University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics C (Physics 130C) Winter 2015 Worksheet 3

Announcements

- The 130 C web site is:
http://physics.ucsd.edu/~mcgreevy/w15/ .

Please check it regularly! It contains relevant course information!

- Today we'll look at Bloch's theorem and look at the harmonic oscillator.

Remember my office hour is from 1430-1530!

Problems

1. Building Bloch's Theorem

Consider a 1D Hamiltonian with a periodic potential $V(x)=V(x+n a)$ for $n \in \mathbb{Z}$ and a the lattice spacing.
(a) Define the operator T^{n} by $T^{n}|x\rangle=|x+n a\rangle$. Show this is a symmetry.
(b) Assuming H is non-degenerate, show that any eigenfunctions of this system can be chosen to obey

$$
\begin{equation*}
\psi_{k}(x-a)=e^{-\mathbf{i} k a} \psi_{k}(x) \tag{1}
\end{equation*}
$$

Recall that $T|k\rangle=e^{-\mathrm{i} k a}|k\rangle$ and $\langle x \mid k\rangle \equiv \psi_{k}(x)$.
(c) Infer from 1 that one can then write $\psi_{k}(x)=e^{\mathrm{i} k x} u_{k}(x)$ where $u_{k}(x)=u_{k}(x+a)$

2. Harmonic Oscillator

A particle of mass m is in a one dimensional harmonic potential and has been prepared (at $t=0$) in an equal superposition state of energies $\frac{\omega}{2}$ and $\frac{3 \omega}{2}$.
(a) What is the most general expression for the wavefunction at $t=0$? (Hint: One should include also the possibility of a relative phase between states)
(b) Suppose I find that the average value of the momentum $\langle\hat{p}\rangle$ at $t=0$ is $\sqrt{\frac{m \omega}{2}}$ What constraint does this impose on my general $\left|\psi_{0}\right\rangle$?
Recall that $p=\mathbf{i} \sqrt{\frac{m \omega}{2}}\left(\hat{a}^{\dagger}-\hat{a}\right)$ where $\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$ and $\hat{a}|n\rangle=\sqrt{n}|n-1\rangle$
(c) What is the time evolved $\left|\psi_{t}\right\rangle$? What about $\langle\hat{p}\rangle_{t}$?
(d) Compute the uncertainty $\Delta p_{t}=\sqrt{\left\langle\hat{p}^{2}\right\rangle_{t}-\langle\hat{p}\rangle_{t}^{2}}$

