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1. Commutation relations of creation operators for general one-particle
states. Show that

a(p1)al (o) — ¢al(p2)aler) = (p2le1)

where these objects are as defined in the lecture notes.

a(p1),al(@2)le = > [ay,, ay, lepr (k) gaka)* Z‘Pl = (p2lp1) -

k1,k2

2. Fermion creation and annihilation algebra.

Consider a single fermion mode c. We showed in lecture that the associated
Hilbert space is two-dimensional, and is spanned by

0y, withc|0) =0 and [1)=c'|0).

(a) Check that the two states are orthogonal.

(1]0) = (0] ¢ |0) = 0.

(b) Show that acting on this Hilbert space it is indeed true that
clc+ecl =1,

as long as (1]1) = (0|0).

A resolution of the identity is the sum of projectors [0)0] + [1X1| =
cc gives zero when acting on |0), and gives back |1) when acting on [1).
Therefore it acts as the projector

cle = [1)(1].



Similarly, cc' gives zero when acting on |1), and gives back |0) when acting
on |0). Therefore it acts as
ccl = |0)0].

Therefore
cle +cc’ = |0X0| + [1X1] = 1L

Actually, we haven’t specified the overall normalization of c so far, that is,
¢’ = zc for z € C would also satisfy these demands. This would give

cfe + cct = |2?|0)0] 4 [2[*|1)(1] = [z[*1L.
But now consider
(1]1) = (0] cct |0) = (0] (|z[*1 — cfe) [0) = |2]* (0]0) .

So we must have |z| = 1. The overall phase of ¢ is ambiguous.

(c) Check that
[N7C] = —C, [N,CT] = CT

where N = cfc is the number operator. Notice that this is the same algebra
satisfied by bosonic modes.

There is a useful fermionic version of the Liebniz rule for commutators

([AB,C] = A[B,C]| + [A, C]B), namely
{AB,C} = A{B,C} — {A,C}B.
Check: ABC' + CAB = ABC + ACB — ACB — CAB.
Applying this here, we get
[N, c] = [clc,c] = c'{c,c} — {cl,clc = —c

while
[N, c'] =cl{c,c'} — {c',cl}c = +c.

3. Majorana modes. Given a collection of fermionic operators c4, satisfying the
fermionic creation-annihilation algebra

{CA,CTB} =45l and {ca,cp} =0,

we can decompose them into their real and imaginary parts

_1 i _ 1 f
7A1:§(CA+CA>7 7A2:E<CA_CA>-

These are called Majorana modes.



(a) Show that the Majorana modes satisfy the algebra

{7a7 f)/b} = 2T5ablla

where here @ is a multi-index running over both A and o = 1,2. In partic-
ular, notice that 4> = T1. Find the constant Y.

(b) Write the number operator cyc4 in terms of the Majorana modes. Show

that it is hermitian.
For each complex mode, c¢f¢ = iy;7,. This is hermitian because (iy;72)" =
—iyem = +ine.

4. Multiple photons on paths of an interferometer.

One way to make a qubit is out of the two states of a photon

11,0> H

moving on the upper and lower paths of an interferometer.
---------- On such a gbit, a half-silvered mirror H acts as a unitary

0.1> gate, as indicated at left. (The dot below the mirror specifies

a sign convention, to be explained below.)

On the other hand, photons are bosons. This means that if
a']0,0) = |1,0) is a state with one photon on the upper path

of the interferometer, then

(ah)"
e

Similarly, define

bf)"
Q |0,0) = |0,n) to be a state with n photons on the lower path

e

of the interferometer. (Note that [a,b] = 0 = [a,b!] — they are independent

|0,0) = |n,0) is a state with n photons on the upper path.

modes.)

Now suppose we direct these two paths through a half-silvered mirror, as in the
figure. A half-silvered mirror acts as a Hadamard gate

o= (2)

on the qubit made from the one-photon states. (The dot tells us where to put
the negative entry.)

Some warm-up questions:



(a) What is the state |0,0)? How does H act on |0,0)?
All answers below part d.
(b) How does H act on |2,0) and |0,2)?

(c) How does H act on the operators a” and b' (in order that the above relations
are realized)?

Here’s a more interesting question:

(d) A coherent state is a good cartoon of the state of light in a laser beam.
What is the state which results upon sending a coherent state of photons

|Oé,ﬁ) — Na/\/ﬁ eaaH—BbT |O, O>

through a half-silvered mirror? (N, = e1**/2 is a normalization constant.)

[Hint: it may be useful to insert 1 = H? in between the e®® +/*" and the
0,0)]

The hilbert space under discussion here is that of two harmonic oscillators, and
above we have defined |n,m) to be the state where the respective number oper-
ators afa and b'b have eigenvalues n, m respectively. From the definition of the
photon-path-as-gbit, we have:

H|1,0) = % (]1,0) +10,1)) = % (a" +b") [0,0),
H|0,1) = % (]1,0) —10,1)) = % (a" —b")10,0).

Now |0,0) is a state with n = 0 photons on the upper path and n = 0 photons
on the lower path. No photons at all. So we have H0,0) = |0,0) since a mirror
does nothing to no photons! (It just sits there.) This is a Zen koan: what does
a mirror do to no photons. Actually there could be a phase; it would not affect
any of the answers below.

This means further that H acts on the creation operators by

1 1
HaH= — (a' +b’) Hb'H= — (a’ — bl
alH= (ol + b)), 75 (@ b

in order to be consistent with the action on the one-photon states. So we can
conclude that

LU Sl 10,0 =5
H|2,0>—H\/§ |0,0>_(HaTH) >_2\/§(af—|—bjr) |O,O>—2

21|OO
Vol
4

<|2,0>+\/§|1,1>+|0,2>



H|0,2) = n®) 0,0) = (Hb'H)” —bf)*0,0) =

NG )=

/

(\2,o> —V21,1) + 0,2

NO| —

y
0=

And finally,
Feoal+6b! 10,0) = poHalHiSHb'H 10,0) = ovs(a(al+bl)+p(al—bl)) 10,0) = e atlaly 2 bt 0,0)

It acts on the coherent state labels just like it does on the quantum amplitudes.
These coherent state labels are the data that label the lightwave in e.g. a laser.

The half-silvered mirror is a special case of the more general notion called a
beam-splitter. Suppose instead that the action on the mode operators were'

U'(#)aU(f) = acosf + ibsin
U'(A)bU(#) = bcosh + iasinb . (1)

(e) Show that U(#) can be written as an evolution operator, in the form:
U(9) =, G =a'b+bla (2)
Write
Utall = ¢—i0G0i0G — o—ifada (3)
where adg is defined to be the adjoint action of G, that is,
adcO =[G, O].

The expression (3) follows by Taylor expansion. So we just need to figure
out adg(a),ad%(a) etc... But this is very simple:

adg(a) = [G,a] = [a'b,a] = —b.
This means
ad(a) =[G, [G,a]] = [G,—b] = [b'a, —b] = +a.
And therefore the exponential series e %2 a is just

(=02, (~i0)"

: (—i0)? N
91 Al a+---—if (=b)+-——(=b)+:-- = cosfa+isindb.

—ifadg ., __
a—a
e + 3]

Similarly,
e~ 102day — o5 Ob + isinfa.

!The operation H in the previous parts is not U(f) for some 6; it is similar. I apologize for any
confusion this caused. To get H we would have to write U’(f) = ¢, with G’ = ia'b — ibfa, and
set 0 = /2.



(f) Show that when 6§ = 7/4 this beam-splitter takes the state |1, 1) with one
boson in each mode to the state

1
7 (12,0) +10,2)).

The beam-splitter takes the state to
U'[1,1) = UlalUUBUUT |0) (4)
= (cosfal —isin@b’) (cos b’ —isinba') |0) (5)

(6)

This is sometimes called the Hong-Ou-Mandel effect.

(g) What if the operators a and b were instead fermionic operators? That is,
suppose we send fermionic particles through the same beam-splitter, defined

by (1). What is
Up(0 = m/4)1 1,1)

in this case? Hint: the form of the generator is different
Ur(0) =", Gp=a'b—ab'.

(Notice that G is still hermitian.)
[I got this last part of the problem from Le Bellac.]

The hermitian conjugate is
Gl = (a'b — ab")f = bfa — ba’ = —ab’ + a'b = Gp.
In this case, using the identity [AB,C] = A{B,C} — {A,C}B
[Gr,a] = —{a',alb = —b, [Gr,b] = —a{bl b} = —a.
So the series is again
(—i6)? (—if)3

e i02dor g — g + i0b + TR b + .- = cosfa +isinfb.

Notice that even though a and b are fermionic operators (e.g., a?> = 0), the
exponential e C* is still an infinite series, because it contains terms which
alternate between a and af.

—i <%)2 <aTbT(1 — 1) —i(al)’ —i (bT)2> 0) = —i% (12,0) +10,2)).



So actually the whole calculation is the same up to the last step:

Ul |1, 1) = Ulafuu™iuu’ o) (7)
= (cosfa’ — isin@b') (cosgb' — isinha') |0) (8)

0=

i (%)2 (aTbT —bfal —i (zﬂ)2 —1 (bT)2> 0) =11,1)  (9)

since {a’, b’} = 0. In the case of Fermions, the state is taken to itself by
this beamsplitter.

5. Slightly more interesting bandstructure.

Consider a particle hopping on a chain of sites where each site involves two

orbitals, one on the left and one on the right.

L R t w

EDE I EOCTTEOEO

So the single-particle hamiltonian is

H=> t(n,R}n+1,L| + |n+1,L}n, R|) + (wn, L)n, R| + h.c.),  (10)

where w, t are two quantities with dimensions of energy.

(a)

Write down the many-body hamiltonian in terms of annihilation ¢, , and
creation CIW operators.

H= Z <tc2’ncL,n+1 + h.c. + wancR’n + h.c.) . (11)

n

Suppose there are N sites and N fermions and suppose w > t (for simplicity
take w real). Is it a metal or an insulator? Find the energy difference
between the groundstate and the first excited state in the thermodynamic
(N — 00) limit.

Since it is translation-invariant and an eigenvalue problem is linear, the
single-particle hamiltonian can be diagonalized by going to momentum space.
Acting on |k, «), it acts as the matrix

0 te*+w :
h(k) = (w* + et 0 ) = (tcosk +w)X + (tsink +wp)Y  (12)



where w = w;+iwy and X = 0”,Y = ¢¥. That is, using 1 = fOQW/a > aer.rdklk, )k, al,

27 /a 27 /a
H:H/0 k> |k, o)k, of :/0 dk|k, a )Xk, Blh(k)ags- (13)

Taking w real, the spectrum of the matrix h(k) is

e+ (k) = £/t2 + |w|2 + 2w cos k, (14)

which looks like this for |w| # ¢.

The system is an insulator, since we fill the bottom band, and then the
energy cost to excite an electron in the upper band is

mkin (er(k) —e_(k)) = 2|t —w]. (15)

(c) What happens when w = t?7

In this case the problem is really just a chain of sites with translation sym-
metry under a single step. The bandstructure looks like this

2}

which is the single band e(k) = 2cos2k folded on itself into the smaller
Brillouin zone. In this case, the system is a metal, since we must fill up half
the band.



6. Normalization. Check that if U(r;---r,) is a normalized and (anti)symmetric
wavefunction on n particles, then

|U) = Z U(ry---ry)lri---rn) (16)

T1Tn
is normalized, (¥|V) = 1.
(Interpret the sum over r as an integral if you like.)

The overlap is

(U|W) = Z Z U (r <r1---rn]r1-~-r;>J W(ry---rl) (17)

-~

_1
! Zw Sﬂérlr

T1Tn 7‘1 7"

m(1)’ ...§an,

m(n)

= Z W (ry =1 (18)

where the last equation is the normalization condition for W. In the first step,
we used only the defintion (16) (twice).



