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1. A simple avatar of the Lieb-Schulz-Mattis theorem. Consider the effective

theory describing a system living in the continuum that spontaneously forms a

solid, say a cubic lattice in d dimensions. Since translation symmetry is spon-

taneously broken, the degrees of freedom must include a collection of Goldstone

bosons θI , where I = 1..d runs over the spatial dimensions. θI(x) is the shift

of the atom at location x in the I direction relative to its equilibrium position.

These fields live on a circle, because if I shift all the atoms by the lattice spacing,

I get back the original lattice.

(a) Convince yourself that the effective action takes the form

Selastic[θ
I ] =

∫
dd+1x κijKL∂iθ

K∂jθ
L + terms with more derivatives, (1)

where the coupling constant κijKL is the elasticity tensor. With various

symmetries imposed, it can be decomposed further into various tensors with

names from the 19th century. These tensors describe things like bending

moduli – the rigidity of the solid to various kinds of strain.

Because the θI are Goldstone bosons, they can only appear in terms with

derivatives. Rotation invariance forbids terms with a single derivative.

(b) Now suppose that the number of atoms is a conserved quantity. That is,

consider a situation where there is also a U(1) symmetry. So we can couple

the system to a background gauge field Aµ for this U(1) symmetry. We’ll

assume this U(1) symmetry is not spontaneously broken. What are the

leading terms in the (local!) effective action Seff[θI , Aµ] that preserve gauge

invariance and translation symmetry?

I wrote the most interesting ones below. There can also be terms involving

dA.

(c) Consider the case of d = 1. In addition to the terms involving dA, one

interesting term is

Sν [θ, A] ≡ ν

2π

∫
A ∧ dθ =

ν

2π

∫
dxdtAµ∂νθε

µν . (2)
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One point to notice about it is that it is not obviously gauge invariant,

because it depends explicitly on A and not just the gauge-invariant object

F . Show that eiSν is gauge invariant if ν is an integer.

Under a gauge transformation, it changes by

δSν =
ν

2π

∫
dθ ∧ g−1dg. (3)

This is not obviously zero. But we don’t actually need the variation of the

action to be zero, we just need it to be an integer multiple of 2πi, since it

only ever appears exponentiated in the path integral. And in fact, if θ and

g are continuous functions and spacetime has no boundaries, (3) is always

2πiν times an integer. (To see this, first show that it is invariant under

small changes of g or θ:

δ (δSν)

δg
=
δ (δSν)

δθ
= 0.

So it is topological. Then we can compute it for some representative con-

figuration. If, for definiteness, we periodically identify the spacetime coor-

dinates, (3) is an expression for (2πi times) the winding number of the map

T 2 → T 2, (x, t)→ (g(x, t), θ(x, t)). Note that maps g : spacetime→ G that

are not continuously connected to the map to the identity are called ‘large

gauge transformations’.) Therefore, if ν ∈ Z, then (2) is gauge invariant1.

(d) What does the new term (2) do? Well, the first question we should ask about

an effective action for a background gauge field is: what is the resulting

charge density:

ρ(x) =
δS

δA0(x)
?

Interpret your result.

ρ(x) =
δS

δA0(x)
=

ν

2π
∂xθ + · · · .

This equation correctly expresses the fact that deforming the lattice away

from a uniform configuration will make the density vary.

1Alternatively, if spacetime is a manifold without boundary, we can integrate by parts and write

Sν = − ν

2π

∫
θ ∧ F.

This is manifestly gauge invariant, but it is not manifestly single-valued under θ → θ+ 2π, as it must

be to be well-defined. Fortunately,
∫
S
F/2π ∈ Z is an integer if A is a background U(1) gauge field on

a manifold S without boundary (this is called flux quantization), and so again we conclude that eiSν

is well-defined if ν ∈ Z.
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The · · · is contributions from other terms in the action, such as a term

like
∫
A0ρ0 that adds a background density. If ρ0 is constant in time and

integrates to an integer, this is also gauge invariant. More generally, we

could add
∫
Aµj

µ which you can show is gauge invariant (even under large

gauge transformations) as long as ∂µj
µ = 0.

(e) What is the analog of (2) in d dimensions? (That is, find a term in d spatial

dimensions involving a single power of A and derivatives of the θI that can

be written without using the metric.) Show that its coefficient ν is quantized

to be an integer. What contribution does it make to the density?

(f) We can identify the goldstone field θ with the phase field describing the

displacements of the atoms from their equilibrium positions:

ui(x, t) =
1

2π
aiIθ

I(x, t)− xi

where ~aI are generators of the lattice Γ. Then the equilibrium configuration

is actually θI(x, t) = KI
i x

i where KI
i

(
a

2π

)j
I

= δji , so KI
i is the matrix whose

columns are the reciprocal lattice generators.

The generalization of (2) in d spatial dimensions is

ν

(2π)d

∫
A ∧ dθ1 ∧ dθ2 · · · ∧ dθd . (4)

Again ν ∈ Z is required by gauge invariance. This gives the density

ρ(x) =
δS

δA0(x)
=

ν

(2π)d
1

d!
εI1···Idε

i1···id∂xi1θ
I1 · · · ∂xidθ

Id .

Plugging in the equilibrium configuration gives

ρ0(x) = ν
detK

(2π)d
=
ν

V

where V ≡ det a is the volume of the unit cell. This says that ν is the

(integer!) number of atoms per unit cell.

(g) The conclusion you should find by the gauge invariance argument above,

under the present assumptions, is that ν, and hence the equilibrium number

of particles per unit cell, must be an integer. This is an avatar of the Lieb-

Schulz-Mattis-Oshikawa-Hastings (LSMOH) theorem. Now, you may say to

yourself, why can’t I make a system at some filling which is not an integer?

Indeed, I can take 20007 particles and place them in a volume with 20004

unit cells, and the system must have some groundstate. What gives?
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2. Edge modes of CS theory. Now we return to abelian Chern-Simons theory

(for an extra challenge, redo this part in the non-Abelian case). If there is a

boundary of spacetime, something must be done to fix up the fact that the

action is not invariant under would-be gauge transformations that are nontrivial

at the boundary. Consider the case where Σ = R × UHP where R is the time

direction, and UHP is the upper half-plane y > 0. One way to fix the problem is

simply to declare that the would-be gauge transformations which do not vanish

at y = 0 are not redundancies. This means that they represent physical degrees

of freedom.

(a) First consider the simplest case of U(1) CS theory at level k. Choose a0 = 0

gauge, and plug the solution of the bulk equations of motion a = d̃φ (where

φ(x, y → 0) ≡ φ(x) is a scalar field, and d̃ is the exterior derivative on the

spatial manifold) into the Chern-Simons action to find the resulting action

for φ.

The exterior derivative on this spacetime decomposes into d = ∂tdt + d̃

where d̃ is just the spatial part, and similarly the gauge field is a = a0dt+ ã.

Let us choose the gauge a0 = 0. We must still impose the equations of

motion for a0 (in the path integral it is a Lagrange multiplier) which says

d̃ã = 0 (just the spatial part). This equation is solved by ã = d̃φ (or rather

ã = g−1dg where g is a U(1)-valued function). This is pure gauge except at

the boundary. Plugging this into the CS term gives

S =
k

4π

∫
R×D

ã ∧
(
dt∂t + d̃

)
ã (5)

=
k

4π

∫
R×D

d̃φ ∧ dt∂td̃φ (6)

=
k

4π

∫
R×D

d̃
(
φ ∧ dt∂td̃φ

)
(7)

Stokes
=

k

4π

∫
R×∂D

φdt∂td̃φ (8)

=
k

4π

∫
R×∂D

dxdtφ∂t∂xφ (9)

IBP
= − k

4π

∫
R×∂D

dxdt∂xφ∂tφ. (10)

(b) We can also add local terms at the boundary to the action. Consider adding

∆S = g
∫
∂Σ
a2
x (for some coupling constant g). Find the equations of motion

for φ.
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This term evaluates to ∆S =
∫
∂Σ
v (∂xφ)2 . Altogether we now have

Sedge[φ] =

∫
y=0

dxdt∂xφ

(
k

4π
∂tφ+ g∂xφ

)
.

The EoM is then

δ

δφ(x)
Sedge[φ] = ∂t

(
k

4π
∂tφ+ g∂xφ

)
which is solved if k

4π
∂tφ + g∂xφ = 0. This describes a dispersionless wave

which moves only in the signk direction – a chiral bosonic edge mode.

For more, I recommend the textbook by Xiao-Gang Wen.

Interpretation: the Chern-Simons theory on a space with boundary neces-

sarily produces a chiral edge mode.

(c) If you feel like it, redo the previous parts for the general K-matrix theory.
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