University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 230 Quantum Phases of Matter, Spr 2024

Assignment 1 - Solutions

Due 11pm Thursday, April 11, 2024

1. Simple stabilizer codes.

I've mentioned the toric code as an important solvable example of topological order. We can solve it because it is an example of what is called a stabilizer code. This means that the systems is made from a bunch of qubits and all the terms in the Hamiltonian are made of Pauli $X \mathrm{~s}$ and $Z \mathrm{~s}^{1}$ and all commute with each other. This problem is a warmup problem to get used to this idea.
(a) Consider the Hamiltonian on two qbits

$$
-H=X_{1} X_{2}+Z_{1} Z_{2}
$$

Show that the terms commute and that the groundstate is

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
$$

(b) Consider the (non-local) Hamiltonian on N qbits

$$
\begin{equation*}
H_{\mathrm{GHZ}}=-X_{1} \cdots X_{N}-\sum_{i=1}^{N-1} Z_{i} Z_{i+1} . \tag{1}
\end{equation*}
$$

Show that all the terms commute. Show that the groundstate is (the 'GHZ state' or 'cat state')

$$
\frac{|00 \ldots 0\rangle+|11 \ldots 1\rangle}{\sqrt{2}} .
$$

[^0](c) [bonus] Show that the following circuit U produces the GHZ state from the product state $|0\rangle^{\otimes N}$.

Let me explain the notation. Each horizontal line represents a qubit. H represents the 'hadamard gate' acting on one qubit by $H|\uparrow\rangle=|+\rangle, H|\downarrow\rangle=$

$$
\begin{equation*}
H=|+\rangle\langle\uparrow|+|-\rangle\langle\downarrow| . \tag{2}
\end{equation*}
$$

The vertical line segments represent the 'control-X gate' that acts on two qubits by

$$
\begin{equation*}
\mathbf{C X}=|0\rangle\langle 0| \otimes \mathbb{1}+|1\rangle\langle 1| \otimes X . \tag{3}
\end{equation*}
$$

(The first qubit is the one with the black dot, and the second is the one with the circled +.)
Notice that this circuit has depth N.
One way to do it is to find the image under conjugation by U of the 'stabilizers' Z_{i} of the product state $\otimes_{i}|0\rangle_{i}$.
(d) [bonus] What state does U produce from $|1\rangle_{1} \otimes|0\rangle^{\otimes N-1}$?
(e) [bonus] Find the result of feeding the Hamiltonian $-\sum_{i} Z_{i}$ (whose groundstate is the product state $|0\rangle^{\otimes N}$) through the circuit, i.e. what is

$$
U\left(-\sum_{i} Z_{i}\right) U^{\dagger} ?
$$

Hint: use the rules for the action of CX by conjugation given in lecture.

$$
H_{\mathrm{GHZ}}=U\left(-\sum_{i} Z_{i}\right) U^{\dagger}
$$

2. Gauge theory can emerge from a local Hilbert space.

The Hilbert space of a gauge theory is a funny thing: states related by a gauge transformation are physically equivalent. In particular, it is not a tensor product over independent local Hilbert spaces associated with regions of space. Because of this, there is much hand-wringing about defining entanglement in gauge theory. The following is helpful for thinking about this. It is a realization of \mathbb{Z}_{2} lattice gauge theory, beginning from a model with no redundancy in its Hilbert space. In this avatar it is due to Kitaev and is called the toric code.

To define the Hilbert space, put a qubit on every link ℓ of a lattice, say the 2 d square lattice, so that $\mathcal{H}=\otimes_{\ell} \mathcal{H}_{\ell}$. Let σ_{ℓ}^{x}, σ_{ℓ}^{z} be the associated Pauli operators, and recall that $\left\{\sigma_{\ell}^{x}, \sigma_{\ell}^{z}\right\}=0$. $\mathcal{H}_{\ell}=\operatorname{span}\left\{\left|\sigma_{\ell}^{z}=1\right\rangle,\left|\sigma_{\ell}^{z}=-1\right\rangle\right\}$ is a useful basis for the Hilbert space of a single link.
One term in the hamiltonian is associated with each site $j \rightarrow A_{j} \equiv$ $\prod_{l \in j} \sigma_{l}^{z}$ and one with each plaquette $p \rightarrow B_{p} \equiv \prod_{l \in \partial p} \sigma_{l}^{x}$, as indicated in the figure at right.

$$
\mathbf{H}=-\Gamma_{e} \sum_{j} A_{j}-\Gamma_{m} \sum_{p} B_{p} .
$$

(a) Show that all these terms commute with each other.

Any pair of A_{j} and B_{p} share zero or two links.
(b) The previous result means we can diagonalize the Hamiltonian by diagonalizing one term at a time. Let's imagine that $\Gamma_{e} \gg \Gamma_{m}$ so we'll minimize the 'star' terms A_{j} first. Which states satisfy the 'star condition' $A_{j}=1$? In the σ^{x} basis there is an extremely useful visualization: we say a link l of $\hat{\Gamma}$ is covered with a segment of string (an electric flux line) if $\sigma^{z}{ }_{l}=-1$ (so the electric field on the link is $\mathbf{e}_{l}=1$) and is not covered if $\sigma^{z}{ }_{l}=+1$ (so the electric field on the link is $\left.\mathbf{e}_{l}=0\right): \bar{\ell} \equiv\left(\sigma_{\ell}^{z}=-1\right)$. Draw all possible configurations incident on a single vertex j and characterize which ones satisfy $A_{j}=1$.

In the figure at right, we enumerate the possibilities for a 4 -valent vertex. $A_{j}=-1$ if a flux line ends at j.

So the subspace of \mathcal{H} satisfying the star condition is spanned by closed-string states, of the form $\sum_{\{C\}} \Psi(C)|C\rangle$.

The σ^{z} term penalizes string configurations according to their length. This is just the role of the E^{2} term in the Maxwell action - electric flux costs energy.
(c) [bonus] What is the effect of adding a term $\Delta \mathbf{H}=\sum_{\ell} g \sigma^{x}$? Convince yourself that in the limit $\Gamma_{e} \gg \Gamma_{m}$, for energies $E \ll \Gamma_{e}$, this is identical to \mathbb{Z}_{2} lattice gauge theory, where $A_{j}=1$ is a discrete version of the Gauss law constraint.
You can get help from section V.E of this Kogut review.]
(d) Set $g=0$ again. In the subspace of solutions of the star condition, find the groundstate(s) of the plaquette term. First consider a simply-connected region of lattice, then consider periodic boundary conditions.
Now we look at the action of B_{p} on this subspace of states:

$$
\begin{aligned}
& B|=| \square\rangle \quad B_{p}|C\rangle=|C+\partial p\rangle \\
& \text { The condition that } B_{p}|\mathrm{gs}\rangle=|g \mathrm{~s}\rangle \text { is a homological equiv- } \\
& B_{\square}|\square\rangle=1 \quad \text { alence. In words, the eigenvalue equation } \mathbf{B}_{\square}=1 \text { says } \\
& \Psi(C)=\Psi\left(C^{\prime}\right) \text { if } C^{\prime} \text { and } C \text { can be continuously de- } \\
& \text { formed into each other by attaching or removing pla- } \\
& \text { quettes. To see how to make this connection with ho- } \\
& \text { mology more explicit see Appendix A of these notes. }
\end{aligned}
$$

Here is a punchline to this problem. If the lattice is simply connected - if all curves are the boundary of some region contained in the lattice - then this means the groundstate

$$
|\mathrm{gs}\rangle=\sum_{C}|C\rangle
$$

is a uniform superposition of all loops.
If the space has non-contractible loops, then the eigenvalue equation does not determine the relative coefficients of loops of different topology! On a space with $2 g$ independent non-contractible loops (such as a closed surface with g handles), there are $2^{2 g}$ independent groundstates.
No local operator mixes these groundstates. This makes the topological degeneracy stable to local perturbations of the Hamiltonian. They are connected by the action of V, W - Wilson loops:

$$
W_{C}=\prod_{\ell \in C} \sigma^{x}, \quad V_{\check{C}}=\prod_{\ell \perp \check{C}} \sigma^{z}
$$

They commute with \mathbf{H}_{TC} and don't commute with each other (specifically W_{C} anticommutes with $V_{\check{C}}$ if C and \check{C} intersect an odd number of times).

These are the promised operators (called $\mathcal{F}_{x, y}$ above) whose algebra is represented on the groundstates.
For more of this story see section 2.2 of these notes.

3. Groundstate degeneracy and 1-form symmetry algebra.

(a) Suppose we have a system with Hamiltonian H with string operators W_{C} and $V_{\check{C}}$ supported on closed curves, and commuting with H, and satisfying $W^{N}=V^{N}=1$.

In all parts of this problem you should make the assumption that the string operators are deformable: W_{C} acts in the same way as $W_{C+\partial p}$ on groundstates.
Suppose $\left[W_{C}, W_{C^{\prime}}\right]=0,\left[V_{\check{C}}, \check{C}^{\prime}\right]$ for all curves but

$$
W_{C} V_{\check{C}}=\omega^{\#(C \cap \check{C})} V_{\check{C}} W_{C}
$$

where $\omega \equiv e^{\frac{2 \pi i}{N}}$ and $\#(C \cap \check{C})$ is the number of intersection points of the curves. How many groundstates does such a system have on the two-torus (that is, with periodic boundary conditions on both spatial directions)?
This is what happens in the \mathbb{Z}_{N} toric code.
For each non-contractible cycle $C_{x, y}$ of the torus, we get a pair of string operators $W_{C}, V_{\check{C}}$, with

$$
W_{C_{x}} V_{\tilde{C}_{y}}=\omega V_{\tilde{C}_{y}} W_{C_{x}}, \quad W_{C_{y}} V_{\tilde{C}_{x}}=\omega^{-1} V_{\tilde{C}_{x}} W_{C_{y}}
$$

- note that the orientation of the intersection matters now. Let's diagonalize $W_{C_{x}}$ and $W_{C_{y}}$. Their eigenvalues are roots of unity. Starting from a state $|(1,1)\rangle$ with eigenvalues $(1,1)$, the action of $V_{\tilde{C}_{y}}^{n} V_{\tilde{C}_{x}}^{m}$ generates

$$
|(n,-m)\rangle=V_{\tilde{C}_{y}}^{n} V_{\tilde{C}_{x}}^{m}|(1,1)\rangle
$$

with the eigenvalues ω^{n} and ω^{-m} under $W_{C_{x}}$ and $W_{C_{y}}$. Since they have different eigenvalues (for $n, m \in\{0 \ldots N-1\}$)), they are linearly independent. This gives N^{2} groundstates as the minimal representation of this algebra. On a genus g Riemann surface, with g conjugate pairs of cycles, we would find $N^{2 g}$ groundstates.
(b) Now suppose in a different system we have just one set of string operators W_{C} satisfying

$$
W_{C} W_{C^{\prime}}=\omega^{\#\left(C \cap C^{\prime}\right)} W_{C^{\prime}} W_{C}
$$

with the same definitions as above. How many groundstates does this system have on the two-torus?

This is what happens in the Laughlin fractional quantum Hall state with filling fraction $\frac{1}{N}$.
Now we get just one conjugate pair of operators on the torus:

$$
W_{C_{x}} W_{C_{y}}=\omega W_{C_{y}} W_{C_{x}} .
$$

Acting on an eigenstate $|1\rangle$ of $W_{C_{x}}$ with eigenvalue $1, W_{C_{y}}^{n}$ generates

$$
|n\rangle=W_{C_{y}}^{n}|1\rangle
$$

with $W_{C_{x}}$-eigenvalue ω^{n}. Therefore the minimal representation has N states. On a genus- g Riemann surface, there would be N^{g} states.
(c) [Bonus problem] Redo the previous problems for a genus g Riemann surface, i.e. the surface of a donut with g handles.

For the topological order in part a (which is called \mathbb{Z}_{N} gauge theory), there are two conjugate pairs of operators for each handle, and therefore there are $N^{2 g}$ groundstates. For the topological order in part b (which is called $\mathrm{U}(1)_{N}$ (this is pronounced ' $\mathrm{U}(1)$ level N^{\prime} ' FQHE), there is only one conjugate pair for each handle, and hence N^{g} groundstates.
4. Simplicial homology and the toric code. [Bonus]

The toric code is a physical realization of homology, a construction that extracts topological invariants of topological spaces. This problem explains the relation.
(a) The toric code we've discussed so far has qbits on the links $\ell \in \Delta_{1}(\boldsymbol{\Delta})$ of a graph $\boldsymbol{\Delta}$. But the definition of the Hamiltonian involves more information than just the links of the graph: we have to know which vertices v lie at the boundaries of each link ℓ, and we have to know which links are boundaries of which faces. The Hamiltonian has two kinds of terms: a 'plaquette' operator $B_{p}=\prod_{\ell \in \partial p} X_{\ell}$ associated with each 2-cell (plaquette) $p \in \Delta_{2}(\boldsymbol{\Delta})$. and 'star' operators, $A_{s}=\prod_{\ell \in \partial^{-1}(s)} Z_{\ell}$, associated with each 0-cell (site) $s \in \Delta_{0}(\boldsymbol{\Delta})$. Here I've introduced some notation that will be useful, please be patient: Δ_{k} denotes a collection of k-dimensional polyhedra which I'll call k-simplices or more accurately k-cells - k-dimensional objects making up the space. (It is important that each of these objects is topologically a k-ball.) This information constitutes (part of) a simplicial complex, which says how these parts are glued together:

$$
\begin{equation*}
\Delta_{d} \xrightarrow{\partial} \Delta_{d-1} \xrightarrow{\partial} \cdots \Delta_{1} \xrightarrow{\partial} \Delta_{0} \tag{4}
\end{equation*}
$$

where ∂ is the (signed) boundary operator. For example, the boundary of a link is $\partial \ell=s_{1}-s_{0}$, the difference of the vertices at its ends. The boundary
of a face $\partial p=\sum_{\ell \in \partial p} \ell$ is the (oriented) sum of the edges bounding it. By $\partial^{-1}(s)$ I mean the set of links which contain the site s in their boundary (with sign).
Think of this collection of objects as a triangulation (or more generally some chopping-up) of a smooth manifold X. Convince yourself that the sequence of maps (4) is a complex in the sense that $\partial^{2}=0(\bmod$ two $)$.
(b) [not actually a question] This means that the simplicial complex defines a set of homology groups, which are topological invariants of X, in the following way. (It is homology and not cohomology because ∂ decreases the degree $k)$. To define these groups, we should introduce one more gadget, which is a collection of vector spaces over some ring R (for the ordinary toric code, $R=\mathbb{Z}_{2}$)

$$
\Omega_{p}(\Delta, R), p=0 \ldots d \equiv \operatorname{dim}(X)
$$

basis vectors for which are p-simplices:

$$
\Omega_{p}(\Delta, R)=\operatorname{span}_{R}\left\{\sigma \in \Delta_{p}\right\}
$$

- that is, we associate $\mathrm{a}(\mathrm{n}$ orthonormal) basis vector to each p-simplex (which I've just called σ), and these vector spaces are made by taking linear combinations of these spaces, with coefficients in R. Such a linear combination of p-simplices is called a p-chain. It's important that we can $a d d$ (and subtract) p-chains, $C+C^{\prime} \in \Omega_{p}$. A p-chain with a negative coefficient can be regarded as having the opposite orientation. We'll see below how better to interpret the coefficients.
The boundary operation on Δ_{p} induces one on Ω_{p}. A chain C satisfying $\partial C=0$ is called a cycle, and is said to be closed.
So the p th homology is the group of equivalence classes of p-cycles, modulo boundaries of $p+1$ cycles:

$$
H_{p}(X, R) \equiv \frac{\operatorname{ker}\left(\partial: \Omega_{p} \rightarrow \Omega_{p-1}\right) \subset \Omega_{p}}{\operatorname{Im}\left(\partial: \Omega_{p+1} \rightarrow \Omega_{p}\right) \subset \Omega_{p}}
$$

This makes sense because $\partial^{2}=0$ - the image of $\partial: \Omega_{p+1} \rightarrow \Omega_{p}$ is a subset of $\operatorname{ker}\left(\partial: \Omega_{p} \rightarrow \Omega_{p-1}\right)$. It's a theorem that the dimensions of these groups are the same for different (faithful-enough) discretizations $\boldsymbol{\Delta}$ of X. Furthermore, their dimensions (as vector spaces over R) $b_{p}(X)$ contain (much of ${ }^{2}$) the same information as the Betti numbers defined by de Rham cohomology. For more information and proofs, see the great book by Bott and Tu, Differential forms in algebraic topology.

[^1](c) A state of the toric code on a cell-complex $\boldsymbol{\Delta}$ can be written (for the hamiltonian described above, this is in the basis where Z_{ℓ} is diagonal) as an element of $\Omega_{1}\left(X, \mathbb{Z}_{2}\right)$,
$$
|\Psi\rangle=\sum_{C} \Psi(C)|C\rangle
$$
where C is an assignment of an element of \mathbb{Z}_{2} in X (the eigenvalue of Z_{ℓ}). For the case of \mathbb{Z}_{2} coefficients, $1=-1 \bmod 2$ and we don't care about the orientations of the cells. Show that the conditions for a state $\Psi(C)$ to be a groundstate of the toric code $\left(A_{s}|\Psi\rangle=|\Psi\rangle \forall s\right.$ and $\left.B_{p}|\Psi\rangle=|\Psi\rangle \forall p\right)$ are exactly those defining an element of $H_{1}\left(X, \mathbb{Z}_{2}\right)$.
(d) Consider putting a spin variable on the p-simplices of Δ. More generally, let's put an N-dimensional hilbert space $\mathcal{H}_{N} \equiv \operatorname{span}\{|n\rangle, n=1 . . N\}$ on each p-simplex, on which act the operators
\[

\mathbf{X} \equiv \sum_{n=1}^{N}|n\rangle\langle n| \omega^{n}=\left($$
\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
0 & \omega & 0 & \ldots \\
0 & 0 & \omega^{2} & \ldots \\
0 & 0 & 0 & \ddots
\end{array}
$$\right), \quad \mathbf{Z} \equiv \sum_{n=1}^{N}|n\rangle\langle n+1|=\left($$
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \ddots \\
1 & 0 & 0 & \ldots
\end{array}
$$\right)
\]

where $\omega^{N}=1$ is an nth root of unity. If you haven't already, check that they satisfy the clock-shift algebra: $\mathbf{Z X}=\omega \mathbf{X Z}$. For $N=2$ these are Pauli matrices and $\omega=-1$.
Consider the Hamiltonian

$$
\mathbf{H}_{p}=-J_{p-1} \sum_{s \in \Delta_{p-1}} A_{s}-J_{p+1} \sum_{\mu \in \Delta_{p+1}} B_{\mu}-g_{p} \sum_{\sigma \in \Delta_{p}} \mathbf{Z}_{\sigma}
$$

with

$$
\begin{gathered}
A_{s} \equiv \prod_{\sigma \in \partial^{-1}(s) \subset \Delta_{p}} \mathbf{Z}_{\sigma} \\
B_{\mu} \equiv \prod_{\sigma \in \partial \mu} \mathbf{X}_{\sigma}
\end{gathered}
$$

This is a lattice version of p-form \mathbb{Z}_{N} gauge theory, at a particular, special point in its phase diagram (the RG fixed point for the deconfined phase).
Show that

$$
0=\left[A_{s}, A_{s^{\prime}}\right]=\left[B_{\mu}, B_{\mu^{\prime}}\right]=\left[A_{s}, B_{\mu}\right], \quad \forall s, s^{\prime}, \mu, \mu^{\prime}
$$

so that for $g_{p}=0$ this is solvable.
(e) Show that the groundstates of \mathbf{H}_{p} (with $g_{p}=0$) are in one-to-one correspondence with elements of $H_{p}\left(\boldsymbol{\Delta}, \mathbb{Z}_{N}\right)$.
Here's the solution: Suppose $J_{p-1} \gg J_{p+1}$ so that we should satisfy $A_{s}=1$ most urgently. This equation is like a gauss law, but instead of flux lines in the $p=1$ case, we have flux sheets for $p=2$ or ... whatever they are called for larger p. The condition $A_{s}=1$ means that these sheets satisfy a conservation law that the total flux going into the $p-1$ simplex vanishes. So a basis for the subspace of states satisfying this condition is labelled by configuration of closed sheets. For $N=2$ there is no orientation, and each p-simplex is either covered $\left(\mathbf{Z}_{\sigma}=-1\right)$ or not $\left(\mathbf{Z}_{\sigma}=1\right)$ and the previous statement is literally true. For $N>2$ we have instead sheet-nets (generalizing string nets), with $N-1$ non-trivial kinds of sheets labelled by $k=1 \ldots N-1$ which can split and join as long as they satisfy

$$
\begin{equation*}
\sum_{\sigma \in v(s)} k_{\sigma}=0 \bmod N, \forall s \tag{5}
\end{equation*}
$$

This is the Gauss law of p-form \mathbb{Z}_{N} gauge theory.
The analog of the plaquette operator B_{μ} acts like a kinetic term for these sheets. In particular, consider its action on a basis state for the $A_{s}=1$ subspace $|C\rangle$, where C is some collection of (N-colored) closed p-sheets by an N-colored p-sheet, I just mean that to each p-simplex we associate an integer $k_{\sigma}(\bmod N)$, and this collection of integers satisfies the equation (5).

The action of the plaquette operator in this basis is

$$
B_{\mu}|C\rangle=|C+\partial \mu\rangle
$$

Here $C+\partial \mu$ is another collection of p-sheets differing from C by the addition $(\bmod N)$ of a sheet on each p-simplex appearing in the boundary of μ. The eigenvalue condition $B_{\mu}=1$ then demands that the groundstate wavefunctions $\Psi(C) \equiv\langle C|$ groundstate \rangle have equal values for chains C and $C^{\prime}=C+\partial \mu$. But this is just the equivalence relation defining the p th homology of $\boldsymbol{\Delta}$. Distinct, linearly-independent groundstates are the labelled by p-homology classes of $\boldsymbol{\Delta}$. More precisely, they are labelled by homology with coefficients in $\mathbb{Z}_{N}, H_{p}\left(\boldsymbol{\Delta}, \mathbb{Z}_{N}\right)$.

[^0]: ${ }^{1} \mathrm{~A}$ comment about notation: the notation $\sigma_{\ell}^{x}, \sigma_{\ell}^{z}$ is pretty terrible (at least for someone with deteriorating eyesight like me) because the crucial information (x or z) is hidden in the superscript. Much better is to write

 $$
 \sigma_{\ell}^{x} \equiv X_{\ell}, \sigma^{z} \equiv Z_{\ell}
 $$

 Also, I use $|0\rangle,|1\rangle$ to denote the ± 1 eigenstates of Z, and $| \pm\rangle$ to denote the ± 1 eigenstates of X.

[^1]: ${ }^{2}$ I don't want to talk about torsion homology.

