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1. Brain-warmer. Find the coefficient Ns in the coherent state representation of

the spin operator for general spin s

Sa = Ns
∫
dn |ň〉 〈ň| ňa.

2. Topological charge. How does the theta term appear in the CP1 representation

of the NLSM on S2? Show that

εabcn
adnb ∧ dnc = αdA

for some constant α, and find the number α.

There are two strategies for answer this question. One is to argue by symme-

tries that the two quantities must be proportional to each other, and then fix

the coefficient α by matching the quantization conditions:
∫
dA ∈ 2πZ, while∫

1
8π
εabcn

adnb ∧ dnc ∈ Z, from which we conclude that α = 4.

Alternatively, we can use brute force, and plug in na = z†σaz , and hope to relate

the LHS to the RHS using

A =
i

2

(
z†αdzα − dz†αzα

)
.

Here we are undoing the H-S transformation by which the gauge field A appeared

in the CPN path integral to identify A = A. Hence dA = idz†α ∧ dzα.

Here is an argument which avoids a lot of horrible algebra. The following identity

is true [my thanks to Aneesh Manohar for some group theory help here]:

εabc (σa)βα
(
σb
)δ
γ

(σc)λρ = 2i
(
δβρ δ

δ
αδ

λ
γ − δβγ δδρδλα

)
. (1)

Actually, it can be generalized from SU(2) to SU(N) as

fabc (T a)βα
(
T b
)δ
γ

(T c)λρ =
i

4

(
δβρ δ

δ
αδ

λ
γ − δβγ δδρδλα

)
where T a are generators of the fundamental and fabc are structure constants

(recall that for SU(2), the generators are T a = 1
2
σa). Actually, noting that the
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two indices on the Pauli matrices are from different representations (2 and 2̄

respectively, more generally N and N̄) is useful for constraining the RHS; this

is the motivation to distinguish upper and lower indices: the BHS is a SU(N)-

invariant map from N ⊗ N ⊗ N to N̄ ⊗ N̄ ⊗ N̄ . But the only invariant tensor

that maps N to N̄ is the Kronecker delta δβα, so the answer must be made by

appropriately adding products of 3 deltas.

Contracting (1) with the zs to make the skyrmion number density, we find

q ≡ εabcz†σazd(z†σbz) ∧ d(z†σcz) = 2i
(
z†αd

(
z†λzα

)
∧ d
(
z†βzλ

)
zβ − z†βd

(
z†βzδ

)
∧ d
(
z†δzα

)
z†α
)

(2)

where the two terms on the RHS are actually the same. So, using z† · z = 1, we

have

q = 4i
((
dz†λ + z†αdz

αz†λ
)
∧
(
dzλ + dz†βzβzλ

))
(3)

= 4i
(
dz†λ ∧ dzλ + (z† · dz) ∧ (z† · dz) + (z† · dz) ∧ (dz† · dz) + (dz† · z) ∧ (z · dz†)

)
.

(4)

The second term is zero by (any one-form)2 = 0, and the third and fourth terms

are equal and opposite. QED.

Another, perhaps less elegant, but effective method is to write the BHS in terms

of the angles θ, ϕ, in terms of which

A =
1

2
cos θdϕ

is seen to be the monopole field, whose field strength is the area of the unit

sphere. We saw earlier (when introducing the WZW term) that 1
8π
εndndn was

the area form.

Another nice trick (used by Ethan Villarama) is to replace the ε on the LHS of (2)

with εabc = 1
2i

trσaσbσc and then use the identity
∑

a (σa)Aα (σa)Bβ = 2δBα δ
A
β −δAα δBβ .

3. Large-N saddle points in the O(N) model. [This problem is optional, since

by now we’ve done a number of similar problems.] [I got this problem from

Marty Halpern.]

Consider the partition function for an N -vector of scalar fields in D dimensions

Z =

∫
[Dφ]eiS[φ], S[~φ] =

∫
dDx

(
1

2
∂φa∂φa −NV

(
~φ2

N

))
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with a general 2-derivative O(N)-invariant action. We’re going to do this path

integral by saddle point, which is a good idea at large N . As usual, the constant

prefactors in Z drop out of physical ratios so you should ignore them.

(a) Change variables to theO(N) singlet field ζ ≡ ~φ2/N by inserting the identity

1 =

∫
[Dζ]δ

[
ζ −

~φ2

N

]
into the path integral representation for Z. Represent the functional delta

function as

δ

[
ζ −

~φ2

N

]
=

∫
[Dσ]ei

∫
dDxσ(~φ2−ζN).

Do the integral over φa to obtain

Z =

∫
[DζDσ]eiNSeff[ζ,σ].

Determine Seff[ζ, σ].

(b) The integrals over ζ, σ have a well-peaked saddle point at large N . Obtain

the coupled large-N saddle point equations for the saddle point configura-

tions ζ0, σ0, and in particular the equation

ζ0(x) =

(
i

−2− 2V ′(ζ0)

)
xx

(the subscript denotes a matrix element of the position-space operator).

(c) [more optional] Show that

δ

δσ(x)
tr log (−2 + σ) =

(
1

−2 + σ

)
xx

by Taylor expansion.

(d) At large N , we know that

ζ0(x)
N→∞

=

〈
~φ2(x)

N

〉
= ζ0, constant.

Use this to show that the saddle point equation is the gap equation

ζ0 =

∫
d̄DkE

1

k2
E + 2V ′(ζ0)

which determines ζ0, the expectation value of the order parameter
〈
~φ2/N

〉
.
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(e) What class of diagrams did you just sum?

Bubble chains.

(f) Compare and contrast the saddle point condition for D = 2 and D > 2. For

D > 2 you should find a critical value of the coupling.

Compare the behavior near the critical point with the large-n limit of the

Wilson-Fisher fixed point in the ε expansion.

(g) Evaluate the two point function 〈φa(x)φa(0)〉 at the saddle point with ζ0 6= 0.

4. The Hohenberg-Mermin-Wagner-Coleman Fact.

(a) Consider a massless scalar X in 2d, with (Euclidean) action

S[X] =
1

4πg

∫
d2σ∂aX∂

aX. (5)

Show that the euclidean propagator

G2(z, z′) ≡ 〈X(z)X(z′)〉

satisfies

∇2G2(z, z′) = bδ2(z − z′) (6)

where z = σE1 + iσE2 , for some constant b; find b. Show that the solution is

given by

G2(z, z′) = a ln |z − z′|,

for some constant a (for example by Fourier transform); find a.

(6) is the Schwinger-Dyson equation

0 =

∫
[DX]

δ

δX(z)

(
X(z′)e−S[X]

)
.

Translation invariance says

G2(σ, σ′) = G2(σ − σ′) =

∫
d̄Dk eik(σ−σ′)G̃(k)

and (6) gives

−k2G̃(k) = − 1

2π
.

This means the massless Green’s function is

GD(σ) =

∫
d̄Dk

1

2πk2
eikσ =

{
cD
|σ|D−2 , D 6= 2

− log |σ|, D = 2
.
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[I wasn’t careful about the factors of −1 and π in doing the Fourier trans-

form, but the final coefficients can be checked by taking box of both sides

and comparing to (6).] Note that the bad IR (large σ) behavior of the

Greens function gets even worse in d < 2.

(b) The long-distance behavior of G2 has important implications for the sponta-

neous breaking of continuous symmetries in D = 2 – it can’t happen. Argue

that if a system with a continuous (say U(1), for definiteness) symmetry

were to have an unsymmetric groundstate, the excitations about that state

would include a field X with the action (5). Conclude from the form of G2

that there is in fact no long-range order.

5. Correlators of composite operators made of free bosons in 1+1 dimen-

sions.

Consider a collection of n two-dimensional free bosons Xµ governed by the (Eu-

clidean) action

S =
1

4πg

∫
d2σ∂aXµ∂

aXµ.

Until further notice, we will assume that X takes values on the real line.

[If X ∈ R, the coupling g can be absorbed into the definition of X if we prefer,

but it is useful to leave this coupling constant arbitrary for several reasons. First,

different physicists use different conventions for the normalization and as you will

see this affects the appearance of the final answer. But more importantly, in part

5d, g will become meaningful.]

(a) Compute the Euclidean generating functional

Z[J ] =
〈
e
∫

(d2σ)EJ
µXµ
〉
≡ Z−1

0

∫
[dX]e−Se

∫
(d2σ)EJ

µXµ

(where Z−1
0 ≡ Z[J = 0] but please don’t worry too much about the normal-

ization of the path integral).

[Hint: use the Green function from the previous problem, and Wick’s theo-

rem. Or use our general formula for Gaussian integrals with sources.]

[Warning: In the problem at hand, even the euclidean kinetic operator has a

kernel, namely the zero-momentum mode. You will need to do this integral

separately.]

[Cultural remark 1: this field theory describes the propagation of featureless

strings in n-dimensional flat space Rn – think of Xµ(σ) as the parametrizing

the position in Rn to which the point σ is mapped.
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Cultural remark 2: this is an example of a conformal field theory. In par-

ticular recall that massless scalars in D = 2 have engineering dimension

zero.]

In euclidean space,

S = − 1

4πg

∫
(d2σ)E (−i) (−∂aXµ∂

aXµ) .

So the Boltzmann factor in the euclidean space path integral is

eiS = e−SE , SE =
1

4πg

∫
(d2σ)E∂aX · ∂aX .

The generating functional is

ZE[J ] =
〈
e
∫

(d2σ)EJµX
µ
〉

= Z−1
0

∫
[DX]e

∫
(d2σ)E( 1

4πg
∂X·∂X)+J ·X

= e
1
2

∫
(d2σ1)E

∫
(d2σ2)EJ

µ(σ1)( 2πg

∂2 )
σ1,σ2

Jµ(σ2)

The Green function from the previous problem (with the extra factor of g)

is

G(σ1, σ2) ≡
(

2πg

∂2

)
σ1,σ2

= −g log |σ1 − σ2| = −g log |z1 − z2|.

This is the inverse of ∂2 on the complement of its kernel. Ignoring the

zeromode of X we find

Z[J ]
?
= e

1
2
g
∫
d2z1

∫
d2z2Jµ(z1,z̄1) log |z1−z2|Jµ(z2,z̄2) .

The zero-momentum mode of X

xµ ≡
∫
d2σ Xµ(σ)

does not appear in the action, but we still have to do the integral over it.

The correct answer is then:

Z[J ] =

∫
dxµe

1
2
g
∫
d2z1

∫
d2z2Jµ(z1,z̄1) log |z1−z2|Jµ(z2,z̄2) .

(b) Show that〈
N∏
i=1

: e−i
√

2α′ki·X(σ(i)) :

〉
= δn

(∑
i

kµi

)
N∏

i,j=1

|zi − zj|−α
′gki·kj (7)
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where σ(i) label points in 2d Euclidean space, zi ≡ σ
(i)
1 + iσ

(i)
2 , α′ is a

parameter with dimensions of [X2/g] (called the ‘Regge slope’), and kµi are

a set of arbitrary n-vectors in the target space. The : ... : indicate the

following prescription for defining composite operators. The prescription is

simply to leave out Wick contractions of objects within a pair of : ... :. Give

a symmetry explanation of the delta function in k.

[Cultural remark: this calculation is the central ingredient in the Veneziano

amplitude for scattering of bosonic strings at tree level.]

Simply choose the source from the previous problem to be

Jµ = −i
√

2α′
N∑
i=1

kµi δ
2(σ − σi) .

The zeromode xµ only appears in the J ·X term. The nonzero-mode integrals

give

e
1
2
g
∫
d2z1

∫
d2z2Jµ(z1,z̄1) log |z1−z2|Jµ(z2,z̄2) = eα

′g
∑N
i6=j=1 ki·kj log |zi−zj | =

N∏
i 6=j

|zi−zj|α
′gki·kj .

The zeromode integrals are∫ n∏
µ=1

dxµeik
µ
i xµ = δn(

∑
i

kµi ).

Why did this happen? The field theory has a symmetry under the shifts

Xµ 7→ Xµ + constµ, a translation invariance in the target space. The re-

sulting conserved charge is a target-space momentum, k units of which is

injected into the correlator by the operator eikX . The fact that the charge

is conserved (and not eaten by the vacuum) means that there must be a law

saying that amplitudes predicting non-conservation of the charge should

vanish – the amplitudes must be proportional to δn(
∑

i k
µ
i ).

What is the interpretation of this charge? The model we are describing is

analogous to the 0 + 1-dimensional model with action

S =

∫
dt

(
1

2
mẊ iẊ i

)
– the worldline description of a free non-relativistic particle in n dimensions.

Instead of describing the propagation of a zero-dimensional object through

spacetime, the model in this problem describes the propagation of a one-

dimensional object, a string. Instead of a worldline, its image is a worldsheet.
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The analog of the (NR) mass m is the coefficient of the kinetic term, which

we called 1
4πα′

above – this is the string tension. In the 0 + 1d particle

model, the symmetry X i → X i + εi is just translation invariance, and the

conserved quantity is j
(i)
0 = m∂tX

i, the momentum. In the 1 + 1d string

model, the Noether method gives δS = 1
2πα′

∫
∂αφj

α so the conserved current

is jα = 1
2πα′

∂αφ, and the conserved charge is

Q(i) =

∫
space

j
(i)
t =

1

2πα′

∫
dσ1∂σ0X i = ∂t

(
1

2πα′

∫
dσ1X i

)
.

The quantity
∫
dσ1X i is just the location of the center-of-mass of the string.

The mass of the string is 1
2πα′

times the length. So the conserved quantity

Q(i) is just the center-of-mass momentum.

(c) Conclude that the composite operator Oa ≡: eiaX : has scaling dimension

∆a = ga2

2
, in the sense that〈

Oa(z)O†b(0)
〉

= δ(a− b) 1

|z|2∆a
.

Notice that the correlation functions of these operators do not describe the

propagation of particles in any sense. The operator O produces some power-

law excitation of the CFT soup.

Just set N = 2 in the previous result.

(d) Suppose we have one field (n = 1) X which takes values on the circle, that

is, we identify

X ' X + 2πR .

What values of a label single-valued operators : eiaX : ? How should we

modify (7)?

Just like in QM on a circle, the momentum is quantized:

eia(X+2πR) !
= eiaX =⇒ a =

n

R
, n ∈ Z.

The only change in (7) is that the Dirac delta becomes a Kronecker delta.

6. T-duality: not just for the free theory. [bonus problem]

This is Polchinski problem 8.3.

Here is a path integral derivation of T-duality which is more general than just a

single free boson.

Consider the sigma model whose action is

S(∂X, Y ) = S(Y )+
1

4πα′

∫
d2z
(
δabGXX(Y )∂aX∂bX +

(
δabGµX + εabBµX

)
∂aX∂bY

µ
)
.
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Here Y µ are a bunch of coordinates on which the background fields G,B may

depend in arbitrarily complicated ways. X only appears through its derivatives.

(a) Show that by replacing ∂µX by ∂µX + Aµ we arrive at a theory with an

invariance under local shifts of X → X + α(x).

(b) Add a 2d θ term iφFµν , with F = dA and the angle φ a dynamical field.

Show that the path integral over φ undoes the previous step and returns us

to the original model. Hint: use the gauge ∂µA
µ = 0.

(c) Instead choose the gauge X = 0 and do the integral over Aµ. Identify φ

as the T-dual variable. To get the period right, you need to think about

non-perturbative parts of the gauge field path integral.

7. T-duality as EM duality of 0-forms.

In this problem we will contextualize the form of the T-duality map

φ(z, z̄) = φL(z) + φR(z̄) 7→ φ̃(z, z̄) ≡ φL(z)− φR(z̄)

in terms of more general duality maps on form fields.

Consider a massless p-form field a in D (euclidean) dimensions, more specifically,

on RD. We will treat it classically. Suppose its eom are

d ? da = 0 .

1

This equation says ?da is closed, which on RD which has no nontrivial topology,

this means it is exact: we can define ?da = dã.

For abelian gauge theory in D = 4 show that this map a → ã takes (E,B) →
(Ẽ, B̃) = (B,−E).

Show that the map between φ and φ̃ is of this form, if we regard φ as a 0-form

potential.

For help see this paper by Chris Beasley.

1By this notation, I mean the following. The exterior derivative of a p-form is a p+ 1 form:

(da)µ1···µp+1
=
(
∂µ1aµ2···µp+1 ± perms

) 1

(p+ 1)!

The Hodge dual of a k-form is a d− k form:

(?ωk))µ1···µd−k
≡ εµ1···µd

(ωk)
µd−k+1···µd .
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8. SU(2) current algebra from free scalar. [bonus problem]

Consider again a compact free boson φ ' φ+ 2π in D = 1 + 1 with action

S[φ] =
R2

8π

∫
dxdt∂µφ∂

µφ. (8)

[Notice that if we redefine φ̃ ≡ Rφ then we absorb the coupling R from the action

S[φ̃] = 1
8π

∫
dxdt∂µφ̃∂

µφ̃ but now φ̃ ' φ̃+ 2πR has a different period – hence the

name ‘radius’.2]

So: there is a special radius (naturally called the SU(2) radius) where new opera-

tors of dimension (1, 0) and (0, 1) appear, and which are charged under the boson

number current ∂±φ. Their dimensions tell us that they are (chiral) currents, and

their charges indicate that they combine with the obvious currents ∂±φ to form

the (Kac-Moody-Bardakci-Halpern) algebra SU(2)L × SU(2)R.

Here you will verify that the model (8) does in fact host an SU(2)L×SU(2)R al-

gebra involving winding modes – configurations of φ where the field winds around

its target space circle as we go around the spatial circle. We’ll focus on the holo-

morphic (R) part, φ(z) ≡ φR(z); the antiholomorphic part will be identical, with

bars on everything.

Define

J±(z) ≡: e±iφ(z) :, J3 ≡ i∂φ(z).

The dots indicate a normal ordering prescription for defining the composite op-

erator: no wick contractions between operators within a set of dots.

(a) Show that J3, J± are single-valued under φ→ φ+ 2π.

(b) Compute the scaling dimensions of J3, J±. Recall that the scaling dimension

∆ of a holomorphic operator in 2d CFT can be extracted from its two-point

correlation function: 〈
O†(z)O(0)

〉
∼ 1

z2∆
.

For free bosons, all correlation functions of composite operators may be computed

using Wick’s theorem and

〈φ(z)φ(0)〉 = − 1

R2
log z.

Find the value of R where the vertex operators J± have dimension 1.

2Relative to the notation I used in lecture, I have set πT ≡ R2. A note for the string theorists: I

am using units where α′ = 2.
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(c) Defining J± ≡ 1√
2
(J1 ± iJ2) show that the operator product algebra of these

currents is

Ja(z)J b(0) ∼ kδab

z2
+ iεabc

J c(0)

z
+ ...

with k = 1. This is the level-k = 1 SU(2)Kac-Moody-Bardakci-Halpern algebra.

(d) [Bonus tedium] Defining a mode expansion for a dimension 1 operator,

Ja(z) =
∑
n∈Z

Janz
−n−1

show that

[Jam, J
b
n] = iεabcJ cm+n +mkδabδm+n

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that the

m = 0 modes satisfy the ordinary SU(2) lie algebra.

For hints (and some applications in string theory) see problem 5 here.

The solution to this problem is here, but the tex file was stolen from me in 2008.

Just ignore the string theory jargon.
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