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Physics 215C QFT Spring 2019
Assignment 6 —  Solutions

Due 12:30pm Monday, May 13, 2019

1. Brain-warmer.

Compute the expectation values of X and Z in the spin-coherent state |n).

2. Mean field theory is product states.

Consider the transverse field Ising model on an arbitrary lattice:

H=-J|> ZZ,+9) X,
(z,y) z

We will study the mean field state:

Spt

Restrict to the case where the state of each spin is the same.

(a) Write the variational energy for the mean field state, E(n) = (¢yr|H|ur).

(b) Assuming s, is independent of z, minimize it for each value of the dimen-
sionless parameter g. Find the groundstate magnetization (¢|Z, |¢) in this
approximation, as a function of g. Draw the mean-field phase diagram.

Mean field theory means that we completely ignore entanglement between differ-
ent sites, and suppose that the state is a product state

|IMFT) = 1)) @ |[ta) - - |1;) -+ ...

If we further assume translational invariance then the state at every site is the
same and we have one bloch sphere to minimize over for each g:
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(Here 6 is the angle 1 makes with the  axis, and ¢ is the azimuthal angle in the
yz plane, from the z-axis.) To evaluate the energy expectation in this state, we
only need to know single-qbit expectations:

(Tal X [1a) = cosO,  (Th|Z|T5s) = sinf cos p.



So the energy expectation is
E@,p)=—-NJ (g sin? f cos”® ¢ + g cos 9)

where z is the coordination number of the lattice; I set z = 2 for d = 1.

E(f) Eid}

05F
2
L L L | | N 1F
= 1 k]
-3 - 1 2

2
-1

This is extremized when ¢ = 0,7 and when
0=0pFE = NJsinf (2cosf —g).

Notice that when ¢ = 0, the two solutions of ¢ are the same, since the ¢ co-
ordinate degenerates at the pole. The solutions at cos = ¢/2 only exist when
g/2 < 1. In that case they are minima (see the figure) since 95FE|coso—g/2 > 0,
while 93E|o—g = NJ(g — 2) is negative for g < 2. (Notice that ¢ = 7 can be
included by allowing 6 € (—m, 7|, as in the figure.)

So mean field theory predicts a phase transition at ¢ = 2, from a state where
(Z;) = sinf to one where (Z) = 0. It overestimates the range of the ordered
phase because it leaves out fluctuations which tend to destroy the order.

Let’s study the behavior near the transition, where # is small. Then the energy
can be approximated by its Taylor expansion

E() ~ NJ (—2 + %92 + ie‘*)

(where I have set g = g. = 2 except in the crucial quadratic term). This has
minima at

(Z;) =sinf ~0==+\g.—g . (2)

The energy behaves like

Eyrr(g) =



Notice that 0,F is continuous at the transition. (Recall that the groundstate

energy of the quantum system is equal to the free energy of the corresponding

stat mech system, so d, /2 oc OpF' continuous is the same criterion for a continuous

transition.) So mean field theory (correctly) predicts a continuous quantum phase
transition between the ordered phase and the disordered phase. The location of

the transition is wrong (mean field theory overestimates the size of the ordered

region because it leaves out lots of order-destroying fluctuations), and so are other

properties, such as the exponent in (2), which should be 1/8 instead of 1/2.

3. Potentials for matrix-valued fields.

(a)

Convince yourself that by a symmetry transformation > — gLEgE we can

put the complex matrix ¥ in the form ¥ = <%1 0 )
(%]

The transformation is a general similarity transformation, by which we may
diagonalize Y. Actually a completely general complex matrix may have
Jordan blocks, where upper triangular bits can’t be removed.

Consider the SU(2),, x SU(2) g-symmetric potential

A
V() = —m*uSzt + 7 (0Ef)” + gursioyt. (3)

1
Show that for any g > 0 this potential has a minimum at (X) = 7= (O ?)

Find v. Show that if g = 0 there are other minima which are not related by

rotations Y — gLEgLL.

Diagonalizing ¥ as in the previous part, the potential is

A 2
V=—m®(j1]* + |va*) + 1 (loa]? + o2|*) ™ + g(lva]* + |va]*).

m2

A2g°
When ¢g = 0, the two equations 0,,V = 0 are the same and we may have

(%) o <v1 0) with v2 + 02 = 222 (Indeed, when g = 0, the potential
2

The equations 9,,V = 0,0,,V = 0 are solved by v} = v3 =

0 v A
depends only on the combination v?+wv3.) Since the eigenvalues are different,
no similarity transformation can turn this into something proportional to
the identity.

[bonus problem] Now consider a hermitian-matrix-valued field ® = ®*7T.
Suppose T* are generators of the adjoint of SU(5), so there are 24 compo-
nents of . In order for grand unification to work, there must be a potential



for such a Higgs field ® which has a minimum of the form
() = vdiag(2,2,2,-3,-3) = 03

which breaks SU(5) down to SU(3)color X SU(2)yweax. Consider the most gen-
eral quartic potential for ® which is invariant under SU(5):

V = —m?tr®d? + atr®* + b (tr®2)2 .

Choose a basis where ® = vdiag(ay, as, as, as, as), with Zle a; = 0. (Im-
pose this last condition with a Lagrange multiplier.)

For what values of m, a,b is ®39 an extremum?

Show that ®3, is a minimum.

Find all possible minima of this potential.

Here is a nice argument from Brian Vermilyea: the equation for one of the
eigenvalues

0 =0, <V+/\Zaj) =a; <—2m2+2b2a?> —|—aa§-’
J J

has at most 3 different solutions. Therefore at most 3 of the a; can be
different. So the possible solutions with ;a; =0 are

(1)3’2, c13471, @2’2’1 = U(l, 1, a, a, —2a — 2), @371’1 = U(l, 17 1, b, —b— 3)

We can determine @ = —1 and b = 0 by varying with respect to these
parameters.

For the minimum of the form (®) = ®,; = vdiag(1,1,1,1, —4), what are
the masses of the massive gauge bosons, and what is the unbroken gauge
group?

The unbroken group is SU(4) x U(1), and the masses of the gauge boson A4
in A =AT4 is tr ([T, @4.1]?).



