University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 230 Quantum Phases of Matter, Spr 2024
 Assignment 2 - Solutions

Due 11pm Thursday, April 18, 2024

1. Anyons in the toric code.

(a) Show that when acting on a toric code groundstate the operator

$$
W_{C}=\prod_{\ell \in C} X_{\ell}
$$

creates a state which violates only the star operators at the sites in the boundary of $C, \partial C$, a pair of e-particles.
Clearly W_{C} commutes with B_{p} since they are both made of just X s. If a site j touches C in the middle somewhere, A_{j} shares two edges with W_{C} and therefore $\left[A_{j}, W_{C}\right]=0$. At the end of the curve is a site which shares only one edge with A_{j} and therefore they anticommute. Therefore acting with W_{C} changes the A_{j}-eigenvalue of the state from 1 to -1 .
(b) Show that when acting on a toric code groundstate the operator

$$
V_{\check{C}}=\prod_{\ell \perp \check{C}} Z_{\ell}
$$

creates a state which violates only the plaquette operators in the boundary of $\check{C}, \partial \check{C}$.

This question is related to the previous by the duality map which takes the lattice to the dual lattice and interchanges $X \leftrightarrow Z$.
(c) Show that a boundstate of an e particle and an m particle in the 2 d toric code must be a fermion.
Recall that a particle is a fermion if after rotating it by 2π its state picks up a minus sign:

$$
|-6\rangle=-1 \longrightarrow
$$

The operator which creates the epsilon particle looks like this, call it \mathcal{O}_{1} :

The operator which creates an epsilon particle and rotates it by 2π looks like this, call it \mathcal{O}_{2} :

The product of the two is this:

except I need to tell you the order in which the X and Z act on the indicated link. Therefore

$$
\langle\longrightarrow \mid \longrightarrow\rangle=\langle\operatorname{gs}| \mathcal{O}_{2} \mathcal{O}_{1}|\mathrm{gs}\rangle
$$

If we can separate the two loops of $X \mathrm{~s}$ and $Z \mathrm{~s}$ in (??) they will give $W_{C} V_{\check{C}}$ for contractible curves, which gives 1 when acting on the groundstate. But: the X and Z on the indicated link need to be moved past each other first. This costs a minus sign and therefore

$$
\langle\longrightarrow \mid \longrightarrow\rangle=\langle\mathrm{gs}| \mathcal{O}_{2} \mathcal{O}_{1}|\mathrm{gs}\rangle=-1 .
$$

Alternatively, we can think about exchange. Exchanging two particles can be accomplished by first rotating one around the other by a π rotation, and then translating both of them by their separation. As you can see in this figure:

the first step requires the string creating the e particle to cross that creating the m particle on an odd number of links. (The second step is innocuous.)
2. Toric code as \mathbb{Z}_{2} gauge theory with matter. Consider a model with qubits on the links of a lattice (with Pauli operators $X_{\ell}, Z_{\ell}, X_{\ell} Z_{\ell}=-Z_{\ell} X_{\ell}$) and qubits on the sites of the lattice (with Pauli operators $\sigma_{j}^{x}, \sigma_{j}^{z}, \sigma_{j}^{x} \sigma_{j}^{z}=-\sigma_{j}^{z} \sigma_{j}^{x}$).
(a) Show that the operator

$$
G_{j} \equiv A_{j} \sigma_{j}^{z}
$$

(where A_{j} is the star operator) generates the gauge transformation ${ }^{1}$

$$
\begin{equation*}
\sigma_{j}^{x} \rightarrow(-1)^{s_{j}} \sigma_{j}^{x}, \quad Z_{i j} \rightarrow(-1)^{s_{i}} Z_{i j}(-1)^{s_{j}}, \quad \sigma_{j}^{z} \rightarrow \sigma_{j}^{z}, \quad X_{i j} \rightarrow X_{i j} \tag{2}
\end{equation*}
$$

(where i, j are the sites at the ends of the link labelled $i j$). By generates here I mean that an operator \mathcal{O} transforms as

$$
\mathcal{O} \rightarrow \mathcal{G}_{s}^{\dagger} \mathcal{O} \mathcal{G}_{s}, \quad \mathcal{G}_{s} \equiv \prod_{j} G_{j}^{s_{j}}
$$

[^0]with $s_{j}=0,1$.
The relations involving Z and σ^{z} follow because they commute with $G_{j} . X_{\ell}$ transforms under G_{j} if the site $j \in \partial \ell$.
(b) Show that the Hamiltonian
$$
\mathbf{H}=-\sum_{j} G_{j}-\sum_{p} B_{p}-h \sum_{i j} \sigma_{i}^{x} Z_{i j} \sigma_{j}^{x}-g \sum_{\langle i j\rangle} X_{i j}
$$
is gauge invariant.
G_{j} commutes with $G_{j^{\prime}} . B_{p}$ commutes since it is a closed loop of $Z \mathrm{~s}$. The third term is a kinetic term for the e particles, which is invariant because the transformation of the σ^{x} s cancels that of the Z. The last term is invariant because it is made of $X \mathrm{~s}$.

Here we can identify σ_{j}^{x} as the operator which creates an e particle at site j. And we can identify $\sigma_{j}^{z}=(-1)^{n_{j}}$ as the parity of the number operator.
(c) Show that if we set $\sigma_{j}^{x}=1$ and $\sigma_{j}^{z}=1$ for all j we get back the (perturbed) toric code.

Bonus problem: interpret this operation as a choice of gauge in the model where $G_{j}=1$ is imposed as a constraint on physical states.
Clearly if we just erase all the $\sigma_{j}^{x} \mathrm{~S}$ and $\sigma_{j}^{z} \mathrm{~S}$ we get back the toric code Hamiltonian.
And clearly we can choose the gauge parameter s_{j} in (1) to set $\sigma^{x}=1$. The tricky part of this is that we can also erase all the appearances of σ^{z}. This wouldn't make sense on the full Hilbert space $\otimes \mathcal{H}_{2}$, since σ^{z} and σ^{x} do not commute. The claim is that on the space of physical states of the gauge theory, which satisfy $G_{j}|\mathrm{phys}\rangle=|\mathrm{phys}\rangle$ for all j, we can do this. It's because on such states, the action of σ_{j}^{z} can be replaced by A_{j}. If everything is gauge-invariant, any appearance of G_{j} can be moved onto the states, and replaced with 1.
3. A topological qubit. Consider the toric code on this cell complex:

Recall that rough boundary conditions means that plaquette terms get truncated, such as the term $-X_{1} X_{2} X_{3}$, while smooth boundary conditions mean that star terms get truncated, such as the term $-Z_{4} Z_{5} Z_{6}$.
Show that there is a two-dimensional space of groundstates. A good way to do this is using the algebra of string operators which terminate at the various components of the boundary without creating excitations.
An electric string $W_{C}=\prod_{\ell \in C} X_{\ell}$ can end without creating excitations on the rough boundaries. A magnetic string $V_{\hat{C}}=\prod_{\ell \perp \hat{C}} Z_{\ell}$ can end without creating excitations on the smooth boundaries. $V W=-W V$, and they commute with the toric code Hamiltonian, so there is a pair of degenerate groundstates.
4. Duality wall. [Bonus problem] Show that the following hamiltonian realizes a duality wall in the toric code.

What this means is that when crossing the wall, an e particle turns into an m particle and vice versa. (More precisely, there is a string operator which transports an e particle to the wall, and can be completed by a string operator transporting an m particle away from the wall, without creating any excitations.)

To be more precise about the figure: the dotted line carries no degrees of freedom. The terms in the hamiltonian along the wall are of the form

$$
H=\ldots-X_{2} X_{5} X_{3} Z_{7}-Z_{3} X_{7} X_{8} X_{9}
$$

and there is a term at the end of the wall (the little blue circle) of the form $-Z_{6} Y_{17} X_{18} X_{19} X_{20}$. Show that these terms commute with each other and all the usual star and plaquette terms, such as $A=Z_{1} Z_{2} Z_{3} Z_{4}$ and $B=X_{8} X_{10} X_{11} X_{12}$.

What can you say about the end of the duality wall (the little blue circle)?
The figure (and the result) comes from this paper by Kitaev and Kong.
A string operator which is the usual W operator made of X s along the curve on the left (and hence transports an e particle) can be connected to a V operator made of a string of $Z \mathrm{~s}$ crossing the curve on the right (and hence transports an m particle) without violating any of the terms in the hamiltonian. And vice-versa. The endpoint of the duality wall can absorb a fermion (the boundstate of e and m particles).

[^0]: ${ }^{1}$ In the first version of this problem set I had reversed my convention about whether A is made of $X \mathrm{~s}$ or $Z \mathrm{~s}$.

