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1. Brain-warmers on spin coherent states.

(a) Show that

~n = z†~σz

where ~n = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector, and zα are the com-

ponents of the (normalized) spin coherent state |~n〉 (σ · ~n |~n〉 = |~n〉) in the

Z-eigenbasis.

(b) In the same notation, check that

〈~n1|~n2〉 = z†1z2.

(c) Check that

12×2 =

∫
d2n

2π
|~n〉〈~n|.

(d) Check that ∫
dtiz†ż =

∫
dti

1

2

(
cos θφ̇+ ψ̇

)
= 2πW0[n̂].

(e) Show that

〈ň|~h · ~S |ň〉 = s~h · ň

where |ň〉 = R|s, s〉 is a coherent state of spin s (where |s, s〉 is the eigen-

vector of Sz with maximal eigenvalue, and R is the rotation operator which

takes ž to ň).

(f) Show that for several spins and i 6= j

〈ň| ~Si · ~Sj |ň〉 = s2ňi · ňj,

where now |ň〉 ≡ ⊗j (Ri |si〉) is a product of coherent states of each of the

spins individually.
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2. Brain-warmer on Schwinger bosons.

Recall the Schwinger-boson representation of the SU(2) algebra:

S+ = a†b, S− = b†a, Sz =
1

2

(
a†a− b†b

)
, (1)

where the modes a, b satisfy [a, a†] = 1 = [b, b†], [a, b] = [a, b†] = 0. This is the

algebra of a simple harmonic oscillator in two dimensions,

H =
1

2

(
p2x + p2y + x2 + y2

)
.

Is the SU(2) a symmetry of this Hamiltonian? How does it act on the oscillator

coordinates? Check that the oscillator algebra does indeed imply that ~S defined

this way satisfy the SU(2) algebra.

It is useful to write (1) in the same way we wrote ~n = z†~σz:

Si =
1

2
a†ασ

i
αβaβ, aα = (a, b)α.

Then

[Si,Sj] =
1

4
σiαβσ

j
γδ [a†αaβ, a

†
γaδ]︸ ︷︷ ︸

=δβγa
†
αaδ+δαδa

†
βaγ

(2)

=
1

4
a†α[σi, σj]αβaβ = iεijkSk. (3)

The SU(2) acts on the oscillators by (a, b) = (x + ipx, y + ipy) is a doublet. We

see that it is a symmetry of

H = a†a+ b†b+ 1 = na + nb + 1

since S± preserve na + nb. More precisely,

S2 ≡ ~S · ~S = (na + nb)(na + nb + 1),

so the spin is s = na + nb.

3. Geometric Quantization of the 2-torus.

Redo the analysis that we did in lecture for the two-sphere for the case of the

two-torus, S1 × S1. The coordinates on the torus are (x, y) ' (x + 2π, y + 2π);

use N
2π

dx ∧ dy as the symplectic form. Show that the resulting Hilbert space

represents the Heisenberg algebra

eixeiy = eiyeixe
2πi
N .
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(I am using boldface letters for operators.) The irreducible representation of this

algebra is the same Hilbert space as a particle on a periodic one-dimensional

lattice with N sites.

Notice that the area of the phase space (using this symplectic form) is∫
T 2

N

2π
dx ∧ dy =

N

2π

∫ 2

0

πdx

∫ 2π

0

dy = 2πN ∈ 2πZ

if N is an integer, so the WZW term gives a well-defined contribution to the path

integral ei
∫
D

N
2π
dx∧dy. We conclude that px = N

2π
y so that

[x, y] =
2πi

N

and the single-valued operators eix and eiy satisfy the stated algebra (using the

BCH formula).

Notice that the fact that x ≡ x + 2π means that px ∈ Z, so y ∈ 2πZ/N takes

discrete. Then y ≡ y+ 2π says that only the N values y = 1..N are independent.

4. Particle on a sphere with a monopole inside.

Consider a particle of mass m and electric charge e with action

S[~x] =

∫
dt

(
1

2
m~̇x2 + e~̇x · ~A(~x)

)
constrained to move on a two sphere of radius r in three-space, ~x2 = r2. Suppose

further that there is a magnetic monopole inside this sphere: this means that

4πg =
∫
S2
~B · d~a =

∫
S2 F , where F = dA. (Since the particle lives only at

~x2 = r2, the form of the field in the core of the monopole is not relevant here.)

(a) Find an expression for A = Aidx
i = Aθdθ + Aϕdϕ such that F = dA has

flux 4πg through the sphere.

(b) Show that the Witten argument gives the Dirac quantization condition 2eg ∈
Z.

(c) Take the limitm→ 0. Count the states in the lowest Landau level. Compare

with the calculation in lecture for coherent state quantization of a spin-s.

For m → 0, we can ignore the second-order kinetic term. (Recall (for

the case of electrons in the plane) that the cyclotron frequency goes like

ωc ∼ B
m

m→0→ ∞, in this limit, leaving behind just the lowest Landau level.)

One way to find the states is simply to do canonical quantization on S =∫
dts(1 + cos θ)φ̇, with s = 2eg ∈ Z. From this we conclude

pφ = s(1 + cos θ). (4)
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But φ ≡ φ + 2π means pφ ∈ Z. The range of the RHS of (4) is [0, 2s].

There are 2s + 1 integers in this range, in agreement with our result from

the study of the spin system. Relative to the expectation from Landau level

degeneracy in flat space (one state per flux quantum) there is an extra +1.
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