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1. Commutation relations of creation operators for general one-particle

states. Show that

a(ϕ1)a
†(ϕ2)− ζa†(ϕ2)a(ϕ1) = 〈ϕ2|ϕ1〉 ,

where these objects are as defined in the lecture notes.

[a(ϕ1), a
†(ϕ2)]ζ =

∑
k1,k2

[ak1 , ak2 ]ζϕ1(k1)ϕ2(k2)
? =

∑
k

ϕ1(k)ϕ2(k)? = 〈ϕ2|ϕ1〉 .

2. Fermion creation and annihilation algebra.

Consider a single fermion mode c. We showed in lecture that the associated

Hilbert space is two-dimensional, and is spanned by

|0〉 , with c |0〉 = 0 and |1〉 = c† |0〉 .

(a) Check that the two states are orthogonal.

〈1|0〉 = 〈0| c |0〉 = 0.

(b) Show that acting on this Hilbert space it is indeed true that

c†c + cc† = 1,

as long as 〈1|1〉 = 〈0|0〉.
A resolution of the identity is the sum of projectors |0〉〈0| + |1〉〈1| = 1.

c†c gives zero when acting on |0〉, and gives back |1〉 when acting on |1〉.
Therefore it acts as the projector

c†c = |1〉〈1|.
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Similarly, cc† gives zero when acting on |1〉, and gives back |0〉 when acting

on |0〉. Therefore it acts as

cc† = |0〉〈0|.

Therefore

c†c + cc† = |0〉〈0|+ |1〉〈1| = 1.

Actually, we haven’t specified the overall normalization of c so far, that is,

c′ = zc for z ∈ C would also satisfy these demands. This would give

c†c + cc† = |z|2|0〉〈0|+ |z|2|1〉〈1| = |z|21.

But now consider

〈1|1〉 = 〈0| cc† |0〉 = 〈0|
(
|z|21 − c†c

)
|0〉 = |z|2 〈0|0〉 .

So we must have |z| = 1. The overall phase of c is ambiguous.

(c) Check that

[N, c] = −c, [N, c†] = c†

where N = c†c is the number operator. Notice that this is the same algebra

satisfied by bosonic modes.

There is a useful fermionic version of the Liebniz rule for commutators

([AB,C] = A[B,C] + [A,C]B), namely

{AB,C} = A{B,C} − {A,C}B.

Check: ABC + CAB = ABC + ACB − ACB − CAB.

Applying this here, we get

[N, c] = [c†c, c] = c†{c, c} − {c†, c}c = −c

while

[N, c†] = c†{c, c†} − {c†, c†}c = +c†.

3. Majorana modes. Given a collection of fermionic operators cA, satisfying the

fermionic creation-annihilation algebra

{cA, c†B} = δAB1 and {cA, cB} = 0,

we can decompose them into their real and imaginary parts

γA1 ≡
1

2

(
cA + c†A

)
, γA2 ≡

1

2i

(
cA − c†A

)
.

These are called Majorana modes.
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(a) Show that the Majorana modes satisfy the algebra

{γa, γb} = 2Υδab1,

where here a is a multi-index running over both A and α = 1, 2. In partic-

ular, notice that γ2a = Υ1. Find the constant Υ.

(b) Write the number operator c†AcA in terms of the Majorana modes. Show

that it is hermitian.

For each complex mode, c†c = iγ1γ2. This is hermitian because (iγ1γ2)
† =

−iγ2γ1 = +iγ1γ2.

4. Multiple photons on paths of an interferometer.

|1,0>

|0,1>

H

One way to make a qubit is out of the two states of a photon

moving on the upper and lower paths of an interferometer.

On such a qbit, a half-silvered mirror H acts as a unitary

gate, as indicated at left. (The dot below the mirror specifies

a sign convention, to be explained below.)

On the other hand, photons are bosons. This means that if

a† |0, 0〉 ≡ |1, 0〉 is a state with one photon on the upper path

of the interferometer, then(
a†
)n

√
n!
|0, 0〉 ≡ |n, 0〉 is a state with n photons on the upper path.

Similarly, define(
b†
)n

√
n!
|0, 0〉 ≡ |0, n〉 to be a state with n photons on the lower path

of the interferometer. (Note that [a,b] = 0 = [a,b†] – they are independent

modes.)

Now suppose we direct these two paths through a half-silvered mirror, as in the

figure. A half-silvered mirror acts as a Hadamard gate

H ≡ 1√
2

(σx + σz) =
1√
2

(
1 1

1 −1

)
on the qubit made from the one-photon states. (The dot tells us where to put

the negative entry.)

Some warm-up questions:
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(a) What is the state |0, 0〉? How does H act on |0, 0〉?
All answers below part d.

(b) How does H act on |2, 0〉 and |0, 2〉?

(c) How does H act on the operators a† and b† (in order that the above relations

are realized)?

Here’s a more interesting question:

(d) A coherent state is a good cartoon of the state of light in a laser beam.

What is the state which results upon sending a coherent state of photons

|α, β) ≡ NαNβ eαa
†+βb† |0, 0〉

through a half-silvered mirror? (Nα ≡ e−|α|
2/2 is a normalization constant.)

[Hint: it may be useful to insert 1 = H2 in between the eαa
†+βb† and the

|0, 0〉.]

The hilbert space under discussion here is that of two harmonic oscillators, and

above we have defined |n,m〉 to be the state where the respective number oper-

ators a†a and b†b have eigenvalues n,m respectively. From the definition of the

photon-path-as-qbit, we have:

H |1, 0〉 =
1√
2

(|1, 0〉+ |0, 1〉) =
1√
2

(
a† + b†

)
|0, 0〉 ,

H |0, 1〉 =
1√
2

(|1, 0〉 − |0, 1〉) =
1√
2

(
a† − b†

)
|0, 0〉 .

Now |0, 0〉 is a state with n = 0 photons on the upper path and n = 0 photons

on the lower path. No photons at all. So we have H |0, 0〉 = |0, 0〉 since a mirror

does nothing to no photons! (It just sits there.) This is a Zen koan: what does

a mirror do to no photons. Actually there could be a phase; it would not affect

any of the answers below.

This means further that H acts on the creation operators by

Ha†H =
1√
2

(
a† + b†

)
,Hb†H =

1√
2

(
a† − b†

)
,

in order to be consistent with the action on the one-photon states. So we can

conclude that

H |2, 0〉 = H

(
a†
)2

√
2!
|0, 0〉 =

(
Ha†H

)2 1√
2!
|0, 0〉 =

1

2

1√
2

(
a† + b†

)2 |0, 0〉 =
1

2

(
|2, 0〉+

√
2 |1, 1〉+ |0, 2〉

)
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H |0, 2〉 = H

(
b†
)2

√
2!
|0, 0〉 =

(
Hb†H

)2 1√
2!
|0, 0〉 =

1

2

1√
2

(
a† − b†

)2 |0, 0〉 =
1

2

(
|2, 0〉 −

√
2 |1, 1〉+ |0, 2〉

)
.

And finally,

Heαa
†+βb† |0, 0〉 = eαHa†H+βHb†H |0, 0〉 = e

1√
2
(α(a†+b†)+β(a†−b†)) |0, 0〉 = e

α+β√
2
a†+α−β√

2
b† |0, 0〉

It acts on the coherent state labels just like it does on the quantum amplitudes.

These coherent state labels are the data that label the lightwave in e.g. a laser.

The half-silvered mirror is a special case of the more general notion called a

beam-splitter. Suppose instead that the action on the mode operators were1

U†(θ)aU(θ) = a cos θ + ib sin θ

U†(θ)bU(θ) = b cos θ + ia sin θ . (1)

(e) Show that U(θ) can be written as an evolution operator, in the form:

U(θ) = eiθG, G = a†b + b†a. (2)

Write

U †aU = e−iθGaeiθG = e−iθadGa (3)

where adG is defined to be the adjoint action of G, that is,

adGO ≡ [G,O].

The expression (3) follows by Taylor expansion. So we just need to figure

out adG(a), ad2
G(a) etc... But this is very simple:

adG(a) = [G, a] = [a†b, a] = −b.

This means

ad2
G(a) = [G, [G, a]] = [G,−b] = [b†a,−b] = +a.

And therefore the exponential series e−iθadGa is just

e−iθadGa = a+
(−iθ)2

2!
a+

(−iθ)4

4!
a+· · ·−iθ (−b)+

(−iθ)3

3!
(−b)+· · · = cos θa+i sin θb.

Similarly,

e−iθadGb = cos θb + i sin θa.

1The operation H in the previous parts is not U(θ) for some θ; it is similar. I apologize for any

confusion this caused. To get H we would have to write U′(θ) = eiθG
′
, with G′ ≡ ia†b − ib†a, and

set θ = π/2.
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(f) Show that when θ = π/4 this beam-splitter takes the state |1, 1〉 with one

boson in each mode to the state

1√
2

(|2, 0〉+ |0, 2〉) .

The beam-splitter takes the state to

U† |1, 1〉 = U†a†UU†b†UU† |0〉 (4)

=
(
cos θa† − i sin θb†

) (
cos θb† − i sin θa†

)
|0〉 (5)

θ=π
4=

(
1√
2

)2 (
a†b†(1− 1)− i

(
a†
)2 − i

(
b†
)2) |0〉 = −i 1√

2
(|2, 0〉+ |0, 2〉) .

(6)

This is sometimes called the Hong-Ou-Mandel effect.

(g) What if the operators a and b were instead fermionic operators? That is,

suppose we send fermionic particles through the same beam-splitter, defined

by (1). What is

UF (θ = π/4)† |1, 1〉

in this case? Hint: the form of the generator is different

UF (θ) = eiθGF , GF = a†b− ab†.

(Notice that GF is still hermitian.)

[I got this last part of the problem from Le Bellac.]

The hermitian conjugate is

G†F = (a†b− ab†)† = b†a− ba† = −ab† + a†b = GF .

In this case, using the identity [AB,C] = A{B,C} − {A,C}B

[GF , a] = −{a†, a}b = −b, [GF ,b] = −a{b†,b} = −a.

So the series is again

e−iθadGF a = a + iθb +
(−iθ)2

2!
a− (−iθ)3

3!
b + · · · = cos θa + i sin θb.

Notice that even though a and b are fermionic operators (e.g., a2 = 0), the

exponential e−iθGF is still an infinite series, because it contains terms which

alternate between a and a†.
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So actually the whole calculation is the same up to the last step:

U†F |1, 1〉 = U†a†UU†b†UU† |0〉 (7)

=
(
cos θa† − i sin θb†

) (
cos θb† − i sin θa†

)
|0〉 (8)

θ=π
4=

(
1√
2

)2 (
a†b† − b†a† − i

(
a†
)2 − i

(
b†
)2) |0〉 = |1, 1〉 (9)

since {a†,b†} = 0. In the case of Fermions, the state is taken to itself by

this beamsplitter.

5. Slightly more interesting bandstructure.

Consider a particle hopping on a chain of sites where each site involves two

orbitals, one on the left and one on the right.

So the single-particle hamiltonian is

H =
∑
n

t (|n,R〉〈n+ 1, L|+ |n+ 1, L〉〈n,R|) + (w|n, L〉〈n,R|+ h.c.), (10)

where w, t are two quantities with dimensions of energy.

(a) Write down the many-body hamiltonian in terms of annihilation cn,α and

creation c†n,α operators.

H =
∑
n

(
tc†R,ncL,n+1 + h.c.+ wc†L,ncR,n + h.c.

)
. (11)

(b) Suppose there are N sites and N fermions and suppose w > t (for simplicity

take w real). Is it a metal or an insulator? Find the energy difference

between the groundstate and the first excited state in the thermodynamic

(N →∞) limit.

Since it is translation-invariant and an eigenvalue problem is linear, the

single-particle hamiltonian can be diagonalized by going to momentum space.

Acting on |k, α〉, it acts as the matrix

h(k) =

(
0 te−ik + w

w? + teik 0

)
= (t cos k + w1)X + (t sin k + w2)Y (12)
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where w = w1+iw2 andX ≡ σx, Y ≡ σy. That is, using 1 =
∫ 2π/a

0

∑
α=L,Rd̄k|k, α〉〈k, α|,

H = H

∫ 2π/a

0

d̄k
∑
α

|k, α〉〈k, α| =
∫ 2π/a

0

d̄k|k, α〉〈k, β|h(k)αβ. (13)

Taking w real, the spectrum of the matrix h(k) is

ε±(k) = ±
√
t2 + |w|2 + 2w cos k, (14)

which looks like this for |w| 6= t.

1 2 3 4 5 6
k

-1.5

-1.0

-0.5

0.5

1.0

1.5

ε±(k)

The system is an insulator, since we fill the bottom band, and then the

energy cost to excite an electron in the upper band is

min
k

(ε+(k)− ε−(k)) = 2|t− w|. (15)

(c) What happens when w = t?

In this case the problem is really just a chain of sites with translation sym-

metry under a single step. The bandstructure looks like this

1 2 3 4 5 6
k

-2

-1

1

2

ε±(k)

which is the single band ε(k) = 2 cos 2k folded on itself into the smaller

Brillouin zone. In this case, the system is a metal, since we must fill up half

the band.
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6. Normalization. Check that if Ψ(r1 · · · rn) is a normalized and (anti)symmetric

wavefunction on n particles, then

|Ψ〉 ≡
∑
r1···rn

Ψ(r1 · · · rn) |r1 · · · rn〉 (16)

is normalized, 〈Ψ|Ψ〉 = 1.

(Interpret the sum over r as an integral if you like.)

The overlap is

〈Ψ|Ψ〉 =
∑
r1···rn

∑
r′1···r′n

Ψ(r1 · · · rn)? 〈r1 · · · rn|r1 · · · r′n〉︸ ︷︷ ︸
= 1
n!

∑
π s

πδr1rπ(1)′ ···δrnr′π(n)

Ψ(r′1 · · · r′n) (17)

=
∑
r

|Ψ(r1 · · · rn)|2 = 1. (18)

where the last equation is the normalization condition for Ψ. In the first step,

we used only the defintion (16) (twice).
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