University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215B QFT Winter 2017 Assignment 6

Due 11am Thursday, February 23, 2017

1. Heavy leptons get real.

Consider the contribution of a single loop of a heavy lepton of mass M to the vacuum polarization. Find the imaginary part of $\operatorname{Im} \Pi_{L}\left(q^{2}\right)$. Show that it is independent of the cutoff. Check that it agrees with the optical theorem result for the $e^{+} e^{-} \rightarrow L^{+} L^{-}$cross section.

2. Another consequence of unitarity of the S matrix.

(a) Show that unitarity of $S, S^{\dagger} S=\mathbb{1}=S S^{\dagger}$, implies that the transition matrix is normal:

$$
\begin{equation*}
\mathcal{T}^{\dagger}=\mathcal{T}^{\dagger} \mathcal{T} \tag{1}
\end{equation*}
$$

(b) What does this mean for the amplitudes $\mathcal{M}_{\alpha \beta}$ (defined as usual by $\mathcal{T}_{\alpha \beta}=$ $\left.\$\left(p_{\alpha}-p_{\beta}\right) \mathcal{M}_{\alpha \beta}\right) ?$
(c) The probability of a transition from α to β is

$$
P_{\alpha \rightarrow \beta}=\left|S_{\beta \alpha}\right|^{2}=V T \not{ }^{\phi}\left(p_{\alpha}-p_{\beta}\right)\left|\mathcal{M}_{\alpha \beta}\right|^{2}
$$

which is IR divergent. More useful is the transition rate per unit time per unit volume:

$$
\Gamma_{\alpha \rightarrow \beta} \equiv \frac{P_{\alpha \rightarrow \beta}}{V T} .
$$

Show that the the total decay rate of the state α is

$$
\Gamma_{\alpha} \equiv \int d \beta \Gamma_{\alpha \rightarrow \beta}=2 \operatorname{Im} \mathcal{M}_{\alpha \alpha}
$$

(d) Consider an ensemble of states p_{α} evolving according to the evolution rule

$$
\partial_{t} p_{\alpha}=-p_{\alpha} \Gamma_{\alpha}+\int d \beta p_{\beta} \Gamma_{\beta \rightarrow \alpha} .
$$

$S[p] \equiv-\int d \alpha p_{\alpha} \ln p_{\alpha}$ is the Shannon entropy of the distribution. Show that

$$
\frac{d S}{d t} \geq 0
$$

as a consequence of (1). This is a version of the Boltzmann H-theorem.
(e) [Bonus] Notice that we are doing something weird in the previous part by using classical probabilities. This is a special case; more generally, we should describe such an ensemble by a density matrix $\rho_{\alpha \beta}$. Generalize the result of the previous part appropriately.

3. Fundamental theorem of functional integrals.

(a) Show that

$$
\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} a x^{2}+j x}=\sqrt{\frac{2 \pi}{a}} e^{\frac{j^{2}}{2 a}} .
$$

[Hint: square the integral and go to polar coordinates.]
(b) Consider a collection of variables $x_{i}, i=1 . . N$ and a hermitian matrix $a_{i j}$. Show that

$$
\int \prod_{i=1}^{N} d x_{i} e^{-\frac{1}{2} x_{i} a_{i j} x_{j}+J^{i} x_{i}}=\frac{(2 \pi)^{N / 2}}{\sqrt{\operatorname{det} a}} e^{\frac{1}{2} J^{i} a_{i j}^{-1} J^{j}} .
$$

(Summation convention in effect, as always.)
[Hint: change variables to diagonalize a. Recall that $\operatorname{det} a=\prod a_{i}$, where a_{i} are the eigenvalues of a.]
(c) Consider a Gaussian field Q, governed by the (quadratic) euclidean action in one dimension:

$$
S[x]=\int d t \frac{1}{2}\left(\dot{Q}^{2}+\Omega^{2} Q^{2}\right)
$$

Show that

$$
\left\langle e^{-\int d s J(s) Q(s)}\right\rangle_{Q}=\mathcal{N} e^{+\frac{1}{2} \int d s d t J(s) G(s, t) J(t)}
$$

where G is the (Feynman) Green's function for Q, satisfying:

$$
\left(-\partial_{s}^{2}+\Omega^{2}\right) G(s, t)=\delta(s-t)
$$

Here \mathcal{N} is a normalization factor which is independent of J. Note the similarity with the previous problem, under the replacement

$$
a=-\partial_{s}^{2}+\Omega^{2}, \quad a^{-1}=G .
$$

(d) Consider a Gaussian field ϕ, governed by the (quadratic) euclidean action in D dimensions

$$
S[x]=\int d t \frac{1}{2}\left(\partial_{\mu} \phi \partial^{\mu} \phi+m^{2} \phi^{2}\right)
$$

Show that

$$
\left\langle e^{-\int d^{D} x J(x) \phi(x)}\right\rangle_{\phi}=\mathcal{N} e^{+\frac{1}{2} \int d^{D} x d^{D} y J(x) G(x, y) J(y)}
$$

where G is the (Feynman) Green's function for ϕ, satisfying:

$$
\left(-\partial_{\mu} \partial^{\mu}+m^{2}\right) G(x, y)=\delta^{D}(x-y)
$$

