University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Mechanics C (130C) Winter 2014 Final exam - frontmatter

Please remember to put your name on your exam booklet. This is a closed-book exam. There are 6 problems, each with several parts, of varying levels of difficulty; make sure you try all of the parts. None of the problems require very extensive calculation; if you find yourself involved in a morass of calculation, step back and think. Good luck.

Possibly useful information:

$$
\begin{gathered}
\mathbf{U}(t)=e^{-\mathbf{i} \mathbf{H} t / \hbar} \text { satisfies } \quad \mathbf{i} \hbar \partial_{t} \mathbf{U}=[\mathbf{H}, \mathbf{U}] . \\
\boldsymbol{\sigma}^{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \boldsymbol{\sigma}^{y}=\left(\begin{array}{cc}
0 & -\mathbf{i} \\
\mathbf{i} & 0
\end{array}\right), \quad \boldsymbol{\sigma}^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\left|\uparrow_{\hat{n}}\right\rangle=e^{-\mathbf{i} \varphi / 2} \cos \frac{\theta}{2}\left|\uparrow_{\hat{z}}\right\rangle+e^{+\mathbf{i} \varphi / 2} \sin \frac{\theta}{2}\left|\downarrow_{\hat{z}}\right\rangle \quad \text { satisfies } \quad \overrightarrow{\boldsymbol{\sigma}} \cdot \hat{n}\left|\uparrow_{\hat{n}}\right\rangle=\left|\uparrow_{\hat{n}}\right\rangle \\
e^{-i \alpha \hat{n} \cdot \overrightarrow{\boldsymbol{\sigma}}}=11 \cos \alpha-i \hat{n} \cdot \overrightarrow{\boldsymbol{\sigma}} \sin \alpha . \\
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
\mathbf{H}_{\mathrm{SHO}}=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2}\right)=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \mathbf{q}^{2} \\
\mathbf{q}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right), \quad \mathbf{p}=\frac{1}{\mathbf{i}} \sqrt{\frac{\hbar m \omega}{2}}\left(\mathbf{a}-\mathbf{a}^{\dagger}\right) ; \quad[\mathbf{q}, \mathbf{p}]=\mathbf{i} \hbar \Longrightarrow\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1 .
\end{gathered}
$$

In Coulomb gauge, in vacuum $(\vec{\nabla} \cdot \vec{A}=0, \Phi=0): \quad \vec{E}=-\partial_{t} \vec{A}, \quad \vec{B}=\vec{\nabla} \times \vec{A}$.

$$
\begin{array}{r}
\overrightarrow{\mathbf{A}}(\vec{r})=\sum_{\vec{k}} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{k} L^{3}}} \sum_{s=1,2}\left(\mathbf{a}_{\vec{k}, s} \vec{e}_{s}(\hat{k}) e^{\mathbf{i} \vec{k} \cdot \vec{r}}+\mathbf{a}_{\vec{k}, s}^{\dagger} \vec{e}_{s}^{\star}(\hat{k}) e^{-\mathbf{i} \vec{k} \cdot \vec{r}}\right), \\
\overrightarrow{\mathbf{E}}(\vec{r})=\mathbf{i} \sum_{\vec{k}} \sqrt{\frac{\hbar \omega_{k}}{2 \epsilon_{0} L^{3}}} \sum_{s=1,2}\left(\mathbf{a}_{\vec{k}, s} \vec{e}_{s}(\hat{k}) e^{\mathbf{i} \vec{k} \cdot \vec{r}}-\mathbf{a}_{\vec{k}, s}^{\dagger} \vec{e}_{s}^{\star}(\hat{k}) e^{-\mathbf{i} \vec{k} \cdot \vec{r}}\right)
\end{array}
$$

Chain of coupled springs:
$\mathbf{q}(x)=\sqrt{\frac{\hbar}{2 m}} \sum_{k} \frac{1}{\sqrt{\omega_{k}}}\left(e^{\mathbf{i} k x} \mathbf{a}_{k}+e^{-\mathbf{i} k x} \mathbf{a}_{k}^{\dagger}\right), \quad \mathbf{p}(x)=\frac{1}{\mathbf{i}} \sqrt{\frac{\hbar m}{2}} \sum_{k} \sqrt{\omega_{k}}\left(e^{\mathbf{i} k x} \mathbf{a}_{k}-e^{-\mathbf{i} k x} \mathbf{a}_{k}^{\dagger}\right)$.

1. Short answers and conceptual questions [4 points each, except as noted]

For true or false questions: if the statement is false, you must explain what is wrong or correct it or give a counterexample; if the statement is true, you can simply say 'true'.

