University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2019 Assignment 4

Due 12:30pm Monday, April 29, 2019

1. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are marginal. Keeping only these interactions, show that cactus diagrams (like this: \&f) dominate.
(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue that this correction to the propagator is innocuous and can be ignored.
(c) Armed with these results, compute diagrammatically the Cooper-channel susceptibility (two-particle Green's function),

$$
\chi\left(\omega_{0}\right) \equiv\left\langle\mathcal{T} \psi_{\vec{k}, \omega_{3}, \downarrow}^{\dagger} \psi_{-\vec{k}, \omega_{4}, \uparrow}^{\dagger} \psi_{\vec{p}, \omega_{1}, \downarrow} \psi_{-\vec{p}, \omega_{2}, \uparrow}\right\rangle
$$

as a function of $\omega_{0} \equiv \omega_{1}+\omega_{2}$, the frequencies of the incoming particles. Think of χ as a two point function of the Cooper pair field $\Phi=\epsilon_{\alpha \beta} \psi_{\alpha}^{\dagger} \psi_{\alpha}$ at zero momentum.
Sum the geometric series in terms of a (one-loop) integral kernel.
(d) Do the integrals. In the loops, restrict the range of energies to $|\omega|<E_{D}$ (or $|\epsilon(k)|<E_{D}$), the Debye energy, since it is electrons with these energies which experience attractive interactions.
Consider for simplicity a round Fermi surface. For doing integrals of functions singular near a round Fermi surface, make the approximation $\epsilon(k) \simeq$ $v_{F}\left(|k|-k_{F}\right)$, so that $d^{d} k \simeq k_{F}^{d-1} \frac{d \xi}{v_{F}} d \Omega_{d-1}$.
(e) Show that when $V<0$ is attractive, $\chi\left(\omega_{0}\right)$ has a pole. Does it represent a bound-state? Interpret this pole in the two-particle Green's function as indicating an instability of the Fermi liquid to superconductivity. Compare the location of the pole to the energy E_{BCS} where the Cooper-channel interaction becomes strong.
(f) Cooper problem. [optional] We can compare this result to Cooper's influential analysis of the problem of two electrons interacting with each other
in the presence of an inert Fermi sea. Consider a state with two electrons with antipodal momenta and opposite spin

$$
|\psi\rangle=\sum_{k} a_{k} \psi_{k, \uparrow}^{\dagger} \psi_{-k, \downarrow}^{\dagger}|F\rangle
$$

where $|F\rangle=\prod_{k<k_{F}} \psi_{k, \uparrow}^{\dagger} \psi_{k, \downarrow}^{\dagger}|0\rangle$ is a filled Fermi sea. Consider the Hamiltonian

$$
H=\sum_{k} \epsilon_{k} \psi_{k, \sigma}^{\dagger} \psi_{k, \sigma}+\sum_{k, k^{\prime}} V_{k, k^{\prime}} \psi_{k, \sigma}^{\dagger} \psi_{k, \sigma} \psi_{k^{\prime}, \sigma^{\prime}}^{\dagger} \psi_{k^{\prime}, \sigma^{\prime}}
$$

Write the Schrödinger equation as

$$
\left(\omega-2 \epsilon_{k}\right) a_{k}=\sum_{k^{\prime}} V_{k, k^{\prime}} a_{k^{\prime}}
$$

Now assume (following Cooper) that the potential has the following form:

$$
V_{k, k^{\prime}}=V w_{k^{\prime}}^{\star} w_{k}, \quad w_{k}=\left\{\begin{array}{ll}
1, & 0<\epsilon_{k}<E_{D} \\
0, & \text { else }
\end{array} .\right.
$$

Defining $C \equiv \sum_{k} \omega_{k}^{\star} a_{k}$, show that the Schrödinger equation requires

$$
\begin{equation*}
1=V \sum_{k} \frac{\left|w_{k}\right|^{2}}{\omega-2 \epsilon_{k}} . \tag{1}
\end{equation*}
$$

Assuming V is attractive, find a bound state. Compare (14) to the condition for a pole found from the bubble chains above.

2. Topological terms in QM.

The purpose of this problem is to demonstrate that total derivative terms in the action (like the θ term in QCD) do affect the physics.
The euclidean path integral for a particle on a ring with magnetic flux $\theta=\int \vec{B} \cdot \mathrm{~d} \vec{a}$ through the ring is given by

$$
Z=\int[D \phi] e^{-\int_{0}^{\beta} \mathrm{d} \tau\left(\frac{m}{2} \dot{\phi}^{2}-\mathbf{i} \frac{\theta}{2 \pi} \dot{\phi}\right)} .
$$

Here

$$
\begin{equation*}
\phi \equiv \phi+2 \pi \tag{2}
\end{equation*}
$$

is a coordinate on the ring. Because of the identification (15), ϕ need not be a single-valued function of τ - it can wind around the ring. On the other hand, $\dot{\phi}$ is single-valued and periodic and hence has an ordinary Fourier decomposition. This means that we can expand the field as

$$
\begin{equation*}
\phi(\tau)=\frac{2 \pi}{\beta} Q \tau+\sum_{\ell \in \mathbb{Z} \backslash 0} \phi_{\ell} e^{\mathbf{i} \frac{2 \pi}{\beta} \ell \tau} \tag{3}
\end{equation*}
$$

(a) Show that the $\dot{\phi}$ term in the action does not affect the classical equations of motion. In this sense, it is a topological term.
(b) Using the decomposition (16), write the partition function as a sum over topological sectors labelled by the winding number $Q \in \mathbb{Z}$ and calculate it explicitly.
[Hint: use the Poisson resummation formula

$$
\left.\sum_{n \in \mathbb{Z}} e^{-\frac{1}{2} t^{2}+\mathbf{i} z n}=\sqrt{\frac{2 \pi}{t}} \sum_{\ell \in \mathbb{Z}} e^{-\frac{1}{2 t}(z-2 \pi \ell)^{2}} .\right]
$$

(c) Use the result from the previous part to determine the energy spectrum as a function of θ.
(d) Derive the canonical momentum and Hamiltonian from the action above and verify the spectrum.
(e) Consider what happens in the limit $m \rightarrow 0, \theta \rightarrow \pi$ with $X \equiv \frac{\theta-\pi}{m} \sim \beta^{-1}$ fixed. Interpret the result as the partition function for a spin $1 / 2$ particle. What is the meaning of the ratio X in this interpretation?

3. Grassmann brain-warmers.

(a) A useful device is the integral representation of the grassmann delta function. Show that

$$
-\int d \bar{\psi}_{1} e^{-\bar{\psi}_{1}\left(\psi_{1}-\psi_{2}\right)}=\delta\left(\psi_{1}-\psi_{2}\right)
$$

in the sense that $\int d \psi_{1} \delta\left(\psi_{1}-\psi_{2}\right) f\left(\psi_{1}\right)=f\left(\psi_{2}\right)$ for any grassmann function f. (Notice that since the grassmann delta function is not even, it matters on which side of the δ we put the function: $\int d \psi_{1} f\left(\psi_{1}\right) \delta\left(\psi_{1}-\psi_{2}\right)=f\left(-\psi_{2}\right) \neq$ $f\left(\psi_{2}\right)$.)
(b) Recall the resolution of the identity on a single qbit in terms of fermion coherent states

$$
\begin{equation*}
\mathbb{1}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}|\psi\rangle\langle\bar{\psi}| . \tag{4}
\end{equation*}
$$

Show that $\mathbb{1}^{2}=\mathbb{1}$. (The previous part may be useful.)
(c) In lecture I claimed that a representation of the trace of a bosonic operator was

$$
\operatorname{tr} \mathbf{A}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}\langle-\bar{\psi}| \mathbf{A}|\psi\rangle
$$

and the minus sign in the bra had important consequences.
(Here $\langle-\bar{\psi}| \mathbf{c}^{\dagger}=\langle-\bar{\psi}|(-\bar{\psi})$).

Check that using this expression you get the correct answer for

$$
\operatorname{tr}\left(a+b \mathbf{c}^{\dagger} \mathbf{c}\right)
$$

where a, b are ordinary numbers.
(d) Prove the identity (20) by expanding the coherent states in the number basis.

4. Fermionic coherent state exercise.

Consider a collection of fermionic modes c_{i} with quadratic hamiltonian $H=$ $\sum_{i j} h_{i j} c_{i}^{\dagger} c_{j}$, with $h=h^{\dagger}$.
(a) Compute tre $e^{-\beta H}$ by changing basis to the eigenstates of $h_{i j}$ (the singleparticle hamiltonian) and performing the trace in that basis: $\operatorname{tr} \ldots=\prod_{\epsilon} \sum_{n_{\epsilon}=c_{\epsilon}^{\dagger} c_{\epsilon}=0,1} \cdots$
(b) Compute tre $e^{-\beta H}$ by coherent state path integral. Compare!
(c) [super bonus problem] Consider the case where $h_{i j}$ is a random matrix. What can you say about the thermodynamics?

