
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2022
Assignment 2 – Solutions

Due 11:59pm Monday, April 11, 2022

Thanks in advance for following the guidelines on HW01. Please ask me by email

if you have any trouble.

1. Emergence of the Dirac equation. Consider a chain of free fermions with

H = −t
∑
n

c†ncn+1 + h.c.

Show that the low-energy excitations at a generic value of the filling are described

the the massless Dirac lagrangian in 1+1 dimensions. Find an explicit choice of

1 + 1-d gamma matrices which matches the answer from the lattice model. Show

that the right-movers are right-handed γ5 ≡ γ0γ1 = 1 and the left-movers are

left-handed.

This system has a conserved charge N ≡
∑

n c
†
ncn counting the number of

fermions, which we get to pick. The easiest way to do this is to add a chem-

ical potential H → H − µN and choose µ to get the desired number of particles

on average. (This is the same as fixing the number of particles in the thermody-

namic limit.) In that case we have

H = −t
∑
n

c†ncn+1 + h.c.− µ
∑
n

c†ncn =

∮
BZ

d̄kc†kckεk

with εk = −2t cos ka−µ, and the integral is over the Brillouin zone. a = 1 is the

lattice spacing. By ‘generic filling’ I mean choose the number of particles per site

to be between 0 and 1. The former and latter correspond to choosing µ = ±2t

at the bottom or top of the band, where the dispersion is quadratic, rather than

linear.

We can focus on the physics at the two Fermi points k = ±kF (where kF solves

εkF = 0) by plugging in

ψ(x) '
∫
R

d̄ke(kF+k)xψR +

∫
R

d̄ke(−kF+k)xψL

where R is a small-enough region in momentum space that the two domains don’t

overlap. This gives

H =

∫
R

d̄k
(
vFkψ

†
RψR − vFkψ

†
LψL

)
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where vF ≡ ∂kεk|k=kF . Translating into an action, setting vF = 1, and pretending

R goes on forever (this is how we can fool ourselves that the chiral current is

conserved), this is

S =

∫
dxdt

(
ψ†R (∂t − ∂x)ψR + ψ†L (∂t + ∂x)ψL

)
=

∫
d2x

(
Ψ̄γµ∂µΨ

)
with

Ψ =

(
ψL
ψR

)
and

γ0 = σ1, γ1 = iσ2, γ5 ≡ γ0γ1 = −σ3.

This gives

γ5Ψ = −σ3

(
ψL
ψR

)
=

(
−ψL
ψR

)
so indeed the left-moving particle has left-handed chirality.

2. Polyacetylene returns.

On HW01, you may have wondered what is the connection between the field the-

ory we were studying (a scalar coupled to fermions in D = 2) and polyacetylene.

I’d like to explain that connection a bit.

Consider an extension of the model above to include also phonon modes, i.e. de-

grees of freedom encoding the positions of the ions in the solid. (Again we ignore

the spins of the electrons for simplicity.)

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.+
∑
n

K(un − un+1)
2 ≡ HF +HE.

Here un is the deviation of the nth ion from its equilibrium position (in the

+x direction), so the second term represents an elastic energy. Assume periodic

boundary conditions and an even number of sites.

(a) Consider a configuration

un = φ(−1)n (1)

where the ions move closer in pairs. Compute the electronic spectrum.

(Hint: this enlarges the unit cell. Define c2n ≡ an, c2n+1 ≡ bn, and solve in

Fourier space, an ≡
∮

d̄ke2iknak etc.) You should find that when φ 6= 0 there

is a gap in the electron spectrum (unlike φ = 0). Expand the spectrum near

the minimum gap and include the effects of the field φ in the continuum

theory.

2



When doubling the unit cell, we halve the Brillouin zone. So even when

φ = 0, the spectrum gets folded on itself, like this:

1 2 3 4 5 6
k
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-0.5

0.5

1.0

ε

This means that at half-filling, with φ = 0, it looks like there is a Dirac

point at k = π/2.

Now, including φ, it allows the two branches of the Dirac point to mix with

each other and produces a gap:

ε(k) = ±
√

cos2 k + φ2 sin2 k

which looks like this:
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k
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ϵk

ϕ=0

ϕ=1/2

Near the minimum gap at k = π/2, we can expand to find

ε(k =
π

2
+ δk) = ±

√
cos2 k(1− φ2) + φ2 = ±

√
δk2(1− φ2) + φ2. (2)

Comparing to the spectrum of a Dirac fermion with action

S[ψ, φ] =

∫
d2x

(
ψ̄i/∂ψ − φψ̄ψ

)
which has

H = γ0(iγ1∂x − φ) =

(
φ k

k −φ

)
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and therefore

εk = ±
√
k2 + φ2

which agrees with (2) at small k (which is really the deviation from k = π/2)

and small φ.

(b) Peierls’ instability. Compute the groundstate energy of the electrons HF

in the configuration (1), at half-filling (i.e. the number of electrons is half

the number of available states). Check that you recover the previous answer

when φ = 0. Interpret the answer when φ = 1.

Compute HE in this configuration, and plot the sum of the two as a function

of φ. Choosing the parameters so the minimum is in the small-φ region, find

the minimum.

At half-filling, in the groundstate the lower band is filled. The energy is

EF (φ) = −
∮
dk

√
cos2 k + φ2 sin2 k = − 1

π
EllipticE(1− φ2).

For 8K2 = .2 the total energy looks like this:

0.2 0.4 0.6 0.8 1.0
ϕ
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-0.300

EF+EE

There is a minimum at φ2 6= 0, i.e. two minima at φ = ±φ0. Increasing φ

lowers the total energy because it lowers the energy of the filled states.

For small φ,

EllipticE(1− φ2) = 1 +
1

4
φ2

(
log

φ2

16
− 1

)
+ ... (3)

This functional form can be understood from the continuum.

(c) You should find that the energy is independent of the sign of φ. This means

that there are two groundstates. We can consider a domain wall between a

region of + and a region of −. Show that this domain wall carries a fermion

mode whose energy lies in the bandgap and has fermion number ±1
2
.
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The basic idea is that φ must go through zero in between. We showed on

HW01 that this is the case using the field theory we derived in the earlier

parts of the problem. In particular, the two states (zero-mode occupied and

zero-mode unoccupied) must have a fermion number which differ by 1, but

they are related to each other by particle-hole symmetry, so they must have

fermion number ±1
2

(as we found on HW01).

(d) [bonus] Verify the result of the previous part by diagonalizing the relevant

tight-binding matrix.

Here is the spectrum of a chain (of length 40) with φ = +0.5 everywhere:
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And here is the result when φ switches to −0.5 in the middle:
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The wavefunctions of the states in the middle look like
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n
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(

n)

eigenfunctions of the midgap states

(e) [bonus] Time-reversal played an important role here. If we allow complex

hopping amplitudes, we can make a domain wall without midgap modes.

Explain this from field theory. Bonus: explain this from the lattice hamil-

tonian.

If the mass is allowed to be complex, then we can interpolate between −m
and +m without going through m = 0.

3. Anomaly cancellation in the Standard Model. If we try to gauge a chiral

symmetry (such as hypercharge in the Standard Model (SM)), it is important

that it is actually a symmetry, i.e. is not anomalous. In D = 3 + 1, a possible

anomaly is associated with a choice of three currents, out of which to make a

triangle diagram. We’ll call a “G1G2G3 anomaly” the diagram with insertions of

currents for G1,G2 and G3. Generalizing a little, we showed that the divergence

of the current for G1 is

∂µj
Aµ
1 =

1

32π2
εµνρσF 2B

µν F
3C
ρσ

∑
f

(−1)f trR(f){TA1 , TB2 }TC3 .

The sum is over each Weyl fermion, R(f) is its representation under the combined

group G1×G2×G3, and TA1 are a basis of generators of the Lie algebra of G1 etc.

in the representation of the field f . By (−1)f I mean ± for left- and right-handed

fermions respectively.

We consider the possibilities in turn.

Schwartz §30.4 does most of this pretty explicitly.
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(a) Convince yourself that the divergence of the U(1)Y hypercharge current gets

a contribution of the form

∂µJ
µ
Y =

(∑
left

Y 3
l −

∑
right

Y 3
r

)
g′2

32π2
εµνρσBµνBρσ

from the triangle with three insertions of the current itself (here B is the

hypercharge gauge field strength). The sum on the RHS is over all left-

and right-handed Weyl spinors weighted by the cube of their hypercharge.

Check that this sum evaluates to zero in the SM.

(b) Show that any anomaly of the form SU(N)U(1)2 or SU(N)G1G2 is zero.

(c) (Easy) Convince yourself that there is no SU(3)3 anomaly for QCD.

The charges of the fields under SU(3) are symmetric under L↔ R – i.e. QCD

is non-chiral – so there is a cancellation between the contributions of left-

and right-handed fields.

(d) Check that there is never an SU(2)3 anomaly. (Hint: the generators satisfy

{τa, τ b} = 2δab.)

(e) Show that the SU(3)2U(1)Y anomaly demands that 2YQ−Yu−Yd = 0. Check

that this is true in the SM.

(f) Show that a necessary condition for hypercharge to not have an anomaly

with the Electroweak gauge bosons on the RHS is YL + 3YQ = 0, where YL
and YQ are the hypercharges of the left-handed leptons and quarks. Check

that this works out in the SM.

It gets contributions only from left-handed fields (those charged under SU(2)EW ):

tr{τa, τ b}Y = δab
∑

left Yl = YL + 3YQ because the quarks carry 3 colors.

(g) There is another kind of anomaly called a gravitational anomaly. This is

a violation of current conservation in response to coupling to curved space.

An example is of the form

∂µj
µ
Y = atrR∧R

where R is a two-form related to the curvature of spacetime (analogous

to the field strength F ). The coefficient a is proportional to
∑

left trYl −∑
right trYr. Check that this too vanishes for hypercharge in the Standard

Model.

These conditions, plus the assumption that the right-handed neutrino is neutral,

actually determine all the hypercharge assignments.
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(h) [bonus] Show that the previous statement is true.

There are various points of view from which the anomalies determine the

charge assignments.

One is: Given the SU(3)× SU(2)L representations, the actual hypercharges

are the only way to satisfy all the anomaly constraints that is chiral. From

this point of view, the fact that the hypercharges are all integer multiples

of 1/6 (so that U(1)Y is compact) is an outcome of anomaly cancellation.

Another is: Assuming that the hypercharges are quantized (in some units),

the choice in the SM is the only chiral choice, even without using the grav-

itational chiral anomaly constraint. This is a consequence of Fermat’s Last

Theorem.

(i) [bonus] Show that U(1)B and U(1)L are anomalous, but have all opposite

anomalies, so that U(1)B−L is non-anomalous. Here all quarks (antiquarks)

have charge 1/3 (−1/3) under U(1)B, and all leptons (antileptons) have

charge 1 (−1) under U(1)L.

8


