University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 217 Winter 2016 Assignment 2 - Solutions

Due 2pm Thursday, January 28, 2016

This homework begins with two simple problems to warm up your brain.

1. Reminder. Check from the 'bridge' equation $F=-T \log Z$ that $F=E-T S$ where E is the average energy and $S=-\partial_{T} F$ is the entropy.
2. What is the relationship between the spin-spin correlation function $\left\langle s_{i} s_{j}\right\rangle$ and the probability that s_{i} and s_{j} are pointing in the same direction? (Hint: $\left(1+s_{i} s_{j}\right) / 2$ is a projector.)
3. Real-space RG for the SAW. Consider again the problem of a self-avoiding walk on the square lattice. Construct an RG scheme with zoom factor $\lambda=3$ (so that nine sites of the fine lattice are represented by one site of the coarse lattice). Find the RG map $K^{\prime}(K)$, find its fixed points and estimate the critical exponent at the nontrivial fixed point. Is it closer to the numerical result than the $\lambda=2$ schemes discussed in lecture and by Creswick?

In the following problems we consider a closed (periodic) chain of N classical spins $s_{i}= \pm 1$ with Hamiltonian

$$
H=-J \sum_{i} s_{i} s_{i+1}-h \sum_{i} s_{i}+\mathrm{const}, \quad s_{N+1}=s_{1}
$$

The partition function is $Z(\beta J, \beta h)=\sum_{\{s\}} e^{-\beta H}$; let's measure J, h in units of temperature, i.e. set $\beta=1$.

4. Ising model in 1d by transfer matrix.

(a) Show that the partition function can be written as

$$
Z=\operatorname{tr}_{2} T^{N}
$$

where T is the 2×2 matrix

$$
T=\left(\begin{array}{cc}
e^{J+h} & e^{-J} \\
e^{-J} & e^{J-h}
\end{array}\right)
$$

(called the transfer matrix) and $\operatorname{tr}_{2} M=M_{11}+M_{22}$ denotes trace in this twodimensional space. Express Z in terms of the eigenvalues of T and find the free energy density $f=-\frac{T}{N} \log Z$ in the thermodynamic $(N \rightarrow \infty)$ limit. Plot the free energy for $h=0$ as a function of $x=e^{-4 J}$ for $0 \leq x \leq 1$.
(b) Find an expression for the correlation function

$$
G(m) \equiv\left\langle s_{i} s_{m+i}\right\rangle-\left\langle s_{i}\right\rangle\left\langle s_{i+m}\right\rangle
$$

using the transfer matrix. Show that as $N \rightarrow \infty$,

$$
G(m) \sim e^{-m / \xi}
$$

where $\xi=\frac{1}{\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right)}$ where $\lambda_{1}>\lambda_{2}$ are eigenvalues of T. Note that $\xi \rightarrow \infty$ when $\lambda_{1} \rightarrow \lambda_{2}$. For what values of β, h, J does this happen?

5. Decimation of $\mathbf{1 d}$ Ising model in a field.

Now suppose that N is even.
(a) Decimate the even sites:

$$
\sum_{s_{\mathrm{even}}} e^{-H(s)} \equiv \Delta e^{H_{\mathrm{eff}}\left(s_{\mathrm{odd}}\right)}
$$

More explicitly, identify the terms in $H(s)$ that depend on any one even site, $H_{2}(s)$ and define its contribution to $H_{\text {eff }}$ by

$$
\sum_{s_{2}} e^{-H_{2}(s)} \equiv \Delta e^{-\Delta H_{\mathrm{eff}}\left(s_{1}, s_{3}\right)}
$$

Rewriting $H_{\text {eff }}\left(s_{\text {odd }}\right)=-J^{\prime} \sum s s-h^{\prime} \sum s-$ const in the usual form, find J^{\prime}, h^{\prime} and the constant in terms of the microscopic parameters J, h.
I find

$$
\begin{aligned}
J^{\prime} & =\frac{1}{4 \beta} \log \left(\frac{\cosh \beta(2 J+h) \cosh \beta(2 J-h)}{\cosh ^{2} \beta h}\right) \\
h^{\prime} & =h+\frac{1}{2 \beta} \log \left(\frac{\cosh 2 \beta(2 J+h)}{\cosh 2 \beta(2 J-h)}\right) \\
\Delta & =\cosh \beta h \sqrt{\cosh \beta(2 J+h) \cosh \beta(2 J-h)}
\end{aligned}
$$

(b) Let $w \equiv \tanh \beta J, v \equiv \tanh \beta h$. Plot some RG trajectories in the v, w plane.
(c) Find all the fixed points and compute the exponents near each of the fixed points. The fixed points are $J^{\star}=\infty, h^{\star}=0$: the ferromagnetic, strong coupling fixed point, and $J^{\star}=0$, any h, the paramagnetic, high-temperature fixed point. Near the paramagnetic fixed point,

$$
w^{\prime}=w, v^{\prime}=v^{2}\left(1-w^{2}\right)
$$

The two eigenvalues of the 2×2 matrix

$$
R=\frac{\partial\left(v^{\prime}, w^{\prime}\right)}{\partial(v, w)}
$$

are

$$
\begin{align*}
y_{v} & =\left.\frac{1}{\log 2} \log \partial_{v} v^{\prime}\right|_{v_{\star}=0}=-\infty \quad \text { very irrelevant. } \\
y_{h} & =\left.\frac{1}{\log 2} \log \partial_{w} w^{\prime}\right|_{v_{\star}=0}=0 \quad \text { marginal. } \tag{1}
\end{align*}
$$

Near the ferromagnetic fixed point, $w^{\prime}=2 w, t^{\prime}=2 t$, where $t \equiv 1-v$. Here we have $y_{v}=y_{t}=1$, two relevant perturbations.

