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Physics 212C QM Spring 2023
Assignment 8

Due 11:00am Wednesday, May 31, 2023

1. Landau Levels in an Electric Field. [If you did this problem last week, please
hand in your solution again.]

In lecture I gave several arguments that a quantum Hall droplet has a linearly-
dispersing edge mode. Here is a fully quantum mechanical argument. We're going
to think about the physics in a neighborhood of the boundary of the sample,
where the confining potential V' ~ —FEuz is slowly varying, and describes an

electric field £ = —0,V.

The Hamiltonian in the Landau gauge (the one used on the last homework) is

1
H= 5 (p2 + (py + eBx)?) — eEx. (1)

(a) Using the same ansatz as in the last homework, write the Hamiltonian as
that of a displaced harmonic oscillator.

(b) Conclude that the eigenstates have the form

mE
=, - —, 2
V(@,y) = Vi (x " y) (2)
with energies
1 ek m E?
Emk:hwc (n+§) + el (k‘fB—m—wg> +§§ (3)

(c) Plot this spectrum, and interpret dy £, ; as a velocity in the y direction.

(d) Compare this drift velocity with the classical behavior of a charged particle
in crossed E and B fields.

2. Interacting particles on a very small lattice.

Consider the Hamiltonian

N
H=-t Z (ajaiﬂ + ajﬂai) +V Z n;n;.q

i=1

describing particles on a circular chain (a;;y = a;). Here n; = azai. Assume

t,V >0.



(a) Suppose that the operators a are fermionic ({a;,a;} = J;;). Suppose there
are only three (N=3) sites. Write the matrix form of the Hamiltonian acting
on the sector with exactly two fermions. Beware of signs. Find its eigenval-
ues and eigenvectors. Feel free to use some software (e.g. Mathematica or
Sympy). Compare to the case with exactly one fermion.

(b) Consider general N sites and exactly N — 1 particles. Again compare to the
case of a single particle.

(c¢) Consider again N = 3 and exactly two particles, but now suppose that the
particles are bosons. Write down the matrix representation of the Hamilto-
nian in this case. Plot the spectrum as a function of V/t.

3. Brain-warmer: Spin rotations. The goal of this problem is to solve the
Transverse Field Ising Model in the mean field approximation.

(a) Show that
H(0) = —K Y (sin0X; + cos0Z;) = —KU Y _Z;U!
where
U=¢ %Y

This is a global rotation about the y-axis.

(b) Conclude that the groundstate of H(#) is
16) = U ®; [1),.

(¢) Compute m = (0| Z; |0).

(d) Impose the self-consistency condition that m is the expectation value used
to determine the mean field in

Hrpmvg ~ Hypr = _J;gxi_; Z; (% Z <Zj>) = —J; (QXz’ — %Zmzi) .

neighbors j of ¢

Plot 6 as a function of g.

4. Two coupled spins.

This is a very useful warmup for the next problem. Consider a four-state system
consisting of two qbits,

H = span{|e;) ® |e2) = |er1€2) , € =14, 1.}
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(a) For each gbit, define o* = 1 (0" £io¥). (These are raising and lowering
operators for 0% [0*, 0*] = +20*. Check this.)

Show that
G102 =2(0f0; +0,0;) +0oio;.
Here, by for example o7 I mean the operator o” ® 1 which acts as
o’ ® HH\ €2> = ‘\L €2>, o’ ® ]H\l/ 62> = ’T€2>-

(b) Determine the action of the operator & - &5 on the basis states

RN PR ISR
(c¢) Show that the four vectors
1 1
V2 V2

are orthonormal and are eigenvectors of & - 62 with eigenvalues 1 or —3.

0,0) = —= (1) =0, LD =11, [1,0)=—= (M) +NN), [L-D =)

(d) Show that they are also eigenvectors of J? = (&, + &5)* and J* = 67 + 03
and find their eigenvalues.

(e) Consider the operator

1 — —
PLQ = 5 (]1"’ g - 0'2)
acting on the two spins. Show that P » acts by exchanging the states of the
two spins:

Pialer€2) = e2er) -
(f) Show that the operator
]_ — —
Q12 = 1 (1-a, - &)

acts as a projector onto the (singlet) state |0, 0).

5. Spin chains and spin waves.

A one-dimensional (SU(2)-symmetric) ferromagnet can be represented as a chain
of N gbits (spin-1/2 particles) numbered n = 0,..N — 1, N > 1, fixed along
a line with a spacing ¢ between each successive pair. It is convenient to use
periodic boundary conditions, where the Nth spin is identified with the Oth spin:
n+ N = n. Suppose that each spin interacts only with its two nearest neighbors,
so the Hamiltonian can be written as

| N1

1 S S
H=CNJl- QJRZ—OUH .
where J is a coupling constant determining the strength of the interactions.
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(a)

Show that all eigenvalues E of H are non-negative, and that the minimum
energy Fy (the ground state) is obtained in the state where all the spins
point in the same direction. A possible choice for the ground state |®g) is
then

|q)0> = |TZ>TL:0 ® |Tz>n:1 ® ® |TZ>N—1 = H\T T) .

Show that any state obtained from |®) by rotating each of the spins by the
same angle is also a possible ground state.

[Hint: the generator of spin rotations J = >, 0 commutes with the Hamil-
tonian.]

[Cultural remark: the phenomenon of a ground state which does not preserve
a symmetry of the Hamiltonian is called spontaneous symmetry breaking. |

Now we wish to find the low-energy excitations above the ground state |®y).
Show that H can be written

N-1 N-1
H=NJL-JY Puna=J> (I=Pon).
n=0 n=0
where
1 — —
Pn,nJrl = 5 (]1‘{‘ Oy - Un+1) .

Using the result of the problem 4, show that the eigenvectors of H are linear
combinations of vectors in which the number of up spins minus the number
of down spins is fixed. Let |¥,) be the state in which the spin n is down
with all the other spins up. What is the action of H on |¥,,)?

We are going to construct eigenvectors |ks) of H out of linear combinations
of the |¥,,). Let

1 N-1
|l{?5> - eiksné |\Iln>
7F 2

with 5
TS
k’szm, S:O,l,...N—l .
Show that |k,) is an eigenvector of H and determine the energy eigenvalue
E). Show that the energy is proportional to kZ as k, — 0. This state
describes an elementary excitation called a spin wave or magnon with wave-

vector k;.



