University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 230 Quantum Phases of Matter, Spr 2024 Assignment 2

Due 11pm Thursday, April 18, 2024

1. Anyons in the toric code.

(a) Show that when acting on a toric code groundstate the operator

$$
W_{C}=\prod_{\ell \in C} X_{\ell}
$$

creates a state which violates only the star operators at the sites in the boundary of $C, \partial C$, a pair of e-particles.
(b) Show that when acting on a toric code groundstate the operator

$$
V_{\check{C}}=\prod_{\ell \perp \check{C}} Z_{\ell}
$$

creates a state which violates only the plaquette operators in the boundary of $\check{C}, \partial \check{C}$.
(c) Show that a boundstate of an e particle and an m particle in the 2 d toric code must be a fermion.
2. Toric code as \mathbb{Z}_{2} gauge theory with matter. Consider a model with qubits on the links of a lattice (with Pauli operators $X_{\ell}, Z_{\ell}, X_{\ell} Z_{\ell}=-Z_{\ell} X_{\ell}$) and qubits on the sites of the lattice (with Pauli operators $\sigma_{j}^{x}, \sigma_{j}^{z}, \sigma_{j}^{x} \sigma_{j}^{z}=-\sigma_{j}^{z} \sigma_{j}^{x}$).
(a) Show that the operator

$$
G_{j} \equiv A_{j} \sigma_{j}^{z}
$$

(where A_{j} is the star operator) generates the gauge transformation ${ }^{1}$

$$
\begin{equation*}
\sigma_{j}^{x} \rightarrow(-1)^{s_{j}} \sigma_{j}^{x}, \quad Z_{i j} \rightarrow(-1)^{s_{i}} Z_{i j}(-1)^{s_{j}}, \quad \sigma_{j}^{z} \rightarrow \sigma_{j}^{z}, \quad X_{i j} \rightarrow X_{i j} \tag{1}
\end{equation*}
$$

(where i, j are the sites at the ends of the link labelled $i j$). By generates here I mean that an operator \mathcal{O} transforms as

$$
\mathcal{O} \rightarrow \mathcal{G}_{s}^{\dagger} \mathcal{O} \mathcal{G}_{s}, \quad \mathcal{G}_{s} \equiv \prod_{j} G_{j}^{s_{j}}
$$

with $s_{j}=0,1$.

[^0](b) Show that the Hamiltonian
$$
\mathbf{H}=-\sum_{j} G_{j}-\sum_{p} B_{p}-h \sum_{i j} \sigma_{i}^{x} Z_{i j} \sigma_{j}^{x}-g \sum_{\langle i j\rangle} X_{i j}
$$
is gauge invariant.
Here we can identify σ_{j}^{x} as the operator which creates an e particle at site j. And we can identify $\sigma_{j}^{z}=(-1)^{n_{j}}$ as the parity of the number operator.
(c) Show that if we set $\sigma_{j}^{x}=1$ and $\sigma_{j}^{z}=1$ for all j we get back the (perturbed) toric code.
Bonus problem: interpret this operation as a choice of gauge in the model where $G_{j}=1$ is imposed as a constraint on physical states.
3. A topological qubit. Consider the toric code on this cell complex:

Recall that rough boundary conditions means that plaquette terms get truncated, such as the term $-X_{1} X_{2} X_{3}$, while smooth boundary conditions mean that star terms get truncated, such as the term $-Z_{4} Z_{5} Z_{6}$.

Show that there is a two-dimensional space of groundstates. A good way to do this is using the algebra of string operators which terminate at the various components of the boundary without creating excitations.
4. Duality wall. [Bonus problem] Show that the following hamiltonian realizes a
duality wall in the toric code.

What this means is that when crossing the wall, an e particle turns into an m particle and vice versa. (More precisely, there is a string operator which transports an e particle to the wall, and can be completed by a string operator transporting an m particle away from the wall, without creating any excitations.)
To be more precise about the figure: the dotted line carries no degrees of freedom. The terms in the hamiltonian along the wall are of the form

$$
H=\ldots-X_{2} X_{5} X_{3} Z_{7}-Z_{3} X_{7} X_{8} X_{9}
$$

and there is a term at the end of the wall (the little blue circle) of the form $-Z_{6} Y_{17} X_{18} X_{19} X_{20}$. Show that these terms commute with each other and all the usual star and plaquette terms, such as $A=Z_{1} Z_{2} Z_{3} Z_{4}$ and $B=X_{8} X_{10} X_{11} X_{12}$. What can you say about the end of the duality wall (the little blue circle)?

[^0]: ${ }^{1}$ In the first version of this problem set I had reversed my convention about whether A is made of $X \mathrm{~s}$ or $Z \mathrm{~s}$.

