University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 217 Winter 2016 Assignment 3

Due 2pm Thursday, February 4, 2016

1. High temperature expansion for Ising model.

In lecture, we rewrote the partition function of the nearest-neighbor Ising model (on any graph) as a sum over closed loops. Without a magnetic field, the loops were weighted by their length, just like in our discussion of SAWs. If we turn on a magnetic field, how does it change the form of the sum?

2. A case where mean field theory is right.

[from Goldenfeld, Ex 2-2] Consider the infinite-range Ising model, where the coupling constant is $J_{i j}=J$ for all i, j, with no notion of who is whose neighbor. That is:

$$
-H(s)=h \sum_{i} s_{i}+\frac{J_{0}}{2} \sum_{i j} s_{i} s_{j} .
$$

(a) Explain why it's a good idea to let $J_{0}=J / N$ where N is the number of sites.
(b) Prove that

$$
e^{\frac{a}{2 N} x^{2}}=\int_{-\infty}^{\infty} d y \sqrt{\frac{N a}{2 \pi}} e^{-\frac{N a}{2} y^{2}+a x y}, \quad \operatorname{Re} a>0
$$

(c) Use this to show that

$$
Z_{\Lambda}=\int_{-\infty}^{\infty} d y \sqrt{\frac{N \beta J}{2 \pi}} e^{-N \beta L}
$$

where

$$
L(h, J, \beta, y)=\frac{J}{2} y^{2}-T \log (2 \cosh (\beta(h+J y)))
$$

When can this expression be non-analytic in β ?
(d) In the thermodynamic limit $(N \rightarrow \infty)$, this integral can be evaluated exactly by the method of steepest descent. Show that

$$
Z=Z(\beta, h, J) \simeq \sum_{i} \sqrt{J\left(y_{i}\right)} e^{-\beta N L\left(h, J, \beta, y_{i}\right)}
$$

for some $J\left(y_{i}\right)$. Find the equation satisfied by the saddle point values y_{i}. Convince yourself that the \sqrt{J} prefactor can be neglected in the thermodynamic limit.

What is the probability of the system being in the state specified by y_{i} ? Use this to conclude that the magnetization is given by

$$
m \equiv \lim _{N \rightarrow \infty} \frac{1}{\beta N} \partial_{h} \ln Z=y_{0}
$$

where y_{0} is the position of the global minimum of L.
(e) Now consider the case $h=0$. Show by graphical methods that there is a phase transition and find the transition temperature T_{c}. What's the story with all the solutions, for T both below and above T_{c} ?
(f) Calculate the (isothermal) susceptibility

$$
\chi=\partial_{h} m .
$$

For $h=0$, show that χ diverges both above and below T_{c}, and find the leading and next-to-leading behavior of χ as a function of the reduced temperature $t \equiv \frac{T-T_{c}}{T_{c}}$.

