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1. Complex scalar field and antiparticles, practice with Noether’s theo-

rem.

[This problem is related to Peskin problem 2.2.] So far we’ve discussed scalar

field theory with one real scalar field. The particles created by this field are their

own antiparticles.

To understand this statement better, consider a scalar field theory in d + 1

dimensions with two real fields φ1, φ2. Organize them into one complex field

Φ ≡ 1√
2

(φ1 + iφ2), with Φ? = 1√
2

(φ1 − iφ2), and let

S[Φ,Φ?] =

∫
ddxdt

(
1

2
µ∂tΦ∂tΦ

? − 1

2
µv2~∇Φ · ~∇Φ? − V (Φ?Φ)

)
.

(a) Show that

S[Φ,Φ?] =

∫ (∑
i=1,2

(
A (∂tφi)

2 −B~∇φi · ~∇φi
)
− V

(
φ2

1 + φ2
2

))
,

and where A,B are constants you must determine. If V (q2) = 1
2
m2q2, notice

that the action is just the sum of two copies of the action of the theory we

considered previously.

(b) Show by doing the Legendre transformation that the associated hamiltonian

is

H =

∫
ddx

(
CΠΠ? +D~∇Φ · ~∇Φ? + V (ΦΦ?)

)
where C,D are constants you must determine, and the canonical momenta

are

Π =
∂L
∂Φ̇

=
1

2
µΦ̇?, Π? =

∂L
∂Φ̇?

=
1

2
µΦ̇

with the Lagrangian density L defined by S =
∫
dtddxL.
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(c) This theory has a continuous symmetry under which Φ→ eiαΦ,Φ? → e−iαΦ?

with α a real constant. Show that the action S does not change if I make

this replacement. 1

(d) The existence of a continuous symmetry means a conserved charge – a her-

mitian operator which commutes with the Hamiltonian, which generates the

symmetry. Show that

q ≡
∫
ddx i (Φ?Π? − ΠΦ)

generates this transformation, in the sense that the change in the field under

a transformation with infinitesimal α is

δΦ = iαΦ = −iα[q,Φ], and δΦ? = −iαΦ? = −iα[q,Φ?].

Show that [q,H] = 0.

(e) For the case where V (ΦΦ?) = m2ΦΦ? the hamiltonian is quadratic. Diago-

nalize it in terms of two sets of creation operators and annihilation operators.

You should find something of the form

Φ =

√
~
2µ

∑
k

1
√
ωk

(
eikxak + e−ikxb†k

)
. (1)

(f) Write the canonical commutators

[Φ(x),Π(x′)] = i~δ(x− x′), [Φ(x),Π?(x′)] = 0

(and the hermitian conjugate expressions) in terms of a and b.

(g) Rewrite q in terms of the mode operators.

(h) Evaluate the charge of each type of particle created by a†k and b†k
(i.e. find [q, a†]).

I claim that the particle created by a† is the antiparticle of that created

by b† in the sense that they have opposite quantum numbers. This means

that we can add terms to the hamiltonian by which they can annihilate each

other, without breaking any symmetries. What might such a term look like?

1This is called a U(1) symmetry: it is a unitary rotation (hence ‘U’) on a one-dimensional (hence

‘(1)’) complex vector. Notice that on the real components φ1, φ2 it acts as a two-dimensional rotation:(
φ1
φ2

)
→
(
cosα − sinα

sinα cosα

)(
φ1
φ2

)
.

The name for this group is SO(2). So U(1) is the same as SO(2).
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2. Non-Abelian currents. Now, we make a big leap to two complex scalar fields,

Φα=1,2, with

S[Φα] =

∫
ddxdt

(
1

2
∂µΦ?

α∂
µΦα − V (Φ?

αΦα)

)
Consider the objects

Qi ≡ 1

2

∫
ddxi

(
Π†ασ

i
αβΦ†β

)
+ h.c.

where σi=1,2,3 are the three Pauli matrices, and Πα is the canonical field momen-

tum for Φα.

(a) What symmetries do these charges generate (i.e. how do the fields trans-

form)? Show that they are symmetries of S.

(b) If you want to, show that [Qi, H] = 0, where H is the Hamiltonian.

(c) Evaluate [Qi, Qj]. Hence, non-Abelian.

(d) To complete the circle, find the Noether currents J iµ associated to the sym-

metry transformations you found in part 2a.

(e) Generalize to the case of N scalar fields.

3. Schwinger-Dyson equations.

Consider the path integral ∫
[Dφ]eiS[φ].

Using the fact that the integration measure is independent of the choice of field

variable, we have

0 =

∫
[Dφ]

δ

δφ(x)
(anything)

(as long as ‘anything’ doesn’t grow at large φ). So this equation says that we can

integrate by parts in the functional integral.

(Why is this true? As always when questions about functional calculus arise,

you should think of spacetime as discrete and hence the path integral measure

as simply the product of integrals of the field value at each spacetime point,∫
[Dφ] ≡

∫ ∏
x dφ(x), this is just the statement that

0 =

∫
dφx

∂

∂φx
(anything)

with φx ≡ φ(x), i.e. that we can integrate by parts in an ordinary integral if there

is no boundary of the integration region.)
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This trivial-seeming set of equations (I say ‘set’ because we get to pick the ‘any-

thing’) can be quite useful and they are called Schwinger-Dyson equations (or

sometimes Ward identities). Unlike many of the other things we’ll discuss, they

are true non-perturbatively, i.e. are really true, even at finite coupling. They

provide a quantum implementation of the equations of motion.

(a) Evaluate the RHS of

0 =

∫
[Dφ]

δ

δφ(x)

(
φ(y)eiS[φ]

)
to conclude that 〈

T δS

δφ(x)
φ(y)

〉
= +iδ(x− y). (2)

(b) These Schwinger-Dyson equations are true in interacting field theories; to

get some practice with them we consider here a free theory. Evaluate (2)

for the case of a free massive real scalar field to show that the (two-point)

time-ordered correlation functions of φ satisfy the equations of motion, most

of the time. That is: the equations of motion are satisfied away from other

operator insertions:〈
T
(
+2x +m2

)
φ(x)φ(y)

〉
= −iδ(x− y), (3)

with 2x ≡ ∂xµ∂
xµ .

(c) Find the generalization of (3) satisfied by (time-ordered) three-point func-

tions of the free field φ.

4. More about 0+0d field theory. Here we will study a bit more some field

theories with no dimensions at all, that is, integrals.

Consider the case where we put a label on the field: q → qa, a = 1..N . So we are

studying

Z =

∫ ∫ ∞
−∞

∏
a

dqa e
−S(q).

Let

S(q) =
1

2
qaKabqb + Tabcdqaqbqcqd

where Tabcd is a collection of couplings. Assume Kab is a real symmetric matrix.

(a) Show that the propagator has the form:

a−−−−−−b ≡ 〈qaqb〉T=0 =
(
K−1

)
ab

=
∑
k

φa(k)?
1

k
φb(k)

where {k} are the eigenvalues of the matrix K and φa(k) are the eigenvectors

in the a-basis.
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(b) Show that in a diagram with a loop, we must sum over the eigenvalue label

k. (For definiteness, consider the order-g correction to the propagator.)

(c) Consider the case whereKab = t (2δa,b − δa,b+1 − δa+1,b), with periodic bound-

ary conditions: a + N ≡ a. (Relative to the first version of this homework,

I added a constant to K and changed the sign to make the thermodynamic

limit N →∞ a little nicer.) Find the eigenvalues. Show that in this case if

Tabcdqaqbqcqd =
∑
a

gq4
a

the k-label is conserved at vertices, i.e. the vertex is accompanied by a delta

function on the sum of the incoming eigenvalues.

(d) (Bonus question) What is the more general condition on Tabcd in order that

the k-label is conserved at vertices?

(e) (Bonus question) Study the physics of the model described in 4c.

Back to the case without labels.

(f) By a change of integration variable show that

Z =

∫ ∞
−∞

dq e−S(q)

with S(q) = 1
2
m2q2 + g

4!
q4 is of the form

Z =
1√
m2
Z
(
m4

g

)
.

This means you can make your life easier by setting m = 1, without loss of

generality.

(g) Convince yourself (e.g. with Mathematica) that the integral really is ex-

pressible as a Bessel function.

(h) It would be nice to find a better understanding for why the partition function

of (0 + 0)-dimensional φ4 theory is a Bessel function. By part 4f we can set

g = 1 and use x ≡ m2 as the argument of Z. Find a Schwinger-Dyson

equation for this system which has the form of Bessel’s equation for

K(x) = e−ax
2

(x2)−1/4Z(x)

for some constant a.

(i) Make a plot of the perturbative approximations to the ‘Green function’

G ≡ 〈q2〉 as a function of g, truncated at orders 1 through 6 or so. Plot

them against the exact answer.
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(j) (Bonus problem) Show that cn+1 ∼ −2
3
ncn at large n (by brute force or by

cleverness).

5. Combinatorics from 0-dimensional QFT. [This is a bonus problem. I will

wait to post the solution until next week, in case you want to think about it

more.]

Catalan numbers Cn = (2n)!
n!(n+1)!

arise as the answer to many combinatorics prob-

lems (beware: there is some disagreement about whether this is Cn or Cn+1).

One such problem is: count random walks on a 1d chain

with 2n steps which start at 0 and end at 0 without

crossing 0 in between.

Another such problem is: in how many ways can 2n (dis-

tinguishable) points on a circle be connected by chords

which do not intersect within the circle.

Consider a zero-dimensional QFT with the following Feynman rules:

• There are two fields h and l.

• There is an
√
th2l vertex in terms of a coupling t.

• The bare l propagator is 1.

• The bare h propagator is 1.

• All diagrams can be drawn on a piece of paper without crossing.2

• There are no loops of h.

The last two rules can be realized from a lagrangian by introducing a large N

(below).

(a) Show that the full two-point green’s function for h is

G(t) =
∑
n

tnCn

the generating function of Catalan numbers.

2An annoying extra rule: All the l propagators must be on one side of the h propagators. You’ll

see in part 5f how to justify this.
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(b) Let Σ(t) be the sum of diagrams with two h lines sticking out which may

not be divided into two parts by cutting a single intermediate line. (This

property is called 1PI (one-particle irreducible), and Σ is called the “1PI

self-energy of h”. We’ll use this manipulation all the time later on.) Show

that G(t) = 1
1−Σ(t)

.

(c) Argue by diagrams for the equation (sometimes this is also called a Schwinger-

Dyson equation)

where Σ is the 1PI self-energy of h.

(d) Solve this equation for the generating function G(t).

(e) If you are feeling ambitious, add another coupling N−1 which counts the

crossings of the l propagators. The resulting numbers can be called Touchard-

Riordan numbers.

(f) How to realize the no-crossings rule? Consider

L =

√
t√
N
lαβhαhβ +

∑
α,β

l2αβ +
∑
α

h2
α

where α, β = 1 · · ·N . By counting index loops, show that the dominant

diagrams at large N are the ones we kept above. Hint: to keep track of the

index loops, introduce (’t Hooft’s) double-line notation: since l is a matrix,

it’s propagator looks like:
α−−−−−−− α
β −−−−−−− β, while the h propagator is just

one index line α α, and the vertex is !! . If you don’t like my ascii

diagrams, here are the respective pictures: 〈lαβlαβ〉 = ,

〈hαhα〉 = and the hhl vertex is: .

(g) Use properties of Catalan numbers to estimate the size of non-perturbative

effects in this field theory.

(h) There are many other examples like this. Another similar one is the rela-

tionship between symmetric functions and homogeneous products. A more

different one is the enumeration of planar graphs. For that, see BIPZ.
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