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1. Spin and statistics of a dyon.

(a) Consider a magnetic monopole of strength g, so that ~B = r̂g
2r2

, and
∮
~B ·d ~A =

2πg. Now consider a particle of charge q in this field. Show that the usual

angular momentum m~r × ~v is not conserved (the EM field carries angular

momentum). Show that instead the quantity

~L = m~r × ~v − qgr̂

2

is conserved. Suppose there is a bound state of two such particles with the

minimal charges satisfying Dirac quantization. Interpret the extra term as

a contribution to the intrinsic spin of the dyon.

Here you can just use Newton’s equation. More interesting is the interpre-

tation of the extra term – where did it come from? It is the contribution

from the angular momentum in the EM fields, ~LEM =
∫
~r ×

(
~E × ~B

)
.

(b) To confirm that the dyon has fermionic statistics, consider the wavefunc-

tion of two such dyons, ψ(x1, x2). The exchange of the two dyons can be

accomplished by a π-rotation about ~x1, followed by a translation by ~x1−~x2.

By analyzing the Aharonov-Bohm phases, show that this process produces

a phase Φ

ψ(x2, x1) = eiΦψ(x1, x2)

with Φ = π in the case where q, g saturate the Dirac quantization condition.

The charges must satisfy Dirac quantization 4πgq ∈ 2πZ, so the minimal

charges have gq = 1
2
. Moving one electron all the way around the other

monopole produces the phase

q

∫
C

~A · d~̀ Stokes
=

∫
hemisphere

~B · d~a = 2πgq.

A π rotation only acquires half this phase. But now we mustn’t forget that

each monopole makes a field that the other electron moves through. So

Φ = 2πgq = π.
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2. Jordan-Wigner.

Solve the following spin chains using the mapping to Majorana fermions.

In all these problems we will use the following Jordan-Wigner transformation:

χ1(j) = Zj
∏
k>j

Xk, χ2(j) = Yj

∏
k>j

Xk .

Xj = iχ1(j)χ2(j), ZjZj+1 = −iχ1(j)χ2(j + 1) (1)

So the majoranas satisfy {χα(j), χβ(l)} = 2δαβδjl, α, β = 1, 2.

For comparison: With these conventions the transverse-field ising model hamil-

tonian is

HTFIM = −J
∑
j

(gxXj + gzZjZj+1) = −iJ
∑
j

(gxχ1(j)χ2(j)− gzχ1(j)χ2(j + 1))

so that the heisenberg eom are

∂tχ2(j) = −J (gxχ1(j)− gzχ1(j − 1)) , ∂tχ1(j) = J (gxχ2(j)− gzχ2(j + 1)) ,

and from this we see that in the continuum χ± ≡ 1
2
√
a

(χ1 ± χ2) are chiral majo-

rana fermions:

(∂0 ∓ ∂x)χ± = mχ∓,

with m ∝ gz − gx.

(a) XY-model.

H = −J
∑
j

(ZjZj+1 + YjYj+1)

I find

H = −J
∑
j

(iχ2(j)χ1(j + 1)− iχ1(j)χ2(j + 1))

H = −J
∑
j

i (χ2(j)χ1(j + 1) + χ2(j + 1)χ1(j))

In fourier space,

χα(j) =
1√
N
e−ikajχα(k)

we get

H = +iJ
∑
k

χ1(k)χ2(−k)2 cos ka = +
∑
k

(2J cos ka)c†kck
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where ck ≡ 1
2

(χ1(k) + iχ2(−k)). (Beware my factors of two here.)

This model has a U(1) symmetry which rotates Z into Y, i.e. acting by

U = eiαX. How does it act on the fermions?

The U(1) acts by

c→ eiθc.

(b) Solve an interacting fermion system.

Hint = −J
∑
j

(XjXj+1 + YjYj+1) (2)

This model is in fact related by a basis rotation (U =
∏

j e
iπ
4
Yj) to the one

in part 2a.

But if you directly use the mapping we introduced in class in these variables,

you’ll find quartic terms in the fermions.

The basis transformation above therefore solves this interacting fermion sys-

tem.

Hint = −J
∑
j

(iχ1(j)χ2(j)iχ1(j + 1)χ2(j + 1) + iχ2(j)χ1(j + 1))

In terms of the complex fermions, iχ1(j)χ2(j) = 1 − 2c†jcj = 1 − 2nj this

first term is a near-neighbor density-density interaction, ∝ njnj+1.

How does the U(1) symmetry of (2) act on these fermion variables?

It mixes particles and holes.

(c) A spin chain with a non-onsite Ising symmetry.

Consider the Hamiltonian

H = −J
∑
j

(Xj + λZj−1XjZj+1)

i. [Slightly more optional] Show that when λ = −1 this model is invariant

under the action of

S1 ≡
∏
j

Xj

∏
j

ei
π
4
ZjZj+1 . (3)

This symmetry is “not-onsite” in that its action on the spin at site j

depends on the state of the neighboring sites.
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ii. Solve this model by Jordan-Wigner. Show that the spectrum is gapless

and that each momentum state is doubly-degenerate.

The chain falls apart into two decoupled pieces, since the ZXZ term

only couples odd sites to odd sites and even sites to even sites. Hence

the doubling of the spectrum.

iii. [Challenge problem] The previous part shows that this model produces

two massless majorana fermions of each chirality. Find the action of the

Z2 symmetry (3) on these fermions.

iv. [Challenge problem] Consider the effect of adding the ferromagnetic

term
∑

j ZjZj+1 on this system. Is it invariant under the symmetry?

Majorana fermion solution of edge Hamiltonian with non-onsite

Z2 symmetry.

In this problem we consider adding an extra term:

H2 = −J
∑
j

(gxXj + gzZjZj+1 + g̃xZj−1XjZj+1) .

When g̃x = −gx, this hamiltonian has the symmetry

S1 =

(∏
j

Xj

)(∏
l

eiQl,l+1

)

where eiQl,l+1 =
√
ZlZl+1 = e

iπ
4

(1−ZlZl+1).

I claim that

Zj−1XjZj+1 = −iχ1(j − 1)χ2(j + 1) .

So this hamiltonian is

H2 = −iJ
∑
j

(gxχ1(j)χ2(j)− (gzχ1(j)− g̃xχ1(j − 1))χ2(j + 1)) .

Near k = 0, this has the same continuum eom as the usual TFIM model

with the replacements: gz → gz + g̃x and double the velocity. So the critical

point is now at 0 = gz− g̃x− gx. But focusing e.g. on gz = 0, the dispersion

is that of the TFIM with k → 2k. So for example at g̃x = 1,

εk = 2J
√

2− 2 cos 2ka

has zeros at both k = 0 and at k = π.
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Let’s understand the symmetry action on the fermions. The trivial symme-

try action is

S0 =
∏
j

Xj = iN
∏
j

χ1(j)χ2(j).

This acts as

S0χαS
†
0 = −χα,

which is indeed a symmetry of HTFIM.

Using (1), the additional factors in S1 can be written as:

eiQl,l+1 = e
iπ
4

(1+iχ1(j)χ2(j+1)) = e
iπ
4 ei

π
4
iχ1(j)χ2(j+1)

= e
iπ
4

(
cos

π

4
+ i sin

π

4
iχ1(j)χ2(j + 1)

)
= e

iπ
4

1− χ1(j)χ2(j + 1)√
2

.

Notice that this object is indeed unitary:

1− ab√
2

(
1− ab√

2

)†
=

1− ab√
2

1 + ab√
2

=
1

2
(1− ab+ ab− abab) = 1 .

Acting this on χα(j) gives

S1χ1(j)S†1
?
= −χ2(j + 1) . (4)

S1χ2(j)S†1
?
= χ1(j − 1) .

The key step (the only factor in
∏

j e
iQ that matters) comes from

1± χ1(j)χ2(j + 1)√
2

χ2(j + 1)
1∓ χ1(j)χ2(j + 1)√

2
= ±χ1(j).

The essential fact here is the identity:

1± ab√
2
b
1∓ ab√

2
= ±a, 1± ab√

2
a

1∓ ab√
2

= ∓b,

for any two distinct majorana modes a, b. So S1 seems to act like(
0 −T
T † 0

)
where T is the shift-by-1 operator and the matrix is acting on the α, β

space. Notice that this does not seem to square to 1! Rather it squares

to the operation which reverses the sign of all the majoranas. In the spin
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chain, this is a gauge redundancy: the sign of the fermion operators is not

observable. So there is no contradiction.

Since

Zj−1XjZj+1 = −iχ1(j−1)χ2(j+1)
(4)7→ −i (−χ2(j)) (χ1(j)) = −iχ1(j)χ2(j) = −Xj

this Z2 action indeed preserves the form of H2 if gx = −g̃x (set gz = 0 for a

moment):

H?
2 = −iJ

∑
j

(χ1(j)χ2(j)− χ1(j − 1)χ2(j + 1)) has 0 = [S1,H
?
2] .

In the continuum limit, if we ignore the shift, the transformation (4) is

basically χ1 → χ2, χ2 → χ1, which acts on χ±

S1 : χ+ → χ+, χ− → −χ− ,

which indeed acts nontrivially only on χ−. This is a chiral symmetry.

More microscopically, it seems that we should define the chiral majoranas

to be

χ±(j) ∼ χ1(j)± χ2(j + 1).

Notice that this regrouping is very much like the dual jordan-wigner fermions.

That is: if I relabel my degrees of freedom as living on the links as follows:

γ1(j +
1

2
) ≡ χ1(j), γ2(j +

1

2
) = −χ2(j + 1)

then in terms of the gammas, the TFIM hamiltonian has the roles of the X

and Z terms reversed:

HTFIM = −iJ
∑
j

(gxγ1(j)γ2(j + 1)− gzγ1(j)γ2(j))

which if I then rewrite in terms of new spin variables amounts to a duality

transformation, i.e. produces the original hamiltonian with the replaxement

gx/gz → gz/gx.

Addendum: The preceding discussion is correct, except: a 1d chain with

only next-nearest-neighbor hopping falls apart into two decoupled chains:

odd sites only couple to odd sites and even sites only couple to even sites.

This means we actually get two copies of the majorana with this chiral

realization of the symmetry.
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In fact, the ferromagnetic term is also invariant under S1. This is clear in

terms of the spins, since the extra phase factors commute with Zs. And

in fact the extra phase factors are made from the combination ZjZj+1. In

terms of the majoranas,

ZjZj+1 = −iχ1(j)χ2(j+1) 7→ −i (−χ2(j + 1)) (+χ1(j)) = −iχ1(j)χj(j+1).

Adding this term will gap out the majorana fields (i.e. it adds a term in the

eom which is not proportional to k). However: there will still be two degen-

erate groundstates. With an open chain, these are the dangling majorana

modes at the ends. This is because with both gz 6= 0 and g̃x 6= 0 (both of

which couple j to j+ 1
2
), we will always be in the regime (the ferromagnetic

phase) where the pairing is between site j and site j + 1
2
, leaving out the

sites 1
2

and N + 1
2
.

This model is discussed in this paper by Xie Chen et al.

(d) Kitaev-honeycomb-model-like chain [optional]

Consider

HK =
∑
j

(X2jX2j+1 + Y2jY2j−1)

where the bonds alternate between XX interactions and YY interactions.

There are now two sites per unit cell, which means that the solution in

terms of momentum-space fermion operators will involve two bands. Find

their dispersion.

HK =
∑
j

i (−χ1(2j)χ2(2j + 1) + χ2(2j)χ1(2j − 1))

Introduce fourier modes for the bravais lattice with two sites (hence four

majoranas) per unit cell
χ1(2j)

χ2(2j + 1)

χ1(2j + 1)

χ2(2j)

 =
1√
N
eik(2ja)χA(k)

whose hamiltonian is

HK =
∑
k

iχA(k)χB(−k)tAB(k)

with

tAB(k) =


0 eika 0 0

e−ika 0 0 0

0 0 0 1

0 0 −1 0
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Since the bottom block of this matrix doesn’t depend on k, one of the bands

is flat.

3. Homage to Onsager. [optional]

Show that the groundstate energy of Ising chan with N � 1 sites may be written

as

E0(g) = −NJ
∫ π

0

dk

2π
εk

where εk is the dispersion we derived for the fermions.

Show that this can be written as

1

NJ
E0(g) = − 2

π
(1 + g)E(π/2,

√
1− γ2), γ =

∣∣∣∣1− g1 + g

∣∣∣∣
(notice that this expression is manifestly self-dual) where E(π/2, x) is the elliptic

integral

E(π/2, x) ≡
∫ π/2

0

dθ
√

1− x2 sin2 θ.

Expand this result in g − gc.

Use the quantum-to-classical mapping to infer the critical behavior of the 2d

(classical) Ising model.

This calculation is done pretty explicitly in Fradkin’s 2d edition, page 125.

4. Heisenberg chain

Consider the Heisenberg hamiltonian

H = −J
∑
j

(XjXj+1 + YjYj+1 + vZjZj+1) .

When v = 1 there is SU(2) symmetry. What are the generators?

The generators are just the Pauli operators
∑

j ~σj.

On the previous problem set we successfully fermionized the model with v = 0.

Fermionize the v term.

We saw (in a different basis) that this is a 4-fermion term. It is(
2c†jcj − 1

)(
2c†j+1cj+1 − 1

)
.

Take the continuum limit.
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Plugging in Ψ(xj) = 1√
a
cj gives

∆H ' −J
∫
dx
(
2Ψ†(x)Ψ(x)− 1

) (
2Ψ†(x+ a)Ψ(x+ a)− 1

)
= −Ja2

∫
dx
(
2Ψ†(x)Ψ(x)

) (
2∂Ψ†(x)∂Ψ(x)

)
+ quadratic terms (5)

Fermi statistics get rid of the term with fewer derivatives.
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