
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 230 Quantum Phases of Matter, Spr 2024
Assignment 3 – Solutions

Due 11pm Thursday, April 25, 2024

Problems about Abelian Chern-Simons theory and its relation to QHE.

1. Another quantized coupling constant. Consider the worldline theory of

a charged particle. The degrees of freedom are the coordinates of the particle

xi(t), i = 1..d as a function of time, a QFT in 0 + 1 with d fields. We might

include terms like

S0[x] =

∫
dt

(
1

2
m (ẋ)2 − V (x)

)
. (1)

Suppose the particle is charged under a U(1) symmetry, and we would like to

couple it to a background gauge field Aµ. This means that its worldline action

contains a term of the form

Sc[A, x] = q

∫
A ≡ q

∫
dtẋiAi(x(t)). (2)

This is an example of a Chern-Simons term in 0+1 dimensions.

The path integral measure eiS[x,A] should be invariant under gauge transforma-

tions

Aµ → Aµ + ig−1∂µg (3)

where g(t) = eiφ(t) is an element of U(1). Show that this means that the charge

q must be quantized. Hint: consider the case where the worldline is a circle.

2. Quantization of the level.

(a) Show that the Chern-Simons action is gauge invariant under a→ a+dλ, as

long as there is no boundary of spacetime Σ. Compute the variation of the

action in the presence of a boundary of Σ.

(b) Actually, the situation is a bit more subtle than the previous part suggests.

The actual form of a U(1) gauge transformation is

a→ a− ig−1dg

where g = eiλ. This reduces to the previous expression for the gauge trans-

formation when λ is small, but the latter ignores the global structure of the

gauge group (e.g. in the abelian case, the fact that g is a periodic function).
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Consider the case where spacetime is Σ = S1 × S2. Find the variation of

the U(1) Chern-Simons action

S0[a] =

∫
Σ

k

4π
a ∧ da

under a large gauge transformation, meaning that

g = einθ

where θ is the coordinate on the circle. Conclude that in the absence of

other interestingness (such as degenerate groundstates not coming from the

dynamics of a), the level k must be an even integer.

Here is the logic: Since the action appears in the path integral in the form

eiS, convince yourself that the path integrand is gauge invariant if

(1)
∫

Γ
f ∈ 2πZ for all closed 2-surfaces Γ in spacetime, and

(2) k ∈ 2Z – the Chern-Simons level is quantized as an even integer.

The first condition is called flux quantization, and is closely related to Dirac’s

condition.

The quantization of the level k, i.e. the Chern-Simons coupling, has a dra-

matic consequence: it means that this coupling constant cannot be renormal-

ized by a little bit, only by an integer shift. This is an enormous constraint

on the dynamics of the theory.

Let’s write ω = dφ = −ig−1dg. This is a closed form, dω = 0, but it is not

exact, since φ is not necessarily a globally well-defined function (it can jump

by 2π anywhere).

The variation is δS0 = k
4π

∫
M
ω ∧ da. You might be tempted to integrate

by parts and say dω = 0 and therefore this vanishes. But a is not globally

well-defined, so it’s not true that d of something involving a has to vanish

on a closed manifold. A familiar example is
∫
S2 F = 2π for the sphere

surrounding a magnetic monopole.

We can argue that 1
2π

∫
ω ∧ da is 2π times an integer by following the logic:

first show that it’s topological, in the sense of independent of local variations

of its arguments, then evaluate it on nice configurations where we can do

the integral.

The first step follows because both ω and da are closed. For the second step,

we can choose a nice 3-manifold, such as S1 × S2, where the period of the

circle is L and the coordinate is t (t ≡ t+L). Consider a field configuration

where the gauge flux is constant in t. If we take g = e
2πit
L , then ω = 2π

L
dt,
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we find

δS0 = − k

4π

∫ L

0

2π

L
dt

∫
S2

f︸ ︷︷ ︸
∈2πZ

∈ πkZ.

Therefore, k must be an even integer, if there is nothing else around to make

the amplitude gauge invariant. But, you say, we’ve been talking about the

case k = 1 all the time as a description of the integer QHE! The answer

is that the theory with odd k does make sense, but only if the system is

fermionic. We’ll come back to this later.

(c) [bonus] In the case where G is a non-abelian lie group, the argument for

quantization of the level k is more straightforward. Show that the variation

of the CS Lagrangian

LCS =
k

4π
tr

(
a ∧ da+

2

3
a ∧ a ∧ a

)
under a→ gag−1 − dgg−1 is

LCS → LCS +
k

4π
dtrdgg−1 ∧ a+

k

12π
tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

The integral of the second term over any closed surface is an integer. Con-

clude that eiSCS is gauge invariant if k ∈ Z.

The first term integrates to zero on a closed manifold. The second term is

the winding number of the map g : Σ→ G

3. Hall conductivity from Chern-Simons theory

(a) For the abelian Chern-Simons theory with gauge group U(1) at level k,

S[a,A] =

∫ (
k

4π
a ∧ da+A ∧ da

2π

)
.

do the (gaussian!) path integral over a to find the effective action for the

background field A. Find the Hall conductivity.

See the next problem.

(b) Now do it for the general K matrix and general charge vector tI , with

S[aI ,A] =

∫ (
KIJ

4π
aI ∧ daJ +A ∧ tI

daI

2π

)
.

Let’s just do it all at once. The path integral is∫
[Da]eiS[a,A] = eiSeff[A].
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Since the Hall conductivity is a local quantity, let’s just put the system on

the plane or the sphere, where there is no opportunity for a to create any

topological mischief, and we can just do the integral. Complete the square

in the exponent:

i

∫ (
KIJ

4π
aI ∧ daJ +A ∧ tI

daI

2π

)
= i

∫
KIJ

4π

(
aI +

(
K−1

)IK
tKA

)
d
(
aJ +

(
K−1

)JL
tLA

)
− KIJ

4π

((
K−1

)IK
tKA

)
d
((
K−1

)JL
tLA

)
. (4)

Now change variables in the integral aI → aI + (K−1)
IK
tKA. On the plane

this is fine, and the integral is just a constant. All that is left is

Seff = −tI
(
K−1

)IJ
tJ

∫
A ∧ dA

4π
.

We conclude that the Hall conductivity is

σxy =
e2

h
tI
(
K−1

)IJ
tJ .

I should make here a legal disclaimer that although the integral over a is

gaussian and therefore it is irresistible to do the integral, it is not quite safe

to integrate it out. You can see this from the fact that we get a CS theory

for A with a level that is not an integer! The reason this is consistent with

gauge invariance for the background U(1) gauge group is that a large gauge

transformation takes one groundstate of a to a different one.

4. Flux attachment. Now consider

Sj[A] =

∫ (
k

4π
a ∧ da+ a ∧ ?j

)
.

Find the equations of motion. Show that the Chern-Simons term attaches k units

of flux to the particles: F12 ∝ ρ.

5. Anyons.

(a) Show using the Bohm-Aharonov effect that the particles whose current den-

sity is jµ have anyonic statistics with exchange angle π
k

(supposing they were

bosons before we coupled them to A).
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One way to do this is to consider a configuration of j which describes one

particle adiabatically encircling another. Show that its wavefunction ac-

quires a phase ei2π/k. This is twice the phase obtained by going halfway

around, which (when followed by an innocuous translation) would exchange

the particles.

See the next problem.

(b) Describe the statistics of the anyonic quasiparticles in the case with general

K matrix.

The EoM are
KIJ

2π
daJ = ?jI

which means daI = 2π (K−1)
IJ
? jJ . Bringing anyon one with charge l1 all

the way around anyon two with charge l2 gives the phase

Φ2π = (l1)I

∮
C

aI = (l1)I

∫
R,∂R=C

2π
(
K−1

)IJ
(ρ2)J = 2π (l1)I

(
K−1

)IJ
(l2)J .

The exchange phase is half of this.
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