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Compressible states of fermions at finite density

The metallic states that we understand well are Fermi liquids.
Landau quasiparticles → single-fermion Green function GR has poles

at k⊥ ≡ |~k| − kF = 0, ω = ω?(k⊥) ∼ 0: GR ∼
Z

ω − vFk⊥ + iΓ
Measurable by angle-resolved photoemission:
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Intensity ∝
spectral density :

A(ω, k) ≡ ImGR(ω, k)
k⊥→0→ Zδ(ω − vFk⊥)

quasiparticles are long-lived: width is Γ ∼ ω2
?,

Residue Z (overlap with external e−) is finite on Fermi surface.
Robust and calculable theory.



Mysteries of non-Fermi liquids
There are other states with a Fermi surface, but no pole in GR at ω = 0.

e.g.: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)
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[Shen et al]

among other anomalies indicating absence of quasiparticles:

ARPES shows gapless modes at finite k (a Fermi surface)

with width Γ(ω?) ∼ ω?, vanishing residue Z
k⊥→0→ 0.

NFL: Still a sharp Fermi surface

but no long-lived quasiparticles.

T

[S. Martin et al, PRB41, 846 (1990)]

More prominent
mystery of the strange metal phase:
e-e scattering: ρ ∼ T 2, phonons: ρ ∼ T 5, ...

no known robust effective theory: ρ ∼ T .



New mysteries of non-Fermi liquids

New mystery of the strange
metal phase:
Linear-B magnetoresistance,

scaling between B, T :



Non-Fermi liquids in terms of single-fermion G
• Luttinger liquid in 1+1 dims. GR(k, ω) ∼ (k − ω)α X
• loophole in RG argument for ubiquity of FL:
couple a Landau FL perturbatively to a bosonic mode
(e.g.: magnetic photon, emergent gauge field, critical order parameter...)

k k − q

q

k

→ nonanalytic behavior in
GR(ω) ∼ 1

vF k⊥+cω2ν at FS:
NFL.

[Huge literature: Hertz, Millis, Nayak-Wilczek, Chubukov, S-S Lee, Metlitski-Sachdev,

Mross-JM-Liu-Senthil, Kachru-Torroba-Raghu...]

Not strange enough:
These NFLs are not strange metals
in terms of transport. ρ ∼ T 2ν+2 � T
If the quasiparticle is killed by a boson with ω ∼ qz,
z ∼ 1,

small-angle scattering dominates

=⇒ ‘transport lifetime’ � ‘single-particle lifetime’

boson dispersion

i.e. in known models with Γ(ω?) ∼ ω?, ρ ∼ Tα>1.



Frameworks for non-Fermi liquid in d ≥ 1

• a Fermi surface coupled to a critical boson field

L = ψ̄ (ω − vFk⊥)ψ + L(a) + ψ̄ψa →
k k − q

q

k

• a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent z � 1
Discovered with AdS/CFT [Faulkner-Liu-JM-Vegh 0907.2694, Faulkner-Polchinski

1001.5049, FLMV+Iqbal 1003.1728]

L = ψ̄ (ω − vFk⊥)ψ + L(χ) + ψ̄χ+ ψχ̄

χ: fermionic operator with G ≡ 〈χ̄χ〉 = c(k)ω2ν

〈ψ̄ψ〉 =
1

ω − vFk⊥ − G
i.e., Σψ ∝ G.



Charge transport and momentum sinks

instead of this:

with z ∼ 1

↓ ω ∼ qz
this:

with z � 1

The contribution to the conductivity from

the Fermi surface

[Faulkner-Iqbal-Liu-JM-Vegh, 1003.1728 and

1306.6396]:
is ρFS ∼ T 2ν when Σ ∼ ω2ν .
Dissipation of current is controlled by

the decay of the fermions into the χ DoFs.

=⇒ single-particle lifetime controls
transport.

(
marginal Fermi liquid: ν = 1

2

+
[Varma et al]

=⇒ ρFS ∼ T .
)

T



A few words about the holographic construction

Certain strongly-coupled large-N field theories have a dual
description in terms of gravity in extra dimensions.

Anti-de Sitter (AdSd+1)

spacetime ds2 =
dr2+dxµdx

µ

r2

! vacuum of conformal field theory

Symmetries of AdS ! conformal symmetry ⊃ xµ → λxµ

Bulk metric gµν ! Tµν stress tensor

Bulk U(1) gauge field Aµ ! Jµ conserved current

Bulk spinor field ψα ! Ψ fermionic operator
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Turn on a chemical po-

tential to make a finite

density of CFT stuff.



A few words about the holographic construction
The near-horizon region of the geometry is AdS2×Rd

ds2 =
−dt2 + dζ2

ζ2
+ d~x2, A =

Edt
ζ

has 0+1d conformal symmetry. This describes a z =

∞ fixed point at large N :

many critical dofs which are localized. r

H

R
3,1

UV

horizon

r=r

+
+
+
+
+

++++

black hole
charged

Shortcomings:

• The Fermi surface degrees of freedom are a small part (o(N0))

of a large (conducting) system (o(N2)).
• Here N2 is the control parameter which makes gravity
classical (and holography useful).
• Understanding their effects on the black hole requires
quantum gravity. [Some attempts: Suh-Allais-JM 2012, Allais-JM 2013]

All we need is a z =∞ fixed point
(with fermions, and with U(1) symmetry).



SYK with conserved U(1)
A solvable z =∞ fixed point [Sachdev, Ye, Kitaev]:

HSYK =
∑N
ijkl Jijklχ

†
iχ
†
jχkχl.

Jijkl = 0, J2
ijkl = J2

2N3

{χi, χ†j} = δij ,

{χi, χj} = 0

Schwinger-Dyson

equations:

G =

G−1(ω) = (iω)−1 − Σ(ω)
ω�J→ G(ω)Σ(ω) ≈ −1

Σ(τ) = = J2G2(τ)G(−τ)

=⇒ G(ω) ∝ (iω)−1/2, ν(χ) = − 1
4
. A (very) compressible state of fermions

at finite density: Low-energy level spacing is e−Ns0 (s0 < ln 2).

(vs. 1/N for a model with quasiparticles, like SYK2).

• The S-D equations have a low-energy conformal symmetry =⇒
finite-temperature correlators also determined.

• Also useful is the ‘bath field’: χ̃i ≡ Jijklχ†jχkχl, which has

〈χ̃†χ̃〉 ∝ (iω)+ 1
2 , ν(χ̃) = + 1

4
.

• Duality: this model has many properties in common with gravity (plus

electromagnetism) in AdS2.



Using SYK clusters to kill the quasiparticles and take
their momentum

One SYK cluster:
∼↔ AdS2:

To mimic AdS2 × Rd, consider a d-dim’l lattice of SYK models:

?↔ AdS2 × Rd

H0 =
∑

〈xy〉∈lattice

t
(
ψ†xψy + hc

)
+

∑
x∈lattice

HSY K(χxi, J
x
ijkl)

H = H0 +Hint



Couple SYK clusters to Fermi surface

• [D. Ben-Zion, JM, 1711.02686]: couple by hybridization

Hint =
∑
x,i

gxiψ
†
xχxi + h.c.

by random gs (gix = 0, gixgjy = δijδxyg
2/N)

−→ Evidence for finite-g,N fixed point, ‘strange semiconductor’ with

ρ(T ) ∼ T−1/2.

• [A. Patel, JM, D. Arovas, S. Sachdev, 1712.05026, D. Chowdhury, Y. Werman, E. Berg, T.

Senthil, 1801.06178]: couple by density-density interaction

Hint =
∑
x,i

gxabijψ
†
xaψxbχ

†
xiχxj + h.c.

by random gs (gxabij = 0, gxabijgx′a′b′i′j′ = δxabij,x′a′b′i′j′g
2/N)

−→ Controlled (intermediate-temperature) marginal fermi liquid,

ρ(T ) ∼ T , realistic magnetoresistance.



Pause to advertise related work

I [Gu-Qi-Stanford]: a chain of SYK clusters with 4-fermion
couplings (no hybridization, no Fermi surface)

I [Banerjee-Altman]: add all-to-all quadratic fermions to SYK
(no locality)

I [Song-Jian-Balents]: a chain of SYK clusters with quadratic
couplings (no Fermi surface)



Large-N analysis

Full ψ propagator: ︸ ︷︷ ︸
O(N−1)

=⇒ the ψ self-energy is Σ(ω, k) = G(ω)

(just as in the holographic model).

Gψ(ω, k)
small ω

=
1

ω − vF k⊥ − G(ω)

This has ν = − 1
4
:

G(ω) ∼ ω−
1
2 .

=⇒ ρ(T ) ∼ 1√
T

.

For more general q in

H(χ) = Ji1···iqχ
†
i1
· · ·χiq , we’d have

ν(q) = 1−q
2q

.

Coupling to bath field would give

ν̃(q) = − 1
2

+ 3
q

q→4→ + 1
4
.



Does the Fermi surface destroy the clusters?

gix = 0, gixgjy = δijδxyg
2/N .

The ‘SYK-on’ propagator G looks

like:

Leading 1/N contributions to Gxy:

are still local

(on average), and are less singular

than ω−1/2.

=⇒ z =∞ behavior survives.

An effective action which reproduces diagrammatic results:

Zn =

∫
[dGdΣdρdσ]e−NS[G,Σ,ρ,σ]

δS

δ{G,Σ, ρ, σ}
= 0 =⇒

Σ = −J2|G|2G, G = − 1

∂t − Σ−Gψ/N
, Gψ = − 1

G−1
ψ0 − G

.

But: lim
N→∞

lim
ω→0

?
= lim

ω→0
lim
N→∞



RG analysis of impurity problem
Weak coupling: Consider a single SYK cluster coupled to FS,

g � t, J . Following Kondo literature [Affleck] only s-wave couples:

HFS =
vF
2π

∫ ∞
0

dr
(
ψ†L∂rψL − ψ

†
R∂rψR

)
=⇒ [ψL/R] =

1

2
.

∆H = gψ†L(0)χ, ∆H̃ = g̃ψ†L(0)χ̃.

χ̃i ≡ Jijklχ†jχkχl. χ ≡ giχi/g.

Coupling to χ:
[
∫
ψ†χ] = −1 + 1

2
+ 1

4
= − 1

4

is relevant.

Coupling to bath field:
[
∫
dt ψ†χ̃] = −1 + 1

2
+ 3

4
= 1

4

is irrelevant.

Note for later:
density-density
coupling:
[
∫
ψ†ψχ†χ] =

−1+ 1
2

+ 1
2

+ 1
4

+ 1
4

= 1
2

is irrelevant.
Strong coupling: At large enough g (g � t, J), this is a
highly-underscreened Anderson model: ψx and χx ≡ 1

g

∑
i giχix pair up,

N → N − 1.

H = g
∑
x

ψ†xχx + h.c. →

Anti-Kondo phase: the impurity absorbs the conduction electrons!



Topology of coupling space

1)

2)

3)

Hint =
∑
gψ†χ+ h.c.

Possibilities for beta function

(arrows toward IR):

If we find a fixed point, it is stable.

↔

↔

Consequences for entanglement

entropy of half-chain at small g0:

1)

3)

Expect: Lcrossover ∼ (g0N)−
1
4 .



Instead of quantum gravity, DMRG

(1) Half-chain

entanglement

entropy grows

faster with L

than free-fermion

answer!

(2) Coupling to

bath field g̃ψχ̃ is

irrelevant – same

as free fermion

answer.

(3) Growth

doesn’t happen

for quadratic

clusters (SYK2)
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2)
−
S(

2)

Chi = 32.0000, J = 1.00

(4) At large g,

entanglement is

destroyed.



Correlation functions

|〈ψ†xψL/2〉|

∼
| sin 2kF (x−L/2)|
|x−L/2|α

α < 1: expo-

nent is not free

fermion value.

At large g, everybody is localized (anti-Kondo

phase).

∑
i |〈χ

†
x,iχL/2,i〉|

χ are

still lo-

calized.



Conclusions on hybridization coupling

• ∃ an interesting NFL fixed point.

• It’s not Lorentz invariant.

• Numerical evidence is in 1d, but it’s not a Luttinger liquid: c 6= 1.
• Can access perturbatively by q = 2 + ε

(H(χ) = Ji1···iqχ
†
i1
· · ·χiq ).

δg2 = − 1
2

→ βg2 ' εg2− cvF

Jkd−1
F

g4

• It has a Fermi surface
(singularity of GR at ω → 0, k → kF )

but it’s not metallic! ρ(T ) ∼ T−1/2.

Cartoon map of phases:

(Warning: this is a cartoon.)



Density-density coupling
[Aavishkar Patel, JM, D. Arovas, S. Sachdev, 1712.05026

D. Chowdhury, Y. Werman, E. Berg, T. Senthil, 1801.06178]

Demanding an IR fixed point is asking too much.

Hint =
∑
x

N∑
i,j=1

M∑
a,b=1

gxabijψ
†
xaψxbχ

†
xiχxj +h.c.

(gxabij = 0, gxabijgx′a′b′i′j′ = δxabij,x′a′b′i′j′g
2/N)

Large N,M Schwinger-Dyson equations are:
Στ−τ ′ = −J2G2

τ−τ ′Gτ ′−τ−M
N
g2Gτ−τ ′Gψτ−τ ′G

ψ
τ ′−τ , G(iωn) = 1

iωn+µ−Σ(iωn)
,

Σψτ−τ ′ = −g2Gψτ−τ ′Gτ−τ ′Gτ ′−τ ,

ψ, χ coupled only by local Green’s function of itinerant fermions:

Gψ(iωn) ≡
∫

d̄dpGψ(iωn, p) =
∫

ddp

(2π)d
1

iωn−εk+µψ−Σψ(iωn)
' − i

2
ν(0)sgn(ωn)

(ν(0) ≡ dos at FS)



Fate of conduction electrons
The effect on the itinerant fermions is then

Σψ(ω, q) = ∼ g2

∫
d̄ω1,2

sgn(ω1)

|ω1|1/2
sgn(ω2)

|ω2|1/2
Gψ(ω + ω1 + ω2)

∼ g2ν(0) (ω logω/Λ− iπω)

Σψ(iωn, q) = ig2ν(0)T

2J cosh1/2(2πE)π3/2

(
ωn
T

ln
(

2πTeγE−1

J

)
+ ωn

T
ψ
(
ωn
2πT

)
+ π

)
−→ single-particle decay rate = transport scattering rate:

γ ≡ −2ImΣψR(ω = 0) = g2ν(0)T

J
√
π cosh(2πE)

. ( E measures filling.)

Precedent for this mechanism:

[Varma et al 89] Imχ(ω, q) =

Im ∼ tanh ω
2T

.

Large N,M with M/N � 1

controls back-reaction on

SYK clusters.

With finite bandwidth, three

phases (for g �
√
tJ):

Incoherent metal: one big SYK

cluster, no FS [qv Song-Jian-Balents,

Parcollet-Georges 98].

Marginal fermi liquid: Σ ∼ ω lnω.

Fermi liquid: at finite N , g is an

irrelevant perturbation, goes away

in IR.



Transport in a single domain

Both IM and MFL have ρ(T ) ∼ T :

σMFL
0 = M

v2
F ν(0)

16T

∫ ∞
−∞

dE1

2π
sech2

(
E1

2T

)
1

|ImΣc
R(E1)|

= 0.120251×MT−1J ×
(
v2
F

g2

)
cosh1/2(2πE).

Both violate Wiedemann-Franz law:

LMFL =
κMFL

0

σMFL
0 T

=

∫∞
−∞

dE1
2π E

2
1sech2

(
E1
2

)
1

|Im[E1ψ(−iE1/(2π))+iπ]|∫∞
−∞

dE1
2π sech2

(
E1
2

)
1

|Im[E1ψ(−iE1/(2π))+iπ]|

= 0.713063× L0 < L0 ≡
π2

3

(LIM = π2

8
) [Song-Jian-Balents, PRL 119, 216601 (2017)]



More on Incoherent Metal

t

[Song-Jian-Balents, PRL 119,

216601 (2017)]

Ec = t2/J

T < Ec : ρ = A+B
(
T
Ec

)2

, s ∼ s0

(
T
Ec

)
. FL

Ec < T < g : ρ = h
e2

T
Ec
, s = s0. IM

From hopping conductivity:

σIM ∼ t2

JT
= Ec

T



Magnetotransport is very different

IM has no FS and (hence) negligible

magnetoresistance: perturbation theory in hopping

is valid exactly in IM regime: t/(JIMT )1/2 � 1,

(JIM ≡ g2/J) .

σIM
xx ∼ t2

JIMT
σIM
xy ∼ t4 sinB

(JIMT )2 .

B ≡ Ba2

~/e

In MFL: exact quantum Boltzmann equation at large M,N

(1− ∂ωRe(Σψ))∂tδn(t, k, ω) + vF k̂ · ~E(t)n′f (ω) + vF (k̂×Bẑ) · ∇kδn(t, k, ω) =

2δn(t, k, ω)Im(Σψ(ω))

σMFL
(L,H) = −M v2F ν(0)

16T

∫∞
−∞

dE1
2π

sech2
(
E1
2T

) (Im[ΣcR(E1)],(vF /(2kF ))B)
Im[Σc

R
(E1)]2+(vF /(2kF ))2B2 ,

σMFL
L ∼ T−1sL((vF /kF )(B/T )), σMFL

H ∼ −BT−2sH((vF /kF )(B/T )).

sL,H(x→∞) ∝ 1/x2, sL,H(x→ 0) ∝ x0.

So far, ρL saturates at large B.



Macroscopic disorder

Suppose µ varies from region

to region.

~∇ · ~J(x) = 0, ~J(x) =

σ(x) · ~E(x), ~E(x) = −~∇Φ(x).

Effective medium theory

[Stroud 75, Parish-Littlewood]

Simple case: two types of

domains, approximately equal

area fractions:

σMFL
L ∼ 1

T
, σMFL
H ∼ 1

B

EMT
=⇒ ρL ∼ B for equal-areas.

Moreover, ρL ∼
√
c1T 2 + c2B2

Mechanism:

[from Parish-Littlewood 03]

Local Hall resistivity lengthens current path ∝ B.



Some questions we can now ask

• Plasmon spectrum of BSCCO recently measured

by EELS [Mitrano et al 1708.01929] shows apparent

agreement with MFL form of Imχ(ω, q). Can we say

more about plasmon damping in the solvable MFL?

About the doping dependence of χ?
[from Mitrano et al

1708.01929]

• Acoustic damping in MFL?

• Do we need SYK? e.g. Infinite-randomness fixed points have z =∞.

• Is my title accurate?

Two aspects of SYK:
Maximal chaos: 〈|{χ†(t), χ(0)}|2〉 ∼ eλLt, λL = 2πT

– near the middle of the spectrum.
z =∞ local criticality: G(ω) ∼ ω2ν

– near the groundstate.

Q: Can we have one without the other?
A [V. Rosenhaus]: Probably not.

Maximal chaos follows from (nearly) CFT1.



The end.

Thank you for listening.

Thanks to Open Science Grid for computer time.


