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1. Brain-warmer: fluctuations of the EM field. Let us focus on a single mode,

and a single polarization, of the EM field, at a point in space:

E(t) ≡ E(~r = 0, t) = i

√
~ω

2ε0V

(
ae−iωt − a†eiωt

)
where V is the volume of the cavity in which this mode lives. Define the variance

of an operator in a state ψ as

∆ψE ≡
√
〈ψ|E2(t)|ψ〉 − (〈ψ|E(t)|ψ〉)2.

(a) Find the variance of E in the vacuum, ∆0E.

Let’s write N ≡
√

~ω
2ε0V

. Then 〈0|E(t) |0〉 = 0, 〈0|E(t)2 |0〉 = N 2, so

(∆E)0 = N .

(b) Find the variance of E in the state of exactly n photons (all in this mode).

〈n|E(t) |n〉 = 0, 〈n|E(t)2 |n〉 = N 2(2n+ 1), so (∆E)n = N (
√

2n+ 1).

(c) A more realistic state, for both a single-mode laser, and for a classical source

of light, is a coherent state. (In a classical source of light, different modes

have random phases relative to each other.) In this state, what is the ex-

pected number of photons? What is its variance?

〈z| N̂ |z〉 = 〈z| a†a |z〉 = |z|2.

〈z| N̂2 |z〉 = 〈z| a†aa†a |z〉 = 〈z| a†
(
a†a+ 1

)
a |z〉 = |z|4 + |z|2.

(∆N)z = |z|.

Find the variance of E in a coherent state |z〉, where a |z〉 = z |z〉.

〈z|E(t) |z〉 = iN e−iωt 〈z| a |z〉+ h.c. = iN e−iωtz + h.c.,

〈z|E(t)2 |z〉 = (〈z|E(t) |z〉)2 +N 2,

so (∆E)n = N , same as in vacuum.
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2. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation

operators

[aks, a
†
k′s] = δkk′δss′ . (1)

implies (using the mode expansion for A) that

[Ai(~r),Ej(~r
′)] = −i~

∫
d̄3k ei

~k·(~r−~r′)
(
δij − k̂ik̂j

)
/ε0

(and also [Ai(~r),Aj(~r
′)] = 0 and [Ei(~r),Ej(~r

′)] = 0).

Conclude that it’s not possible to simultaneously measure Ex(~r) and By(~r).

(b) Using the result of the previous part, check that the wave equation for Ai(x)

follows from the Heisenberg equations of motion

−∂t~E =
i

~
[H, ~E].

3. A charged particle, classically. [I am postponing this problem until we discuss

path integrals.] This problem is an exercise in calculus of variations, as well as

an important ingredient in our discussion of particles in electromagnetic fields.

Consider the following action functional for a particle in three dimensions:

S[x] =

∫
dt
(m

2
~̇x2 − eΦ(~x) +

e

c
~̇x · ~A(x)

)
.

(a) Show that the extremization of this functional gives the equation of motion:

δS[x]

δxi(t)
= −mẍi(t)− e∂xiΦ(x(t)) +

e

c
ẋjFij(x(t))

where Fij ≡ ∂xiAj−∂xjAi. Show that this is the same as the usual Coulomb-

Lorentz force law

~F = e

(
~E +

~v

c
× ~B

)
with Bi ≡ 1

2
εijkFjk.

(b) Show that the canonical momenta are

Πi ≡
∂L

∂ẋi
= mẋi +

e

c
Ai(x).

Here S =
∫
dtL. (I call them Π rather than p to emphasize the difference

from the ‘mechanical momentum’ mẋ.) Show that the resulting Hamiltonian

is

H ≡
∑
i

ẋiΠi − L =
1

2m

(
Πi −

e

c
Ai(x(t))

)2
+ eΦ.
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4. Phonons in salt. Consider a model of a more complex solid, where there are

two kinds of atoms, of masses m and M , connected by springs of strength κ1 and

κ2, as in the figure. (This is a cartoon of an ionic solid, like NaCl.)

The unit cell, i.e. the pattern that is repeated, contains two atoms. Let qn be

the deviation from equilibrium position of the nth light atom and Qn be the

deviation from equilibrium position of the nth heavy atom. Assume periodic

boundary conditions. You may wish to rescale the variables q,Q to simplify

the dependence on the parameters. (If you prefer, study the special case where

m = M , but κ1 6= κ2.)

By making the Fourier ansatz(
qn
Qn

)
=

1√
N

∑
k

e−ikna
(
qk
Qk

)
find the spectrum of normal modes. Introduce creation and annihilation operators

and reduce the problem to a collection of decoupled oscillators.

In addition to the acoustic phonons, which have dispersion ωk ∼ vs|k| near k = 0,

and represent the quantum avatar of the sound mode, you should find a branch of

optical phonons which have ωk
k→0→ a finite number. Interpret the optical phonon

mode in terms of the motion of the atoms.

The Lagrangian is

L =
1

2

∑
n

(
mq̇2n +MQ̇2

n − κ1 (qn −Qn)2 − κ2 (Qn − qn+1)
2
)
.

Rescaling q →
√
mq,Q→

√
MQ it becomes

L =
1

2

∑
n

(
q̇2n + Q̇2

n − κ1
(
qn/
√
m−Qn/

√
M
)2
− κ2

(
Qn/
√
M − qn+1/

√
m
)2)

(2)

=
1

2

∑
n

(
q̇2n + Q̇2

n −
κ1 + κ2
m

q2n −
κ1 + κ2
M

Q2
n −

2√
mM

(κ1qnQn + κ2Qnqn+1)

)
.

(3)
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We don’t miss any physics by setting m = M , and we avoid some annoying

algebra. When m = M , the Hamiltonian has the form

H =
∑
n

(
p2
n

2
+

P2
n

2
+

1

2
g1 (qn −Qn)2 +

1

2
g2 (Qn − qn−1)2

)
.

Here g1/2 =
κ1/2
m

. When g1 = g2, we return to the periodic chain with a single

atom per unit cell.

Using the stated Fourier ansatz, we have

H =
1

2

∑
k

(
qkq−k +QkQ−k + (qk, Qk)

(
g1 + g2 h1(k)

h?1(k) g1 + g2

)(
q−k
Q−k

))
where h1(k) ≡ −2g1 − 2g2e

ika. To see this, consider for example the cross-term∑
n

Qnqn+1 =
∑
kk′

1

N

∑
k

eiknaeik
′(n+1)aQkqk′ =

∑
k

e−ikQkq−k.

To diagonalize the matrix here, we let(
qk
Qk

)
= U(k)

(
q+k
q−k

)
and hence (

q−k
Q−k

)
= U(−k)

(
q+−k
q−−k

)
where U(k) is the unitary matrix that diagonalizes the matrix

M(k) =

(
g1 + g2 h1
h?1 g1 + g2

)
for given k, with eigenvalues

ε±(k) = g1 + g2 ±
√
g21 + g22 + 2g1g2 cos ka.

We make a similar redefinition of(
pk
Pk

)
= U(k)

(
p+k
p−k

)
.

A further definition, as usual,

q±k =

√
~

2ωk

(
a±,k + a†±,−k

)
p±k = −i

√
~ωk

2

(
a±,k − a†±,−k

)
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decouples modes with ±k, so that

H =
∑
k,α=±

εα(k)a†α,kaα,k.

The spectrum looks like this, for g1/g2 = 1.5:

The optical band describes the mode where the heavy and light atoms move

relative to each other within the unit cell. No symmetry guarantees that this is

ever massless, and indeed it is not. When g1 = g2, the unit cell is halved, and

the Brillouin zone is twice as big. The optical mode at k = 0 here is then just

the mode at k = π
a 1
2

where a 1
2

is the new lattice spacing, as you can see from this

plot:

That is, the single band on the larger BZ gets folded on itself when described in
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terms of the enlarged unit cell, like this:

1 2 3 4 5 6
k

-1.0

-0.5

0.5

1.0

ε

5. How big is the Hilbert space? [Bonus problem] Show that the Hilbert space

of N bosons in D orbitals (i.e. D possible single-particle states) has dimension

DB(N,D) =
(N +D − 1)!

N !(D − 1)!
.

Place the N particles in a line. Think of the choice of which of the D modes to

put them in as placing D − 1 dividers between the D groups of bosons. Since

there can be zero bosons in a given mode, there can be more than one divider

between two bosons. So we can think about this as putting N + D − 1 spots in

a line, and choosing D − 1 of them to be dividers. There are N+D−1
D−1 ways to do

this.

6. Casimir force in real E&M. [Bonus problem]

We’ve shown that the vacuum energy of the electromagnetic field between two

perfectly-conducting parallel plates separated by distance d is

f(d) = LxLy

′∑
n

∫
d̄2kωn(k) (4)

with
∑′

n ≡
1
2

∑
n=0 +

∑
n≥1 and ωn(k) = c

√(
πn
d

)2
+ k2x + k2y. To account for the

failure of the plates to impose boundary conditions on the high-frequency modes,

we replace this with

f(d) = LxLy

′∑
n

∫
d̄2kωn(k)χ

(
ωn(k)

ωc

)
(5)
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where ωc is a cutoff energy, and χ(x) is a function like this:

1
x

1

χ

with χ(0) = 1.

I got this problem from Le Bellac.

(a) Convince yourself that

f(d)

LxLy
=

′∑
n

∫ ∞
ωn

ω2dωχ

(
ω

ωc

)
(6)

with ωn ≡ πcn
d

.

(b) Show that the pressure on the plate, P = −∂dE0

LxLy
= − (f ′(d)−f ′(L−d))

LxLy
, is

P
L�d
= −~cπ2

2d4

(
′∑
n

n3χ(ωn/ωc)−
∫ ∞
0

dnn3χ(ωn/ωc)

)
. (7)

(c) Use the Euler-Maclaurin theorem

′∑
n

g(n)−
∫ ∞
0

dng(n) = − 1

12
g′(0) +

1

6!
g′′′(0) + · · · (8)

to find the Casimir force.

(d) Note that we did not have to choose a particular function χ(x).
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