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Please note an important typo corrected in problem 4 (March 10), marked in red.

1. Phase-flipping decoherence. (from Schumacher)

Consider the following model of decoherence on an N -state Hilbert space, with basis

{|k〉, k = 1..N}.

Define the unitary operator

Uα ≡
∑
k

αk|k〉〈k|

where αk is an N -component vector of signs, ±1 – it flips the signs of some of the basis

states. There are 2N distinct such operators.

Imagine that interactions with the environment act on any state of the system with

the operator Uα, for some α, chosen randomly (with uniform probability from the 2N

choices).

[Hint: If you wish, set N = 2.]

(a) Warmup question: If the initial state is |ψ〉, what is the probability that the

resulting output state is Uα|ψ〉?

(b) Write an expression for the resulting density matrix, D(ρ), in terms of ρ.

(c) Think of D as a ‘superoperator’, an operator on density matrices. How does D
act on a density matrix which is diagonal in the given basis,

ρdiagonal =
∑
k

pk|k〉〈k| ?

(d) The most general initial density matrix is not diagonal in the k-basis:

ρgeneral =
∑
kl

ρkl|k〉〈l| .

what does D do to the off-diagonal elements of the density matrix?
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2. Decoherence by phase damping with non-orthogonal states [from Preskill]

[extra credit]

Suppose that a heavy particle A begins its life in outer space in a superposition of two

positions

|ψ0〉A = a|x0〉+ b|x1〉.

These positions are not too far apart. The particle interacts with the electromagnetic

field, and in time dt, the whole system evolves according to

UAE|x0〉A ⊗ |0〉E =
√

1− p|x0〉A ⊗ |0〉E +
√
p|x0〉A ⊗ |γ0〉E

UAE|x1〉A ⊗ |0〉E =
√

1− p|x1〉A ⊗ |0〉E +
√
p|x1〉A ⊗ |γ1〉E

But because x0 and x1 are close, the (normalized) photon states |γ0〉, |γ1〉 have a large

overlap:

〈γ0|γ1〉E = 1− ε, with 0 < ε� 1.

(a) Find the Kraus operators describing the time evolution of the reduced density

matrix ρA.

(b) How long does it take the superposition to decohere? More precisely, at what

time t is (ρA)01 (t) = 1
e

(ρA)01 (t = 0)?

3. Decoherence on the Bloch sphere [from Preskill]

Parametrize the density matrix of a single qubit as

ρA =
1

2

(
1 + ~P · ~σ

)
.

(a) Polarization-damping channel.

Consider the (unitary) evolution of a qbit A coupled to a 4-state environment via

UAE|φ〉A ⊗ |0〉E =
√

1− p|φ〉A ⊗ |0〉E +
√
p/3

3∑
i=1

σi
A ⊗ 1E|φ〉A ⊗ |i〉E

Show that this evolution can be accomplished with the Kraus operators

M0 =
√

1− p1, Mi =
√
p/3σi,

and show that they obey the completeness relation requred by unitarity of UAE.

Show that the polarization Pi of the qbit evolves according to

~P →
(

1− 4p

3

)
~P .

[Hint: use the identity σiσjσi = 2σjδij − σj.]

Describe this evolution in terms of what happens to the Bloch ball.

What happens if p > 3/4?
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(b) Two-Pauli channel. [extra credit]

Consider the (unitary) evolution of a qbit A coupled to a three-state environment

via

UAE|φ〉A ⊗ |0〉E =
√

1− p|φ〉A ⊗ |0〉E +
√
p/2

2∑
i=1

σi
A ⊗ 1E|φ〉A ⊗ |i〉E

Show that this evolution can be accomplished with the Kraus operators

M0 =
√

1− p1, Mi =
√
p/2σi, i = 1, 2

and show that they obey the completeness relation requred by unitarity of UAE.

Describe this evolution in terms of what happens to the Bloch ball.

(c) Phase-damping channel. [extra credit]

For the evolution of problem 2,

UAE|0〉A ⊗ |0〉E =
√

1− p|0〉A ⊗ |0〉E +
√
p|0〉A ⊗ |γ0〉E

UAE|1〉A ⊗ |0〉E =
√

1− p|1〉A ⊗ |0〉E +
√
p|1〉A ⊗ |γ1〉E

now thinking of A as a qbit, describe the evolution of its polarization vector on

the Bloch ball.

4. Near-derivation of Born rule

This question is about a step in Hartle’s near-derivation of the Born rule. We studied

the Hilbert space of N copies of our system, H⊗H · · · ⊗ H = HN , and the state

|c〉 ≡
∑
n1..nN

cn1 · · · cnN ei
∑
i ϕi,ni |n1 · · ·nN〉 ≡

∑
ν

(∏
n

cNνnn

)
eiϕν |ν〉

where we introduced the shorthand ν ≡ {n1 · · ·nN} and Nνn is the number of elements

of the set ν equal to n. Notice that for each ν
∑

nNνn = N .

We defined the hermitian ‘frequency’ operators Pn by their eigenvalue equation:

Pn|ν〉 =
Nνn

N
|ν〉.

Show that

||
(
Pn − |cn|2

)
|c〉 ||2 =

1

N
|cn|2

(
1− |cn|2

)
≤ 1

4N
.

Hints:
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• For any fixed Nn, the number of νs with Nνn = Nn is

N !

N1!N2! · · ·
.

• 〈ν ′|ν〉 = δνν′

• The multinomial theorem says(∑
m

|cm|2
)N

=
∑

N1,N2...|
∑
nNn=N

N !

N1!N2! · · ·
∏
m

|cm|2Nm

• Differentiating the BHS of the previous equation with respect to |cm|2 (or better,

acting with |cm|2 ∂
∂|cm|2 ) gives a formula for∑

N1,N2...|
∑
nNn=N

N !

N1!N2! · · ·
∏
m

|cm|2NmNn

5. Two coupled spins. [based on Le Bellac problem 6.5.4]

Consider a four-state system consisting of two qbits,

H = span{|ε1〉 ⊗ |ε2〉 ≡ |ε1ε2〉, ε =↑z, ↓z}.

(a) For each qbit, define σ± ≡ 1
2

(σx ± iσy). (These are raising and lowering opera-

tors for σz: [σz,σ±] = ±2σ±. Show this.) Show that

~σ1 · ~σ2 = 2
(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
+ σz

1σ
z
2 .

(b) Determine the action of the operator ~σ1 · ~σ2 on the basis states

| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉.

(c) Show that the four vectors

|0, 0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) , |1, 1〉 ≡ | ↑↑〉, |1, 0〉 ≡ 1√
2

(| ↑↓〉+ | ↓↑〉) , |1,−1〉 ≡ | ↓↓〉

are orthonormal and are eigenvectors of ~σ1 · ~σ2 with eigenvalues 1 or −3.

(d) Show that they are also eigenvectors of J2 ≡ (~σ1 + ~σ2)
2 and Jz ≡ σz

1 + σz
2 and

find their eigenvalues.

(e) Consider the operator

P1,2 ≡
1

2
(1 + ~σ1 · ~σ2)

acting on the two spins. Show that P1,2 acts by exchanging the states of the two

spins:

P1,2|ε1ε2〉 = |ε2ε1〉 .
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6. Coherent states.

Consider a quantum harmonic oscillator. The creation and annihilation operators a†

and a satisfy the algebra

[a, a†] = 1

and the vacuum state |0〉 satisfies a|0〉 = 0.

Coherent states are eigenstates of the annihilation operator:

a|α〉 = α|α〉.

(a) Show that

|α〉 = e−|α|
2/2eαa

†|0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉

is an eigenstate of a with eigenvalue α. (a is not hermitian, so its eigenvalues

need not be real.)

(b) Coherent states with different α are not orthogonal. (a is not hermitian, so its

eigenstates need not be orthogonal.) Show that |〈α1|α2〉|2 = e−|α1−α2|2 .

(c) Compute the expectation value of the number operator n = a†a in the coherent

state |α〉.
(d) Time evolution acts nicely on coherent states. The hamiltonian is H = ~ω

(
a†a + 1

2

)
.

Show that a coherent state evolves into a coherent state with an eigenvalue α(t):

e−iHt|α〉 = e−iωt/2|α(t)〉

where α(t) = e−iωtα.

7. Spin chains and spin waves. [Related to Le Bellac problem 6.5.5 on page 200]

A one-dimensional ferromagnet can be represented as a chain of N qbits (spin-1/2

particles) numbered n = 0, ...N−1, N � 1, fixed along a line with a spacing ` between

each successive pair. It is convenient to use periodic boundary conditions (as in HW 2

problem 2), where the Nth spin is identified with the 0th spin: n + N ≡ n. Suppose

that each spin interacts only with its two nearest neighbors, so the Hamiltonian can

be written as

H =
1

2
NJ1 − 1

2
J
N−1∑
n=0

~σn · ~σn+1 .

where J is a coupling constant determining the strength of the interactions.

(a) Show that all eigenvalues E of H are non-negative, and that the minimum energy

E0 (the ground state) is obtained in the state where all the spins point in the same

direction. A possible choice for the ground state |Φ0〉 is then

|Φ0〉 = | ↑z〉n=0 ⊗ | ↑z〉n=1 ⊗ ...⊗ | ↑z〉N−1 ≡ | ↑↑ ... ↑〉.
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(b) Show that any state obtained from |Φ0〉 by rotating each of the spins by the same

angle is also a possible ground state.

[Hint: the generator of spin rotations ~J ≡
∑

n ~σn commutes with the Hamilto-

nian.]

[Cultural remark: the phenomenon of a ground state which does not preserve a

symmetry of the Hamiltonian is called spontaneous symmetry breaking. ]

(c) Now we wish to find the low-energy excitations above the ground state |Φ0〉. Show

that H can be written

H = NJ1 − J
N−1∑
n=0

Pn,n+1 = J
N−1∑
n=0

(1 − Pn,n+1) .

where

Pn,n+1 ≡
1

2
(1 + ~σn · ~σn+1) .

Using the result of the previous problem, show that the eigenvectors of H are

linear combinations of vectors in which the number of up spins minus the number

of down spins is fixed. Let |Ψn〉 be the state in which the spin n is down with all

the other spins up. What is the action of H on |Ψn〉?

(d) We are going to construct eigenvectors |ks〉 of H out of linear combinations of the

|Ψn〉. Let

|ks〉 =
N−1∑
n=0

eiksn`|Ψn〉

with

ks =
2πs

N`
, s = 0, 1, ...N − 1 .

Show that |ks〉 is an eigenvector of H and determine the energy eigenvalue Ek.

Show that the energy is proportional to k2s as ks → 0. This state describes an

elementary excitation called a spin wave or magnon with wave-vector ks.
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