University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics C (Physics 130C) Winter 2015 Worksheet 5

Announcements

- The 130 C web site is:
http://physics.ucsd.edu/~mcgreevy/w15/ .

Please check it regularly! It contains relevant course information!

- Office hours are $2: 30-3: 30 \mathrm{PM}$ but I'm available upon request. Grab your homework!

Problems

1. Try it out!

Consider the following operators: $\rho_{a}=\left(\begin{array}{cc}\frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{3}{4}\end{array}\right) \quad \rho_{b}=\left(\begin{array}{cc}\frac{1}{7} & -\frac{2}{7} \\ -\frac{2}{7} & \frac{4}{7}\end{array}\right) \quad \rho_{c}=\left(\begin{array}{cc}\frac{1}{2} & \mathbf{i} \frac{3}{4} \\ -\frac{3}{4} & \frac{1}{2}\end{array}\right)$
Explain why each can't represent a physical state.
Consider the following operators: $\rho_{1}=\left(\begin{array}{cc}\frac{1}{4} & \frac{\mathrm{i} \sqrt{3}}{4} \\ \frac{-\mathrm{i} \sqrt{3}}{4} & \frac{3}{4}\end{array}\right) \quad \rho_{2}=\left(\begin{array}{cc}\frac{2}{7} & 0 \\ 0 & \frac{5}{7}\end{array}\right) \quad \rho_{3}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
Which of these can possibly represent a pure state?
Hint: If ρ is pure it must be a projector onto some state.

2. Tracing

Recall the trace of an operator $\operatorname{Tr}[A]=\sum_{m}\langle m| A|m\rangle$ for the some basis set $\{|m\rangle\}$
Prove that this definition is independent of basis.
Prove the cycle property: $\operatorname{Tr}[A B C]=\operatorname{Tr}[B C A]=\operatorname{Tr}[C A B]$

3. Purity

Define again the state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\mathbf{i} \phi}|1\rangle\right)$ as well as $\rho_{\beta}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)$
(a) Write the density matrix ρ_{ψ} associated with $|\psi\rangle$
(b) Show that for both the states $\langle Z\rangle=0$
(c) Define the purity of a state as $\operatorname{Tr}\left[\rho^{2}\right]$. Prove that this equal to 1 if ρ is pure. Compute it for both ρ_{ψ} and ρ_{β}.
(d) Compute $\langle X\rangle$ with the above density matrices.

