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1. Probability current for a charged particle.

Check that probability is still conserved ∂tρ + ~∇ ·~jA = 0 for a charged particle,

with ρ(x, t) = |ψ(x, t)|2 and

~jA ≡
~

2mi

(
ψ?~∇ψ − ψ~∇ψ?

)
− e

mc
ψ?ψ ~A.

Check that ~jA is gauge invariant if the gauge transformation acts on the wave-

function by
~A→ ~A+ ~∇λ, ψ → e±i

eλ
~cψ

for one choice of the sign in the exponent.

(As a check of the sign, you can check that the Schrödinger equation maps to

itself under the transformation.)

2. A charged particle in a uniform magnetic field, quantumly. Consider an

electron constrained to move in the xy plane under the influence of a uniform

magnetic field of magnitude B oriented in the +ẑ direction. The Hamiltonian for

this electron is

H =
1

2m

((
px −

e

c
Ax

)2
+
(
py −

e

c
Ay

)2)
where m and e are the mass and charge of the electron, and c is the speed of

light.

(a) Show that a classical particle in this potential will move in circles at an

angular frequency ω0 = eB
mc

where m is the mass.

(b) Find a suitable expression for ~A so that px is a constant of motion for the

above Hamiltonian.

We can choose a gauge for ~A with ~∇× ~A = Bẑ, uniform, so that x does not

appear:

Ax = −By, Ay = 0.
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(c) With this choice for ~A, show that the eigenfunctions of H can be written in

the form

Ψ(x, y) = e
i
~pxxΦ(y)

where Φ(y) satisfies the Schrödinger equation for a one-dimensional har-

monic oscillator whose equilibrium position is y = y0. Find the effective

spring constant k for this oscillator and the shift of the origin y0 in terms of

px, B,m, e, c.

The Schrödinger equation is

HΨ(x, y) = Eψ(x, y) (1)

and with the choice of gauge from part (a) we have

H =
1

2m

((
px +

e

c
By
)2

+ p2
y

)
.

Plugging in the given ansatz turns px into a number, and (??) becomes:

1

2m

((
px +

e

c
By
)2

+ p2
y

)
e

i
~pxxΦ(y) = Ee

i
~pxxΦ(y)

or (
p2
y

2m
+

1

2m

(
px +

e

c
By
)2)

Φ(y) = EΦ(y)

or (
p2
y

2m
+

1

2m

(
eB

c

)2 (
y +

c

eB
px

)2)
Φ(y) = EΦ(y)

which is the Schrödinger equation for a simple harmonic oscillator (SHO)(
p2
y

2m
+
k

2
(y − y0)2

)
Φ(y) = EΦ(y)

with k = m
(
eB
mc

)2
and y0 = − cpx

eB
.

(d) Find the energy eigenvalues for this system, and indicate degeneracies.

The energy spectrum of the SHO is

En = ~ω
(
n+

1

2

)
where

ω =

√
k

m
=
eB

mc
= ωc,

the cyclotron frequency. Notice that px drops out of the expression for the

energy and so there is a big degeneracy, approximately linear in the system

size.
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(e) For the remainder of the problem, suppose we further restrict the particles

to live in a square of side length L. Suppose we demand periodic boundary

conditions. What are the possible values of px?

Using the boundary condition that the wavefunction should be the same at

the end points (ψ(x = L) = ψ(x = 0)), we have

px =
2π`

L
, ` ∈ Z .

(f) In the estimates below, use the wavefunctions found above, despite the fact

that they will not satisfy the boundary conditions at y = 0, L. Place several

electrons in the strip, and assume they only care about each other because

of the Pauli exclusion principle.

Estimate the maximum number of electrons that fit in the lowest Landau

level. That is: how many electrons can you add before you must put one in

the first excited state of the harmonic oscillator encountered above?

For a state with momentum px in the x-direction, the center of its orbit in

the y direction is at:

y = − px
mωc

.

This must be inside the box! The possible values of y in the lowest Landau

level are then

y` = − ~2π`

Lmωc
.

We want to know how many of these will fit on the sheet of width L. So we

have

N =
L

∆y
, with ∆y =

2π~
Lmωc

.

Therefore the number of electrons that fit in the lowest Landau level is

approximately

N =
L2mωc

2π~
=
eΦ

hc
,

where Φ ≡ BL2 is the amount of magnetic flux through the sample.

3. Landau Levels in an Electric Field. [optional since I added it late]

In lecture I gave several arguments that a quantum Hall droplet has a linearly-

dispersing edge mode. Here is a fully quantum mechanical argument. We’re going

to think about the physics in a neighborhood of the boundary of the sample,

where the confining potential V ' −Ex is slowly varying, and describes an

electric field E = −∂xV .
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The Hamiltonian in the Landau gauge (the one used in the previous problem) is

H =
1

2m

(
p2x + (py + eBx)2

)
− eEx. (2)

(a) Using the same ansatz as above, write the Hamiltonian as that of a displaced

harmonic oscillator.

(b) Conclude that the eigenstates have the form

ψ(x, y) = ψn,k

(
x− mE

eB2
, y

)
(3)

with energies

En,k = ~ωc
(
n+

1

2

)
+ eE

(
k`B −

eE

mω2
c

)
+
m

2

E2

B2
. (4)

(c) Plot this spectrum, and interpret ∂kEn,k as a velocity in the y direction.

Compare this drift velocity with the classical behavior of a charged particle

in crossed E and B fields.

4. Topological terms, particle on a ring. [from Abanov]

The purpose of this problem is to demonstrate that total derivative terms in the

action do affect the physics quantum mechanically.

The euclidean path integral for a particle on a ring with magnetic flux θ =
∫
~B ·d~a

through the ring is given by

Z =

∫
[Dφ]e−

∫ β
0 dτ(m2 φ̇2−i

θ
2π
φ̇) .

Here

φ ≡ φ+ 2π (5)

is a coordinate on the ring. Because of the identification (4), φ need not be a

single-valued function of τ – it can wind around the ring. On the other hand, φ̇

is single-valued and periodic and hence has an ordinary Fourier decomposition.

This means that we can expand the field as

φ(τ) =
2π

β
Qτ +

∑
`∈Z\0

φ`e
i 2π
β
`τ . (6)

(a) Show that the φ̇ term in the action does not affect the classical equations of

motion. In this sense, it is a topological term.
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(b) Using the decomposition (5), write the partition function as a sum over

topological sectors labelled by the winding number Q ∈ Z and calculate it

explicitly.

[Hint: use the Poisson resummation formula∑
n

f(n) =
∑
l

f̂(2πl)

where f̂(p) =
∫
dxe−ipxf(x) is the fourier transform of f .]

Applied to this problem, the Poisson formula says∑
n∈Z

e−
1
2
tn2+izn =

√
2π

t

∑
`∈Z

e−
1
2t
(z−2π`)2 . ]

Using the given mode expansion and
∫ β
0
dte

2πi(l−l′)τ
β = βδl,l′ the action is

S[φ] = iθQ+
m(2πQ)2

2β
+
∑
`6=0

(2π`)2m

2β
φ`φ−`

where φ` = φ?−`. Thus

Z =
∑
Q∈Z

e−iθQ+
m(2πQ)2

2β

∏
` 6=0

∫
d2φ`e

(2π`)2m
2β

φ`φ
?
` (7)

=
∑
Q∈Z

e−iθQ+
m(2πQ)2

2β

∏
` 6=0

(
β

2π`2m

)
(8)

∝
∑
n∈Z

e
−β 1

2m(2π)2
(θ−2πn)2

=
∑
n∈Z

e−β
1

2m(n− θ
2π )

2

(9)

where in the last step we used the above Poisson summation formula with

z = θ and t = m(2π)2

β
.

(c) Use the result from the previous part to determine the energy spectrum as

a function of θ.

After the Poisson resummation, this is manifestly the partition function of

a system with energies En = 1
2m

(n− θ
2π

)2.

(d) Derive the canonical momentum and Hamiltonian from the action above

and verify the spectrum.

Note that the action given above is the Euclidean action. The real time

action (from which we should derive the hamiltonian) is

S =

∫
dt

(
1

2
mφ̇2 + φ̇

θ

2π

)
.
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This gives p = ∂L
∂φ̇

= mφ̇+ θ
2π

, and hence

H =

(
p− θ

2π

)2
2m

.

Now, since φ ≡ φ+ 2π, its canonical momentum is quantized, p ∈ Z, so

En =
1

2m

(
n− θ

2π

)2

as above. We find the following spectrum for various θ (I am plotting the

energies of the states with wavenumbers n ∈ [−3, 2]):

(In the axis label, I is the moment of inertia of the rotor.) Notice that when

θ = π, the groundstate becomes doubly degenerate.

5. Aharonov-Casher effect [Bonus problem]

[Commins] Consider a neutral particle with spin-1
2

(such as a neutron), described

by the Lagrangian

L =
1

2
mv2 + µ~σ ·

(
~v × ~E

)
where ~σ is the spin operator and ~v ≡ ~̇x.

(a) Find the canonical momentum and the Hamiltonian.

(b) Consider an experiment where a cylindrically-symmetric electric field ~E is

produced by a line charge with charge-per-unit-length λ extended in the

ž direction. Two beams of the particles described by L are sent in paths

around the line charge and allowed to interfere. Show that the phase shift

between the two waves arising from the line charge is

δ± = ±4πλµ

~c
for spin up/down in the ž basis.
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