University of California at San Diego – Department of Physics – Prof. John McGreevy Physics 230 Quantum Phases of Matter, Spr 2024 Assignment 6

Due 11pm Thursday, May 16, 2024

- 1. Hall plateaux as a crazy manifestation of quantum oscillations. Check the claim that the hierarchy states at fillings $\nu = \frac{\nu^*}{2\nu^*\pm 1}$ for $\nu^* \in \mathbb{Z}$ can be regarded as an extreme version of quantum oscillations in the HLR state at $\nu = \frac{1}{2}$.
- 2. Quantum Hall states of quasiparticles. In lecture we explained how to find incompressible states with filling fraction $\nu = \frac{1}{k \frac{1}{\tilde{k}}}$ by placing the quasiparticle excitations of a $\nu = 1/k$ FQH state in a $\tilde{\nu} = 1/\tilde{k}$ FQH state. Check this relation. When $\tilde{k} = 2$, this reproduced one branch of the composite fermion states we found previously. Explain how to get the other branch.
- 3. Excitations of hierarchy states. Find the torus groundstate degeneracy, and the charges and statistics of the quasiparticle excitations of the abelian incompressible FQH state at $\nu = \frac{2}{5}$ (for example, using the description in terms of the *K*-matrix CS theory).
- 4. Boson Integer Quantum Hall State from Partons. Consider a system made from two species of bosons, $b_{\uparrow}, b_{\downarrow}$. They could be distinguished by living in two layers. We'll assume that only the total boson number, acting by $(b_{\uparrow}, b_{\downarrow}) \rightarrow e^{i\alpha}(b_{\uparrow}, b_{\downarrow})$ is conserved (so that if the label is a layer label, the particles are able to tunnel between layers), and couple to a background field \mathcal{A} for that symmetry.
 - (a) Consider the parton ansatz:

$$b_{\uparrow} = f_0 f_{\uparrow}, \quad b_{\downarrow} = f_0 f_{\downarrow} f_1 f_2$$

where all the fs are fermionic partons. There are three U(1) gauge fields that glue these partons back together, and the charge assignments are as follows:

Also in the table are the Chern numbers of the bands filled by each of the partons in three distinct phases. (Only the Chern number of f_2 changes.) Identify the three phases, and describe the critical theories separating them. Hint: I recommend describing the parton currents in terms of dynamical gauge fields $j^{(\alpha)}_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu\rho} \partial_{\nu} b^{(\alpha)}_{\rho}$, where $\alpha = \uparrow, \downarrow, 0, 1, 2$.

	a_1	a_2	a_3	\mathcal{A}	Chern $\#$ in	Chern $\#$ in	Chern $\#$ in
					Phase 1	Phase 2	Phase 3
f_{\uparrow}	1	0	0	1	1	1	1
f_{\downarrow}	1	1	0	1	1	1	1
f_0	-1	0	0	0	-1	-1	-1
f_1	0	-1	1	0	-1	-1	-1
f_2	0	0	-1	0	-1	0	1

(b) For this part of the problem, let's retreat to the continuum. Consider the simpler parton ansatz:

$$b_{\uparrow} = f_0 f_{\uparrow}, \quad b_{\downarrow} = f_0 f_{\downarrow}$$

where all the fs are fermionic partons. Choose the $U(1)_{\mathcal{A}}$ to be charges $q_0 = 2, q_{\uparrow} = -1, q_{\downarrow} = -1$.

Consider an equal number N of b_{\uparrow} and b_{\downarrow} particles, so that the total filling fraction is $\nu = 2$. How many f_0 particles are there, and how many $f_{\downarrow}, f_{\uparrow}$ particles are there?

Write a candidate groundstate wavefunction $\Psi(r_i^{\uparrow}, r_i^{\downarrow})$ for the bosons.

- (c) Bonus question: why does the simpler ansatz of the previous part produce a wavefunction in the same phase as one of the phases of the first part?
- (d) Actually, here is a simpler description of the same phase diagram, closer to what I said in lecture. Consider a single species of boson, with the simple parton ansatz with $b = d_1d_2$ in terms of two fermions. Let d_1 and d_2 fill Chern bands with total Chern number c_1 and c_2 . Fix $c_1 = -1$. Consider what happens when $c_2 = 2$.

Describe the effective field theory of d_2 filling two bands with chern number 1 by introducing two gauge fields each with CS term $\frac{1}{4\pi}b_adb_a$.