of this fact using the EFT logic. Consider the scattering
of photons off atoms (in a gas) at low energies. Low energy means that the photon
does not have enough energy to probe the substructure of the atom — it can’t excite
the electrons or the nuclei. This means that the atom is just a particle, with some
mass M.

The dofs are just the photon field and the field that creates an atom.

The symmetries are Lorentz invariance and charge conjugation invariance and par-
ity. We’ll use the usual redundant description of the photon which has also gauge
invariance.

The cutoff is the energy AFE that it takes to excite atomic energy levels we’ve left
out of the discussion. We allow no inelastic scattering. This means we require

E,y < AE ~ ag < aal < Matom (912)
0

Because of this separation of scales, we can also ignore the recoil of the atom, and treat
it as infinitely heavy.

Since there are no charged objects in sight — atoms are neutral — gauge invariance
means the Lagrangian can depend on the field strength F),,. Let’s call the field which
destroys an atom with velocity v ¢,. v*v, =1 and v, = (1,0,0,0), in the atom’s rest
frame. The (Lorentz-singlet) Lagrangian can depend on v*. We can write a Lagrangian
for the free atoms as

Latom = ¢1 ivua,u va

This action is related by a boost to the statement that the atom at rest has zero energy
— in the rest frame of the atom, the eom is just at¢v:(1,6) = 0. (If we didn’t define the
zero of energy to be at the rest mass, there would be an additional term Mm@} d,.)
Notice that the kinetic term ¢f >

v%% is a very small correction given our hierarchy
atom
of scales (9.12).

So the Lagrangian density is

LMaxwell [A] + Latom [¢v] + Lint [Aa va]

and we must determine Ly,. It is made from local, Hermitian, gauge-invariant, Lorentz
invariant operators we can construct out of ¢,, F},,,, v, 0, (it can only depend on F),, =
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oA, — 0,A,, and not A, directly, by gauge invariance, because the atom, and hence
by, is neutral.). It should actually only depend on the combination ¢! ¢, since we will
not create and destroy atoms. (Notice that we didn’t have to specify the statistics of
the atoms or ¢,.) Therefore

Ling = C18)¢0Fu F* + 20l 90" Foya FM + 3l (v10)) Flu F* + ..

. indicates terms with more derivatives and more powers of velocity (i.e. an expansion
in 0 -v). Which are the most important terms at low energies? Demanding that the
Maxwell term dominate, we get the power counting rules (so time and space should
scale the same way):

[8M] =1, [FW] =2
This then implies [¢,] = 3/2, [v] = 0 and therefore
1] = [e2] = =3, [es] = =4
Terms with more partials are more irrelevant.

What makes up these dimensions? They must come from the length scales that we
have integrated out to get this description — the size of the atom ag ~ am,. and the
energy gap between the ground state and the electronic excited states AE ~ a’m..
For B, < AFE, ay 1 we can just keep the two leading terms.

In the rest frame of the atom, these two leading terms c; 5 represent just the scat-
tering of £ and B respectively. To determine their coefficients one would have to do
a matching calculation to a more complete theory (compute transition rates in a the-
ory that does include extra energy levels of the atom). But a reasonable guess is just
that the scale of new physics (in this case atomic physics) makes up the dimensions:
Cl ~ Cy ag. (In fact the magnetic term ¢y comes with extra factor of v/c which
suppresses it.) The scattering cross section then goes like 0 ~ ¢ ~ af; dimensional
analysis ([o] = —2 is an area, [al] = —6) then tells us that we have to make up four

powers with the only other scale around:

o x Eﬁag.
(The factor of Eg in the amplitude arises from E o 8#1) Blue light, which has about
twice the energy of red light, is therefore scattered 16 times as much.

The leading term that we left out is the one with coefficient c¢3. The size of this
coefficient determines when our approximations break down. We might expect this to
come from the next smallest of our neglected scales, namely AE. That is, we expect

E
o x Eja <1+O(A_£’)>'

The ratio in the correction terms is appreciable for UV light.
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9.7 Pions

[Schwartz §28.1] Below the scale of electroweak symmetry breaking, we can forget the
W and Z bosons. Besides the 4-Fermi interactions, the remaining drama is QCD and
electromagnetism:

1 . _ =
Locp, = _ZFE” +1 Z ZQaleQaf — qMq.
a=L,R f

Here f is a sum over quark flavors, which includes the electroweak doublets, u and
d. Let’s focus on just these two lightest flavors, v and d. We can diagonalize the
mass matrix by a field redefinition (this is what makes the CKM matrix meaningful):

v 0 . ‘ .
M = (m ) If it were the case that m, = my, we would have isospin symmetry

0 myg
(Z) U (Z) , UeSUN;=2).

If, further, there were no masses m = 0, then L and R decouple and we also have chiral
symmetry, g — €%, i.e.

ar = Var,qr — V 'qr, V € SU(N; = 2).

Why do I restrict to SU(2) and not U(2)? The central bit of the axial symmetry U(1) 4
is anomalous — its divergence is proportional to the gluon theta term operator F' A F',
which has all kinds of nonzero matrix elements. It’s not a symmetry (see Peskin page
673 for more detail). The missing non-Goldstone boson is called the n/. The central
bit of the vectorlike transformation ¢ — €'®q is baryon number, B. (Actually this is
anomalous under the full electroweak symmetry, but B — L is not).

The groundstate of QCD is mysterious, because of infrared slavery. Here’s one piece
of input from experiment and numerical simulation. Apparently it is the case that in
the groundstate

(arap) =V° (9.13)

independent of flavor f. This condensate spontaneously breaks

SU(2), x SU(2)r — SU(2)isospins (9.14)
the diagonal combination. <Z) is a doublet. Since p = uqugd,€apy, N = Uadgd €apy,

this means that (p ) is also a doublet. This symmetry is (explicitly) weakly broken by
n
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the difference of the masses my = 4.7MeV # m,, = 2.15MeV and by the electromagnetic
interactions, since qq = —1/3 # ¢, = 2/3.

This symmetry-breaking structure enormously constrains the dynamics of the color
singlets which are the low-energy excitations above the QCD vacuum (hadrons). Let
us use the EFT strategy. We know that the degrees of freedom must include (pseudo-
)Goldstone bosons for the symmetry breaking (9.14) (‘pseudo’ because of the weak
explicit breaking).

Effective field theory. Since QCD is strongly coupled in this regime, let’s use
the knowing-the-answer trick: the low energy theory must include some fields which
represent the breaking of the symmetry (9.14). One way to do this is to introduce a
field > which transforms like

SU(2), x SU(2)g : = — g, %9k, S — g,2fg!

(this will be called a linear sigma model, because 3 transforms linearly) — we have in
mind ,qs ~ Xas. We can make singlets (hence an action) out of EUZL = tryyf =
|5

A
L= yau212+m2yz\2—zyzy4+--~ (9.15)

1
which is designed to have a minimum at (3) = \% (O (D , with V = 2m/v/X (here V is

from (9.13)), which preserves SU(2)isospin (under which 3 — g3g"). We can parametrize
the fluctuations about this configuration as
V ir%(z)r?
S(x) = —i——a(x);T
V2

where F, =V = f/—’% is be chosen to give 7%(x) canonical kinetic terms. The 7¢
parametrize the directions of field space in which the potential is flat (like the field ¢
in the discussion of the Mexican hat in §6.1). Under g/ = el%/r™ | the pion field
transforms as

F, 1
T = T+ - (07 = 0%) Y R Gk
%/_/ - J
nonlinear realization of SU(2)axial linear realiz'n (adj rep) of SU(2)isospin

The fields 7%, 7" create pions, they transform in the adjoint representation of the
diagonal SU(2)isospin, and they shift under the broken symmetry. This shift symmetry
forbids mass terms 72. The radial excitation o, on the other hand, is a fiction which
we've introduced in (9.15), and which has no excuse to stick around at low energies
(and does not). We can put it out of its misery by taking m — oo, A\ — oo fixing F.
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In the limit, the useful field to use is

£ 2ir%r®
V

Ur) = 77 5(2)|o=0 = € 7=
which is unitary UUT = UTU = 1. This last identity means that all terms in an action
for U require derivatives, so (again) no mass for 7. The most general Lagrangian for
U can be written as an expansion in derivatives, and is called the chiral Lagrangian:
F2
L, = I”trDMUD“UT +Lytr (DU D*UY) 4+ Lyt D,U D, U te DY Ut DU+ Lstr D, U DUt D, U DU+
(9.16)

In terms of 7, the leading term expands into

1 1 1
L, =-0,m"0"r"+— (——7? D, Dt - >+— (

2 2\ 3 (v )’ DMWOD“”0+"'>

This fixes the relative coefficients of many irrelevant interactions, all with two deriva-
tives, suppressed by powers of F}.. The expansion of the L; terms have four derivatives,

and are therefore suppressed by further powers of E/Fy, the promised small parameter
of this EFT.

Pion masses. The pions aren’t actually massless: m,+ ~ 140MeV. In terms
of quarks, one source for such a thing is the quark mass term Locp > ¢gMgq. This
explicitly breaks the isospin symmetry if the eigenvalues of M aren’t equal. But an
invariance of Locop is

qr/r = 9r/R4L/R, M — 9. Mg, (9.17)

Think of M as a background field (such a thing is sometimes called a spurion). If
M were an actual dynamical field, then (9.17) would be a symmetry. In the effective
action which summarizes all the drama of strong-coupling QCD in terms of pions, the
field M must still be there, and if we transform it as in (9.17), it should still be an
invariance. Maybe we're going to do the path integral over M later. (This ‘spurion’
trick has applications all over physics.)

So the chiral lagrangian £, should depend on M and (9.17) should be an invariance.
This determines

V? Ve
ALy = 5t (MU + MUY o= VEmy +1m0) = 5 (ma -+ m0) ZW +O(r

The coefficient V3 is chosen so that the first term matches (7Mq) = V3(m, +my). The

second term then gives
2 VP
mﬂ_ ~ ﬁ (

™

My, + Mg)
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which is called the Gell-Mann Oakes Renner relation.

Electroweak interactions. You may have noticed that I used covariant-looking
Ds in (9.16). That’s because the SU(2), symmetry we've been speaking about is
actually gauged by W. (The electroweak gauge boson kinetic terms are in the --- of
(9.16).) Recall that

a a 5¢ | __ a A “1_,)/5 a T ,ual_/y5
Lwveax 3 gWy |y — 1" | = gWi | VijQiv 5 T Qj + Lih'r TLZ'
‘V, 4A7

u

d

Now, in equations, the statement “a pion is a Goldstone boson for the axial SU(2)”

where @ = ( ) N (6) are doublets of SU(2).
Ve

is:

(0] Jia(x) ‘ﬂ'b(p)> = iquﬂe_ip'”"(S“b
where the state ‘ﬂ'b (p)> is a one-pion state of momentum p. If the vacuum were invari-
ant under the symmetry transformation generated by J,, the BHS would vanish. The
momentum dependence implements the fact that a global rotation (p, = 0) does not
change the energy. Contracting the BHS with p* and using current conservation (ig-
noring the explicit breaking just mentioned) would give 0 = p?F? = m2F?, a massless

T T

dispersion for the pions.

Combining the previous two paragraphs, we see that the following process can
happen

Goldstone ;5 electroweak interaction
Sy —

leptons

(9.18)

and in fact is responsible for the dominant decay channel of charged pions. (Time goes
from left to right in these diagrams, sorry.)

Gr _
M(rt = pty,) = —=Fp" v, (1 — %),

V2

where the Fermi constant Gp ~ 107°GeV =2 (known from e.g. p= — e 1, ) is a good
way to parametrize the Weak interaction amplitude. Squaring this and integrating
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over two-body phase space gives the decay rate

G2 F? m?2\?
i +.,y_ Yrly 2 1
(" = p'y,) = ym mwm#(l—— :
(You can see from the answer why the decay to muons is more important than the decay
to electrons, since m,,/m. ~ 200. This is called helicity suppression — the decay of the
helicity-zero 7~ into back-to-back spin-half particles by the weak interaction (which
only produces L particles and R antiparticles) can’t happen if helicity is conserved

— the mass term is required to flip the ey into an eg.) This contributes most of
Tt =071 =26-10"8s.

Knowing further the mass of the muon m, = 106MeV then determines F, = 92MeV
which fixes the leading terms in the chiral Lagrangian. This is why F); is called the pion
decay constant. This gives a huge set of predictions for e.g. pion scattering 77 —

+

T cross sections.

Note that the neutral pion can decay by an anomaly into two photons:

2
a— e VAX vV (0%
Gu (1, 2] T 0) [0) = —c e peinies

where (p1, po| is a state with two photons of polarizations €; 5. I know this because it
is a matrix element of the J.JcJsy(2)-axial anomaly,

2

e
0 "™ = — g @ P FnFugtr (rQ7)
2
where @) = ( (/)3 S / 3) is the quark charge matrix. Comments: (1) this symmetry

acts by u — 9w, d — e and is not the same as the anomalous U(1) 4 (which does
g — €7 ¢, for every flavor), and it’s also not the same as isospin u — eu,d — e,
which is not chiral, and not spontaneously broken. Confusing! (2) The rate of 7° decay
(known since the 1940s) gives a measurement of the number of colors of QCD! (3) This

effect can be encoded in the Lagrangian for the pions by a term
02

0 _pvpo
67r27r € FoF,,

L3N,
ey

where N, = 3 is the number of colors. The effective field theory consistently realizes the
anomalies of the microscopic theory. This is an example of ‘t Hooft anomaly matching,
a principle which can be used, for example, to prove that QCD must spontaneously
break the SU(3);, x SU(3)g chiral symmetry (see Schwartz §30.6).

Wait — what SU(3)7
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SU(3) and baryons. The strange quark mass is also pretty small my ~ 95MeV,
and (5s) ~ V3. This means the approximate invariance and symmetry breaking pattern
is actually SU(3), x SU(3)r — SU(3)diag, meaning that there are 16 — 8 = 8 pseudo
NGBs. Besides 750, the others are the kaons K=° and 7. It’s still only the SU(2)y
that’s gauged.

We can also include baryons B = €,4,¢aq3¢,. Since ¢ = (u,d,s) € 3 of the flavor
SU(3), the baryons are in the representation

30303 =663)®3 =106848d1
DRo®o=(meéfeu=meFeF a] (9.19)

The proton and neutron are in one of the octets. This point of view brought some
order (and some predictions) to the otherwise-bewildering zoo of hadrons.

Returning to the two-flavor SU(2) approximation, we can include the nucleons

Nrr = (p) and couple them to pions by the symmetric coupling
n
L/R

L> )\NNﬂ-NLZNR.

The expectation value for X gives a nucleon mass: my = Ayn. 5, where Ayy, can be
measured by scattering. This is a cheap version of the Goldberger-Treiman relation;
for a better one see Peskin pp. 670-672.

WZW terms in the chiral Lagrangian. Finally, I would be remiss not to
mention that the chiral Lagrangian must be supplemented by WZW terms to have the
correct realization of symmetries (in order to encode all the effects of anomalies, and
in order to violate m — —m which is not a symmetry of QCD).

The chiral Lagrangian governs a non-linear sigma model (NLoM)— a QFT whose
fields are maps from spacetime into some target space. In this case the target space is
the coset space G/H, where G is the full symmetry group (SU(Ny), xSU(Ny)g) and H is
the unbroken subgroup SU(Ny)diagonal- We can parametrize this space by U = S
where the T includes only generators of the broken part of the group, so the 7% are

coordinates on G/H.

A WZW term is a term which we can sometimes add to a NLoM action; it is
defined by the fact that it is symmetric under some group G, but isn’t the integral of a
symmetric local Lagrangian density in D dimensions. Making it manifestly symmetric
requires the introduction of a fictitious extra dimension. This has the dramatic and
surprising consequence that its coefficient is quantized.

219



To get the idea, consider a model in D = 0 + 1 where the field variable n takes
values on the unit sphere S?, 1 = Za:m,g n2. This is a special case of a coset space
G/H =SU(2)/U(1).

In order to write the WZW term in a manifestly symmetric way (under the SO(3)
of rotations of the sphere, we have to extend the field into a (possibly fictitious) extra

dimension whose coordinate is u.
We do this in such a way that the real system lives at u = 1:

A(tu=1)=n(t), nlt,u=0)=/(0,0,1)

be
it goes to the north pole at the other end of the extra dimension for @ L
all t. Consider periodic boundary conditions in time n(27) = 7n(0).

Then this means that the full space is really a disk with the origin at

u = 0, and the boundary at v = 1. Call this disk B, its boundary

0B = M is the real spacetime (here a circle).

We can write the WZW term in terms of the S%-valued field n'?3 as

2T

Wil = 5

1
/ R dn® A dinegpe = — / dt (1 — cos 6) 9,¢.
By 47T M
The integrand here is the volume element of the image of a chunk of spacetime in
the target S2. If we integrate over the union of two balls with cancelling boundaries
By U Bs, we get an integer multiple of 27 (the integer is the winding number of the
map).

The coefficient k of W in the action AS[n| = kW;[n] must be an integer since By
and B; give equally good definitions of W, which differ by 27k. So this ambiguity will
not affect the path integral if k£ € Z.

The generalization to a group-valued variable U in any dimension is of the form

WD:c/ try_ldUAU_ldUA---AU_ld[J;.
Bpi1 e

D + 1 of these

Such terms are interesting when mp,1(M) is nontrivial, where M is the space where
the fields live (the target space), that is, there are maps from S”*! to M which cannot
be smoothly deformed to the trivial map where every point in the base space goes to
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the same point in the target. The variation of Wp with respect to U is (for even D)%

SWp = (D + 1)c /BDH tr ¢ (Utav)” w (9.21)
— (D +1)e /B W {(avv)” d_([;Ujle[;} )U (9.22)
— (D +1)c /BDH awr { (U™'av)” Ut | (9.23)
Stokes 1y 1)c/M w{(U-tav)” v-teu |

which only depends on the field configuration on M, not on the extension to Bp,i.
Again there can be topologically distinct ways to make the extension; demanding that
they always give the same answer determines ¢ in terms of volumes of spheres (so
that ¢ [yp,, tr(U~'dU)P*H € Z is the winding number), and the coefficient must be an

integer. (In D = 4, we have ¢ = m.)

This WZW term is less topological than the theta term we discussed above, in the
sense that it affects the equations of motion for n(t). The variation of W is local in D
dimensions. The following table gives a comparison between theta terms and WZW
terms for a field theory in D spacetime dimensions, on a spacetime Mp:

5"Why do I restrict to even D?

D+1

tr (U™ 1dU)" " = e rositr (U9, U--- U0,

D+1)

but et #o+ = —(—1)PHlepprimtn 50 Wp = (—1)PWp vanishes in odd dimensions. The step
from (9.22) to (9.23) also relies on this fact. Using 1 = U~1U and hence 0 = §(U~U) = d(U~1U),
so that

dUt = -u~tduuTt, (9.20)

the term by which (9.22) and (9.23) differ is

tr{(a(Utar)”)suut}

product rule

<y {(aut nav A (Uta) T -

(U0 A U= AdU A (UHa0) T ) suu

U2 e { (Ut nuTtau A (Utaw) T - U auU Tt A duu Tt AU A (U)o Y suo

—trd (1—1+1—1..) (U 'dv)” T ouu—1 3 P-Loveng,
| —

D — 1 of these

See Weinberg, vol 2, §23.4 for more.
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theta term WZW term

H:fMDh WD:fBD+1w, 8BD+1:MD
h =dgq w = dv
Doesn’t affect EOM Affects EOM

C . Appears in perturbation theor
Invisible in perturbation theory PP ) P i ¥
e.g. in beta functions

Coefficient of W € Z

Z for Mp closed
H € Z for Mp close in order for path integral to be well-defined.

Pion physics is the context where these terms were first discovered, and where it was
realized that their coefficients are quantized. In particular the coefficient of the WZW
term Wy4[U] here is N, the number of colors, as Witten shows by explicitly coupling
to electromagnetism, and finding the term that encodes 7° — y7. One dramatic con-
sequence here is that the chiral Lagrangian (with some higher-derivative terms) has a
topological soliton solution (the skyrmion) which is a fermion if the number of colors of
QCD is odd. The field configuration U(x,t) is constant in time and approaches the vac-
uum at infinity, so we can regard it as a map U : (space Uoo ~ S¢) — G/H, where G is
the full symmetry group and H is the unbroken subgroup, so G/H is the space of Gold-
stones (in the chiral Lagrangian, G/H = SU(3) x SU(3)/SU(3)preserved = SU(3)broken)-
The configuration is topological in the sense that as a map from S* — G/H, it can-
not be smoothly deformed to the trivial map — it represents a nontrivial element of
73(G/H). Its nontriviality is witnessed by a winding number, which can be writ-
ten as the integral of a local density. In fact, the baryon number of this configura-
tion comes from the anomalous (WZW) contribution to the baryon number current
B, = 2LtrU'9,UU'9,UU 195U whose conserved charge [ By is exactly the

2472 spa
winding number of the map from space (plus the point at infinity) to the space of

goldstones. And finally this object a fermion because the WZW term evaluates to
on a spacetime trajectory where the soliton makes a 27 rotation. So this object is a
fermionic particle which carries baryon number. It also carries isospin. It’s a nucleon!
Above we added nucleon fields to the chiral Lagrangian, but we actually didn’t need
to — they were already there as solitonic excitations. Note that the size of the soliton
(the region of space over which the fields vary) is determined by the higher-derivative
terms in the chiral lagrangian, so we shouldn’t take too seriously the substructure of
the proton predicted by this picture. But it doesn’t do too badly.

I should also mention that WZW terms are important in the study of interacting

222


http://inspirehep.net/record/13234?ln=en
http://inspirehep.net/record/13235?ln=en
http://inspirehep.net/record/13235?ln=en
http://inspirehep.net/record/190174?ln=en

spin systems, for example in our understanding the dependence on the s of Heisen-
berg spin-s chains, and in phase transitions beyond the Landau-Ginzburg (symmetry-
breaking) paradigm (i.e. deconfined quantum criticality). This is a subject for Physics
215C.

9.8 Superconductors

Recall from §6.1 our effective (Landau-Ginzburg) description of superconductors which
reproduces the Meissner effect, the Abelian Higgs model:

1 1
F=1FiFy + |D;®| + a|®* + §b\<1>\4 - (9.24)

I want to make two more comments about this:

Symmetry breaking by fluctuations (Coleman-Weinberg). [Zee problem
IV.6.9.] What happens near the transition, when a = 0 in (9.24)? Quantum fluctua-
tions can lead to symmetry breaking.

New IR dofs. A feature of this example that I want you to notice: the micro-
scopic description of real superconductor involves electrons — charge le spinor fermions,
created by some fermionic operator 1., a =T, |.

We are describing the low-energy physics of a olﬂr-dv,e. |
system of electrons in terms of a bosonic field, Sgrner

. . . ¢ B . —-LE—(MI Ly} ol
which (in simple ‘s-wave’ superconductors) is \

roughly related to the electron field by Co I E2 Q
0" L
D ~ Yarhpe® ; (9.25) — \& "’Af¢,

® is called a Cooper pair field. At least, the C/Lué) 2
charges and the spins and the statistics work out. @ § ko %
The details of this relationship are not the impor- L evd

tant point [ wanted to emphasize. Rather I wanted

to emphasize the dramatic difference in the correct choice of variables between the UV
description (spinor fermions) and the IR description (scalar bosons). One reason that
this is possible is that it costs a large energy to make a fermionic excitation of the
superconductor. This can be understood roughly as follows: The microscopic theory of
the electrons looks something like (ignoring the coupling to electromagnetism for now)

S[) = Syf)] + / dtds uptynpi + hec. (9.26)
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where

Sy = /dt /ddk;w,i (i0; — e(k)) by

Spin is important here so that zﬂz/zﬂblzp | 1s nonzero. A mean field theory description
of the condensation of Cooper pairs (9.25) is obtained by replacing the quartic term in
(9.26) by expectation values:

Surerlv] = Sal) — [ dtd's w () 910! + he
= Syth] — / dtdz udyiy’ + h.c. (9.27)

So an expectation value for @ is a mass for the fermions. It is a funny kind of symmetry-
breaking mass, but if you diagonalize the quadratic operator in (9.27) (actually it is
done below) you will find that it costs an energy of order AE, = u (®) to excite a
fermion. That’s the cutoff on the LG EFT.

A general lesson from this example is: the useful degrees of freedom at low energies
can be very different from the microscopic dofs.

9.8.1 Lightning discussion of BCS.

[ am sure that some of you are nervous about the step from S[¢] to Sy pr[t] above.
To make ourselves feel better about it, I will say a few more words about the steps
from the microscopic model of electrons (9.26) to the LG theory of Cooper pairs (these
steps were taken by Bardeen, Cooper and Schreiffer (BCS)).

First recall the Hubbard-Stratonovich transformation aka completing the square. In
040 dimensional field theory:

. 1 o 1,2 532
et — / do e 1w 277 9.28

Viru J 0o ( )
At the cost of introducing an extra field o, we turn a quartic term in z into a quadratic
term in 2. The RHS of (9.28) is gaussian in  and we know how to integrate it over
x. (The version with i is relevant for the real-time integral.) Notice the weird extra
factor of i lurking in (9.28). This can be understood as arising because we are trying

to use a scalar field o, to mediate a repulsive interaction (which it is, for positive u)
(see Zee p. 193, 2nd Ed).

Actually, we’ll need a complex H-S field:

2 2

g—iT“o 7 (929)

efiuzZEQ = - 1 d20' 67ﬁ|0|27ix
iru Jc
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where f(c d%o... = ffooo dReo ffooo dlmo... (The field-independent prefactor is, as usual,
not important for path integrals.)

We can use a field theory generalization of (9.29) to ‘decouple’ the 4-fermion inter-

action in (9.26):

lo|2 (=)

7 — /[DwaT]eiS[w] — /[DwaTDUDJT]eiSQMHdex(U¢¢+h~C-)_dex oL (9.30)

The point of this is that now the fermion integral is gaussian. At the saddle point
of the o integral (which is exact because it is gaussian), o is the Cooper pair field,

Osaddle =— U¢¢ .

Notice that we made a choice here about in which
‘channel’” to make the decoupling — we could have in- ~——> '
stead introduces a different auxiliary field p and writ-
ten Slp,¥] = [piy + [ %, which would break up
the 4-fermion interaction in the t-channel (as an in- j
teraction of the fermion density 171)) instead of the s
(BCS) channel (as an interaction of Cooper pairs 9)?). > <
At this stage both are correct, but they lead to differ-
ent mean-field approximations below. That the BCS
mean field theory wins is a consequence of the RG.

How can you resist doing the fermion integral in (9.30)? Let’s study the case where

the single-fermion dispersion is €(k) = 212_; -

[w [a] = /[Dwaf]eifdtd%@ﬁ (i@t-%ﬁ—u>¢+¢5¢+¢¢a)

The action here can be written as the integral of

L= (T ) (5) =@ (1)

so the integral is
I[0] = det M = etrlesM(@),

If o is constant (which will lower the energy), the matrix M is diagonal in momentum
space, and the integral remaining to be done is

/[DUDJT]e del"%*dek10g(w276§—|a\2)'

It is often possible to do this integral by saddle point. This can justified, for example,
by the largeness of the volume of the Fermi surface, {k|e(k) = p}, or by large N number
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of species of fermions. The result is an equation which determines o, which as we saw

earlier determines the fermion gap.

2
0= (5expo_nent _ i— /duddk: o
0o 2u

We can do the frequency integral by residues:

1 1 1
d - omi =
/ g e —|o|?+ie 2w 7r121 /€ + |o]?

The resulting equation is naturally called the gap equation:

= —2u /ddp
VeWw)? + o2

2—e — o> +ie

(9.31)

which you can imagine solving self-consistently for . Plugging back into the action

(9.30) says that o determines the energy cost to have electrons around; more precisely,

o is the energy required to break a Cooper pair.

Comments:

Notice that a solution of (9.31) requires u < 0, an attractive interaction. Super-
conductivity happens because the u that appears here is not the bare interaction
between electrons, which is certainly repulsive (and long-ranged). This is where
the phonons come in in the BCS discussion.

If we hadn’t restricted to a delta-function 4-fermion interaction u(p,p’) = ug at
the outset, we would have found a more general equation like

_ 1 u(p,p')o(p')
o) / \/6(’ +lo(p')?

A conservative perspective on the preceding calculation is that we have made a

variational ansatz for the groundstate wavefunction, and the equation we solve
for ¢ is minimizing the variational energy — finding the best wavefunction within
the ansatz.

I haven’t included here effects of the fluctuations of the fermions. In fact, they
make the four-fermion interaction which leads to Cooper pairing marginally rel-
evant. This breaks the degeneracy in deciding how to split up the )Tt into
e.g. Yo or Pipp. BCS wins. This is explained beautifully in Polchinski, lecture
2, and R. Shankar. If there were time, I would summarize the EFT framework
for understanding this in §9.9.

226


http://arxiv.org/abs/hep-th/9210046
http://arxiv.org/abs/hep-th/9210046
http://rmp.aps.org/pdf/RMP/v66/i1/p129_1

e ['ve tried to give the most efficient introduction I could here. I left out any
possibility of k-dependence or spin dependence of the interactions or the pair
field, and I've conflated the pair field with the gap. In particular, I've been
sloppy about the dependence on k of ¢ above.

e You can study a very closely related manipulation on the problem set, in an
example (the Gross-Neveu model) where the saddle point is justified by large N.

9.9 Effective field theory of Fermi surfaces

[Polchinski, lecture 2, and R. Shankar] Electrically conducting solids are a remarkable
phenomenon. An arbitrarily small electric field E leads to a nonzero current f: oE.
This means that there must be gapless modes with energies much less than the natural
cutoff scale in the problem.

Scales involved: The Planck scale of solid state physics (made by the logic by
which Planck made his quantum gravity energy scale, namely by making a quantity
with dimensions of energy out of the available constants) is

letm 1e?
Ey = ST = §a_0 ~ 13eV

(where m = m, is the electron mass and the factor of 2 is an abuse of outside informa-
tion) which is the energy scale of chemistry. Chemistry is to solids as the melting of
spacetime is to particle physics. There are other scales involved however. In particular
a solid involves a lattice of nuclei, each with M > m (approximately the proton mass).
So m/M is a useful small parameter which controls the coupling between the electrons
and the lattice vibrations. Also, the actual speed of light ¢ > vp can generally also
be treated as oo to first approximation. vg/c suppresses spin orbit couplings (though
large atomic numbers enhance them: A\go o< Zvg/c).

Let us attempt to construct a Wilsonian-natural effective field theory of this phe-
nomenon. The answer is called Landau Fermi Liquid Theory. What are the right low-
energy degrees of freedom? Let’s make a guess that they are like electrons — fermions
with spin and electric charge. They will not have exactly the properties of free elec-
trons, since they must incorporate the effects of interactions with all their friends. The
‘dressed’ electrons are called quasielectrons, or more generally quasiparticles.

Given the strong interactions between so many particles, why should the dofs have
anything at all to do with electrons? Landau’s motivation for this description (which
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is not always correct) is that we can imagine starting from the free theory and adia-
batically turning up the interactions. If we don’t encounter any phase transition along
the way, we can follow each state of the free theory, and use the same labels in the
interacting theory.

We will show that there is a nearly-RG-stable fixed point describing gapless quasi-
electrons. Notice that we are not trying to match this description directly to some
microscopic lattice model of a solid; rather we will do bottom-up effective field theory.

Having guessed the necessary dofs, let’s try to write an action for them consistent
with the symmetries. A good starting point is the free theory:

Sealt)] = / dt % (1] (0) O () — (e(p) — er) U1 () p)

where ¢ is a spin index, e is the Fermi energy (zero-temperature chemical potential),
and €(p) is the single-particle dispersion relation. For non-interacting non-relativistic
electrons in free space, we have e(p) = %. It will be useful to leave this as a general

function of p. %

The groundstate is the filled Fermi sea:

gs) = ] ¢i10), ,10)=0, Vp.

ple(p)<er

(If you don’t like continuous products, put the system in a box so that p is a discrete
label.) The Fermi surface is the set of points in momentum space at the boundary of
the filled states:

FS = {ple(p) = er}.

The low-lying excitations are made by adding an electron just above the FS or
removing an electron (creating a hole) just below.

We would like to define a scaling transformation which focuses on the low-energy
excitations. We scale energies by a factor £ — bFE,b < 1. In relativistic QFT, p scales
like E, toward zero, p — bp, since all the low-energy stuff is near the single special point
p = 0. Here the situation is much more interesting because there is a whole surface of
low-energy stuff on the F'S. This will lead to what’s called hyperscaling violation — we
can’t just count powers of momentum.

58Notice that we are assuming translation invariance. I am not saying anything at the moment
about whether translation invariance is discrete (the ions make a periodic potential) or continuous.

69We have chosen the normalization of v to fix the coefficient of the 9; term (this rescaling may
depend on p).
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One way to implement this is to introduce a hi- i ]
erarchical labeling of points in momentum space, <
by breaking the momentum space into patches k
around the FS. (An analogous strategy of labeling
is also used in heavy quark EFT and in SCET.)

We'll use a slightly different strategy, follow-
ing Polchinski. To specify a point p, we pick the
nearest point k on the FS, ¢(k) = e (draw a line
perpendicular to the FS from p), and let

p=k+/.

So d — 1 of the components are determined by k and one is determined by ¢. (Clearly
there are some exceptional cases if the F'S gets too wiggly. Ignore these for now.)

e(p) — er = Lup(k) + O(?), Vp = Op|pr-
So a scaling rule which accomplishes our goal of focusing on the FS is
E — bE, E—HQ, [ — bl

This implies
dt — b7 'dt, d* 'k — d¥Vk, dl— bdl, 8, — bd,

Siwe = [ dd Tl | 01(0) 0 vp)  for(h) o (p)ulp)

~b0 ~bl ~bl
In order to make this go like b° we require ¢ — b_%zb near the free fixed point.

Next we will play the EFT game. To do so we must enumerate the symmetries we
demand of our EFT:

1. Particle number, 1) — €%

2. Spatial symmetries: either (a) continuous translation invariance and rotation
invariance (as for e.g. liquid *He) or (b) lattice symmetries. This means that
momentum space is periodically identified, roughly p ~ p + 27 /a where a is the
lattice spacing (the set of independent momenta is called the Brillouin zone (BZ))
and p is only conserved modulo an inverse lattice vector 27 /a; the momentum
There can also be some remnant of rotation invariance preserved by the lattice.
Case (b) reduces to case (a) if the Fermi surface does not go near the edges of
the BZ.
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3. Spin rotation symmetry, SU(n) if ¢ = 1..n. In the limit with ¢ — oo, this is an
internal symmetry, independent of rotations.

4. Let’s assume that ¢(p) = e(—p), which is a consequence of e.g. parity invariance.

Now we enumerate all terms analytic in ¢ (since we are assuming that there are no
other low-energy dofs integrating out which is the only way to get non-analytic terms
in ¢) and consistent with the symmetries; we can order them by the number of fermion
operators involved. Particle number symmetry means every v¢» comes with a 1f. The
possible quadratic terms are:

[ dd R ) g} (o) ~ b

~b0 ~b—1

is relevant. This is like a mass term. But don’t panic: it just shifts the FS around. The
existence of a Fermi surface is Wilson-natural (i.e. a stable assumption given generic
coefficients of all possible terms in the action); any precise location or shape (modulo
something enforced by symmetries, like roundness) is not.

Adding one extra 0, or factor of £ costs a b' and makes the operator marginal; those
terms are already present in Spe.. Adding more than one makes it irrelevant.

Quartic terms:

4
Sy = /dt H A" heydlu(4 - - DL (1) e (p3)0L (p2) o (p2) 6 (51 + P2 — 75 — )

=1
TV
~b—1+4—4/2

J/

Note the similarity with the discussion of the XY model in §7?7. The minus signs on
P34 is because ¥(p) removes a particle with momentum p. We assume u depends only
on k,o, so does not scale — this will give the most relevant piece. How does the delta
function scale?

?
5d(ﬁ1+172—ﬁ3—ﬁ4):5d(k51+/€2—k3—k4+£1+f2—€3—€4)25d(k1+k’2—k3—k4)

In the last (questioned) step, we used the fact that ¢ < k to ignore the contributions
of the ¢s. If this is correct then the delta function does not scale (since ks do not),
and S; ~ b' is irrelevant (and quartic interactions with derivatives are moreso). If this
were correct, the free-fixed point would be exactly stable.

There are two important subtleties: (1) there exist phonons. (2) the questioned
equality above is questionable because of kinematics of the Fermi surface. We will
address these two issues in reverse order.
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The kinematic subtlety in the treatment of the
scaling of d(p; + po — p3 — pa) arises because of the
geometry of the Fermi surface. Consider scattering
between two points on the FS, where (in the labeling
convention above)

p3 = p1 +0ki 4+ 001,  pa = po+ O0ky + 04,

in which case the momentum delta function is

S, 5+ p2—ps — pa) = 6U0ky + 86+ Oky + 3L).

For generic choices of the two points p; » (top figure at
left), dk; and 0ks are linearly independent and the 6/s
can indeed be ignored as we did above. However, for
two points with p; = —py (they are called nested, as depicted in the bottom figure at
left), then one component of dk; + 0k is automatically zero, revealing the tiny 0/s to
the force of (one component of) the delta function. In this case, §(¢) scales like =1, and
for this particular kinematic configuration the four-fermion interaction is (classically)
marginal. Classically marginal means quantum mechanics has a chance to make a big
difference.

A wuseful visualization is at right (d = 2 with
a round FS is shown; this is what’s depicted on
the cover of the famous book by Abrikosov-Gorkov-
Dzyaloshinski): the blue circles have radius kg; the
yellow vector is the sum of the two initial momenta
p1 + p2, both of which are on the FS; the condition
that ps + p4, each also on the FS, add up to the same vector means that p3 must lie on
the intersection of the two circles (spheres in d > 2). But when p; + py = 0, the two
circles are on top of each other so they intersect everywhere! Comments:

1. We assumed that both p; and —py were actually on the FS. This is automatic if
e(p) = €(—p), i.e. if € is only a function of p?.

2. This discussion works for any d > 1.

3. Forward scattering. There is a similar phenomenon for the case where p; = ps3
(and hence py = py). This is called forward scattering because the final momenta
are the same as the initial momenta. (We could just as well take p; = ps (and
hence ps = p3).) In this case too the delta function will constrain the ¢s and will
therefore scale.
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The tree-level-marginal 4-Fermi interactions at special kinematics leads to a family
of fixed points labelled by ‘Landau parameters’. In fact there is whole function’s worth
of fixed points. In 2d, the fixed point manifold is parametrized by the forward-scattering
function

F(01,05) = u(0y, = 05,03 = 01,05, 61)

(Fermi statistics implies that u(6y = 61,05 = 0,605,60,) = —F(01,02) .) and the BCS-
channel interaction:

V(917€3) = U(94 - _03703702 - _01701>-

G C il 3,
Now let’s think about what decision the fluctuations make ® hhe

about the fate of the nested interactions. The first claim,
which I will not justify here, is that F' is not renormalized
at one loop. The interesting bit is the renormalization of the
BCS interaction: e h=he
The electron propagator, obtained by inverting the kinetic operator Stee, iS

1
(141in) —vp(k)l+ O¢)?

G(e,]z):k—l—l):6

where T used 7 = 0" for the infinitesimal specifying the contour prescription. (To
understand the contour prescription for the hole propagator, it is useful to begin with

G(t,p) = (er| ch(t)c,(0) |er), ch(t) = e Hcle™!

and use the free-fermion fact [H, cf] = e,cl.)

Let’s assume rotation invariance. Then V(0s,6:) = V(63 — 61), Vi = [d0eV (6).
Different angular momentum sectors decouple from each other at one loop.

We will focus on the s-wave bit of the interaction, so V' is independent of momentum.
We will integrate out just a shell in energy (depicted by the blue shaded shell in the
Fermi surface figures). The interesting contribution comes from the following diagram:

‘-,/é P4=-1,,€

sOy — there ) -ple-¢ iy /eo de'd*1k' dp 1
o @O (et ¢ or () (e~ & —0r(R)0)

€0

T.‘G Fl= - l" |é'
-1

de'd='K 1
o / residues - ‘V2 —d - !
d /d[ by resid 1 / (27T)d+1 ’UF(/{/) E € V(E + 62

=—2¢
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€0 de dd lk/
9.32
/b / 27 d’UF k’/ ( )

=log( 1/b dos at FS

Between the first and second lines, we did the ¢’ integral by residues. The crucial point
is that we are interested in external energies € ~ 0, but we are integrating out a shell
near the cutoff, so |¢/| > |e¢| and the sign of € + ¢ is opposite that of € — ¢’; therefore
there is a pole on either side of the real ¢ axis and we get the same answer by closing
the contour either way. On one side the pole is at ¢/ = W (e 4+ ¢€). (In the t-channel
diagram (what Shankar calls ZS), the poles are on the same side and it therefore does
not renormalize the four-fermion interaction.)

The result to one-loop is then
V(b) =V —V2Nlog(1/b) + O(V?)

with N = [ L’“k,) is the density of states at the Fermi surface. From this we derive
the beta function p

b—V (b

oV ®)

and the solution of the flow equation at £ = bFE} is

= By = NV%(b) + O(V?)

V(E) = (9.33)

174 —0 in IR for V; > 0 (repulsive)
14+ NV;log(EL/E)

— —oo in IR for Vi <0 (attractive)

There is therefore a very significant dichotomy depending on the sign of the coupling
R

1

(=
The conclusion is that if the interaction starts attractive at some scale it flows

at the microscopic scale Fy, as in this phase diagram:

to large attractive values. The thing that is decided by our perturbative analysis is
that (if V(E;) > 0) the decoupling we did with ¢ (‘the BCS channel’) wins over the
decoupling with p ("the particle-hole channel’). What happens at V' — —oo? Here we
need non-perturbative physics.

The non-perturbative physics is in general hard, but we’ve already done what we
can in §9.8.1.

The remaining question is: Who is V; and why would it be attractive (given that
Coulomb interactions between electrons, while screened and therefore short-ranged, are
repulsive)? The answer is:

Phonons. The lattice of positions taken by the ions making up a crystalline solid
spontaneously break many spacetime symmetries of their governing Hamiltonian. This
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implies a collection of gapless Goldstone modes in any low-energy effective theory of
such a solid”™”. The Goldstone theorem is satisfied by including a field

D (local) displacement 07" of ions from their equilibrium positions

Most microscopically we have a bunch of coupled springs:

1 2\ 2 o

Lions ~ §M ((5F> - kijérzérj + ...
with spring constants k independent of the nuclear mass M. It is useful to introduce
a canonically normalized field in terms of which the action is

S[D = (M)"? 7] = %/dtddq (0:Di(9):Di(—q) — wij(a)Di(q)Dj(~q)) -

Here w? oc M~". Their status as Goldstones means that the eigenvalues of w7;(¢) ~ |q|?
at small ¢: moving everyone by the same amount does not change the energy. This also
constrains the coupling of these modes to the electrons: they can only couple through
derivative interactions.

T‘ For purposes of their interactions with the elec-
; trons, a nonzero ¢ which keeps the e~ on the FS must
' \ scale like ¢ ~ b°. Therefore
° /'s: dtd’q (0,D)* ~ bT+20l  — D~z

and the restoring force dtdgD?*w?(q) ~ b~? is relevant,
and dominates over the 9? term for

E <Ep =4/ %EO the Debye energy.

This means that phonons mediate static interactions below Ep — we can ignore re-
tardation effects, and their effects on the electrons can be fully incorporated by the
four-fermion interaction we used above (with some k dependence). How do they couple
to the electrons?

Sint|[ D, Y] = /dtngd2k1d€1d2k2d€2 M_%gi(q, k1, ko) Di(q)! (p1)o (p2) 8 (p1 — p2 — q)

"ONote that there is a subtlety in counting Goldstone modes from spontaneously broken spacetime
symmetries: there are more symmetry generators than Goldstones. Basically it’s because the associ-
ated currents differ only by functions of spacetime; but a localized Goldstone particle is anyway made
by a current times a function of spacetime, so you can’t sharply distinguish the resulting particles.
Some useful references on this subject are Low-Manohar and most recently Watanabe-Murayama.
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o plHIHI=3/2 12 (9.34)

— here we took the delta function to scale like b° as above. This is relevant when we
use the D? scaling for the phonons; when the restoring force dominates we should scale
D differently and this is irrelevant for generic kinematics. This is consistent with our
previous analysis of the four-fermion interaction.

The summary of this discussion is: phonons do not destroy the Fermi surface,
but they do produce an attractive contribution to the 4-fermion interaction, which is
relevant in some range of scales (above the Debye energy). Below the Debye energy, it

amounts to an addition to V' that goes like —g?: ;}’\'\N‘{ — ><

Notice that the scale at which the coupling V' becomes strong (V(Egcs) = 1 in
(9.33)) is
1
EBCS ~ Epeiw.

Two comments about this: First, it is non-perturbative in the interaction Vp. Second,

1/2 can be varied

it provides some verification of the role of phonons, since EFp ~ M~
by studying the same material with different isotopes and studying how the critical

superconducting temperature (~ Frecg) scales with the nuclear mass.
\%

0) Ve tion of decreasing energy scale, beginning at

Q
® Ey, the Planck scale of solids: (1) Electrons
® 3 >/\-\\ f 7 E-I

U

Here’s the narrative, proceeding as a func-

repel each other by the Coulomb interac-

L
Jh
&)

E&C < tion. However, in a metal, this interaction

is screened by processes like this: w@m

(the intermediate state is an electron-hole

pair) and is short-ranged. It is still repulsive,
however. As we coarse-grain more and more, we see more and more electron-hole pairs
and the force weakens. (2) While this is happening, the electron-phonon interaction is
relevant and growing. This adds an attractive bit to V. This lasts until Ep. (3) At Ep
the restoring force term in the phonon lagrangian dominates (for the purposes of their
interactions with the electrons) and we can integrate them out. (4) What happens
next depends on the sign of V(Ep). If it’s positive, V' flows harmlessly to zero. If
it’s negative, it becomes moreso until we exit the perturbative analysis at Egcg, and
vindicate our choice of Hubbard-Stratonovich channel above.

Further brief comments, for which I refer you to Shankar:

1. Putting back the possible angular dependence of the BCS interaction, the result
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at one loop is

dV (0, — 63) 1 2m
—_— = —— aovig, — )V —6
ar 812 J, (6 VI 3
or in terms of angular momentum components,
i VP
al Ar’

2. This example is interesting and novel in that it is a (family of) fixed point(s)
characterized by a dimensionful quantity, namely kr. This leads to a phenomenon
called hyperscaling violation where thermodynamic quantities need not have their
naive scaling with temperature.

3. The one loop analysis gives the right answer to all loops in the limit that N =
kr/A > 1, where A is the UV cutoff on the momentum.

4. The forward scattering interaction (for any choice of function F'(;3)) is not renor-
malized at one loop. This means it is exactly marginal at leading order in N.

5. Like in ¢* theory, the sunrise diagram at two loops is the first appearance of
wavefunction renormalization. In the context of the Fermi liquid theory, this
leads to the renormalization of the effective mass which is called m*.

Another consequence of the FS kinematics which I should emphasize more: it allows
the quasiparticle to be stable. The leading contribution to the decay rate of a one-
quasiparticle state with momentum £ can be obtained applying the optical theorem to
the following process.

The intermediate state is two electrons with momenta &' + ¢ and k& — ¢, and one
hole with momentum k’. The hole propagator has the opposite in prescription. After
doing the frequency integrals by residues, we get

' |uq|2
Y(k,e) = [dqdk D_in i

D =e(1+1in) + e (1 —in) — e4q(1 +in) — 4o (1 + in)

(Notice that this is the eyeball diagram which gives the lowest-order contribution to
the wavefunction renormalization of a field with quartic interactions.) By the optical
theorem, its imaginary part is the (leading contribution to the) inverse-lifetime of the
quasiparticle state with fixed k:

7 (k) =ImX(k,e) =7 /dq dR'6(D) luq|* f (=€) f(€rrq) f(€r—q)
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where 1
= lim — =0(e <
10 = i g = e < )
is the Fermi function. This is just the demand that a particle can only scatter into
an empty state and a hole can only scatter into a filled state. These constraints imply
that all the energies are near the Fermi energy: both €4, and € lie in a shell of radius

€ about the F'S; the answer is proportional to the density of possible final states, which
is thus
2
()
T [ — ) .
€F
So the width of the quasiparticle resonance is
T e < e

much smaller than its frequency — it is a sharp resonance, a well-defined particle.
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