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1. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are

marginal. Keeping only these interactions, show that cactus diagrams (like

this: ) dominate.

The diagrams which dominate are made of the marginal 4-fermion vertices,

which have the momenta equal and opposite in pairs, i.e. V (k1, k2, k3, k4) =

V (k,−k, k′,−k′). This is automatic in cactus diagrams. The model which

keeps only these terms is called the Reduced BCS model.

(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue

that this correction to the propagator is innocuous and can be ignored.

These diagrams do not depend on the external momenta. Therefore, they are

merely a renormalization of the chemical potential. Fixing the propagator

according to the correct particle density therefore removes all effects of these

diagrams.

To resum their effects we use the self-energy with the pink blob which sat-

isfies

.

(c) Armed with these results, compute diagrammatically the Cooper-channel

susceptibility (two-particle Green’s function),

χ(ω0) ≡
〈
T ψ†~k,ω3,↓

ψ†
−~k,ω4,↑

ψ~p,ω1,↓ψ−~p,ω2,↑

〉
as a function of ω0 ≡ ω1 + ω2, the frequencies of the incoming particles.

Think of χ as a two point function of the Cooper pair field Φ = εαβψ
†
αψα at

zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.
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χ(ω0) = + · · · (1)

= −iV + (−iV )2 1

2

∫
d̄dkdεG(ε+ ω0, ~k)G(−ε,−~k) + (−iV )3

(
1

2

)2 ∫
GG

∫
GG+ · · ·(2)

≡ −iV
(

1− i

2
V

∫
GG+ (− i

V

∫
GG)2 + · · ·

)
(3)

= −iV
(
1− I + I2 + · · ·

)
=
−iV
1 + I

. (4)

The 1
2

is a symmetry factor.

(d) Do the integrals. In the loops, restrict the range of energies to |ω| < ED
(or |ε(k)| < ED), the Debye energy, since it is electrons with these energies

which experience attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-

tions singular near a round Fermi surface, make the approximation ε(k) '
vF (|k| − kF ), so that ddk ' kd−1

F
dξ
vF
dΩd−1.

Now we have to do the integral.

I =
i

2
V

∫
d̄dkdεG(ε+ ω0, ~k)G(−ε,−~k) (5)

=
i

2
V

∫
d̄dkdε

1

(ε+ ω0)(1 + iη)− ξ(~k)

1

(−ε)(1 + iη)− ξ(−~k)
(6)

=
i

2
V

∫
d̄dk

2πi

2π
(−1)sign(ξ(k)) 1

ω0 − 2ξ(k)
(7)

= −V
2

∫
d̄dk(−1)sign(ξ(k)) 1

ω0 − 2ξ(k)
(8)

In the third line we assumed parity ξ(k) = ξ(−k), and did the frequency in-

tegral by residues, as recommended. The orientation of the contour depends

on the sign of ξ(k). Now we use the approximation ddk ' kd−1
F

dξ
vF
dΩd−1 to
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write

I = −V
∫

d̄d−1k

2vF︸ ︷︷ ︸
≡N

(∫ ED

0

dξ

ω0 − 2ξ
−
∫ 0

−ED

dξ

ω0 − 2ξ

)
(9)

= −NV
(∫ ED

0

dξ

ω0 − 2ξ
−
∫ ED

0

dξ

ω0 + 2ξ

)
(10)

= −NV
(
−1

2
log

ω0 − 2ED
ω0

− 1

2
log

ω0 + 2ED
ω0

)
(11)

ω0�ED' NV

(
1

2
log
−2ED
ω0

+
1

2
log

+2ED
ω0

)
(12)

= NV

(
log

2ED
ω0

+
iπ

2

)
. (13)

(e) Show that when V < 0 is attractive, χ(ω0) has a pole. Does it represent

a bound-state? Interpret this pole in the two-particle Green’s function as

indicating an instability of the Fermi liquid to superconductivity. Com-

pare the location of the pole to the energy EBCS where the Cooper-channel

interaction becomes strong.

The pole occurs at

0 = 1 + I = 1 +NV

(
log

2ED
ω0

+
iπ

2

)
which says

ω0 = 2iEDe
− 1
NV .

Note the crucial factor of i. This says that the pole is in the UHP of the

ω0 plane. The fact that the pole occurs in the UHP of the ω0 plane means

that the Fourier transform of this quantity grows exponentially in time (for

short times at least).

(f) Cooper problem. [optional] We can compare this result to Cooper’s in-

fluential analysis of the problem of two electrons interacting with each other

in the presence of an inert Fermi sea. Consider a state with two electrons

with antipodal momenta and opposite spin

|ψ〉 =
∑
k

akψ
†
k,↑ψ

†
−k,↓ |F 〉

where |F 〉 =
∏

k<kF
ψ†k,↑ψ

†
k,↓ |0〉 is a filled Fermi sea. Consider the Hamilto-

nian

H =
∑
k

εkψ
†
k,σψk,σ +

∑
k,k′

Vk,k′ψ
†
k,σψk,σψ

†
k′,σ′ψk′,σ′ .

3



Write the Schrödinger equation as

(ω − 2εk)ak =
∑
k′

Vk,k′ak′ .

Now assume (following Cooper) that the potential has the following form:

Vk,k′ = V w?k′wk, wk =

{
1, 0 < εk < ED

0, else
.

Defining C ≡
∑

k ω
?
kak, show that the Schrödinger equation requires

1 = V
∑
k

|wk|2

ω − 2εk
. (14)

Assuming V is attractive, find a bound state. Compare (1) to the condition

for a pole found from the bubble chains above.

This leads to a boundstate at ω such that

1 = V N

∫ ED

0

dξ

ω − 2ξ
= −V N

2
log

(
−2ED
ω

)
which says

ω = −2EDe
− 2
|V |N .

The Cooper bound-state equation (1) is just what we would get if we left

out the contribution of the virtual electrons with ξ < 0 – the ones below the

Fermi energy (which in fact I did when I was first writing this problem). This

results in a factor of two in the exponent (so the Cooper pair binding energy

is exponentially larger than the magnitude frequency found above). More

importantly it results in a minus sign rather than a factor of i (a boundstate

energy should be negative). Including (correctly) the effects of fluctuations

below Fermi sea level changes the boundstate to an instability. I recommend

the book by Schrieffer (called Superconductivity) for this subject.

2. Topological terms in QM. [from Abanov]

The purpose of this problem is to demonstrate that total derivative terms in the

action (like the θ term in QCD) do affect the physics.

The euclidean path integral for a particle on a ring with magnetic flux θ =
∫
~B ·d~a

through the ring is given by

Z =

∫
[Dφ]e−

∫ β
0 dτ(m2 φ̇2−i

θ
2π
φ̇) .
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Here

φ ≡ φ+ 2π (15)

is a coordinate on the ring. Because of the identification (2), φ need not be a

single-valued function of τ – it can wind around the ring. On the other hand, φ̇

is single-valued and periodic and hence has an ordinary Fourier decomposition.

This means that we can expand the field as

φ(τ) =
2π

β
Qτ +

∑
`∈Z\0

φ`e
i 2π
β
`τ . (16)

(a) Show that the φ̇ term in the action does not affect the classical equations of

motion. In this sense, it is a topological term.

(b) Using the decomposition (3), write the partition function as a sum over

topological sectors labelled by the winding number Q ∈ Z and calculate it

explicitly.

[Hint: use the Poisson resummation formula∑
n∈Z

e−
1
2
tn2+izn =

√
2π

t

∑
`∈Z

e−
1
2t

(z−2π`)2 . ]

I should have mentioned that more generally the Poisson resummation for-

mula says ∑
n

f(n) =
∑
l

f̂(2πl)

where f̂(p) =
∫
dxe−ipxf(x) is the fourier transform of f .

Using the given mode expansion and
∫ β

0
dte

2πi(l−l′)τ
β = βδl,l′ the action is

S[φ] = iθQ+
m(2πQ)2

2β
+
∑
`6=0

(2π`)2m

2β
φ`φ−`

where φ` = φ?−`. Thus

Z =
∑
Q∈Z

e−iθQ+
m(2πQ)2

2β

∏
` 6=0

∫
d2φ`e

(2π`)2m
2β

φ`φ
?
` (17)

=
∑
Q∈Z

e−iθQ+
m(2πQ)2

2β

∏
` 6=0

(
β

2π`2m

)
(18)

∝
∑
n∈Z

e
−β 1

2m(2π)2
(θ−2πn)2

=
∑
n∈Z

e−β
1

2m(n− θ
2π )

2

(19)

where in the last step we used the above Poisson summation formula with

z = θ and t = m(2π)2

β
.
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(c) Use the result from the previous part to determine the energy spectrum as

a function of θ.

After the Poisson resummation, this is manifestly the partition function of

a system with energies En = 1
2m

(n− θ
2π

)2.

(d) Derive the canonical momentum and Hamiltonian from the action above

and verify the spectrum.

Note that the action given above is the Euclidean action. The real time

action (from which we should derive the hamiltonian) is

S =

∫
dt

(
1

2
mφ̇2 + φ̇

θ

2π

)
.

This gives p = ∂L
∂φ̇

= mφ̇+ θ
2π

, and hence

H =

(
p− θ

2π

)2

2m
.

Now, since φ ≡ φ+ 2π, its canonical momentum is quantized, p ∈ Z, so

En =
1

2m

(
n− θ

2π

)2

as above. We find the following spectrum for various θ (I am plotting the

energies of the states with wavenumbers n ∈ [−3, 2]):

(In the axis label, I is the moment of inertia of the rotor.) Notice that when

θ = π, the groundstate becomes doubly degenerate.

(e) Consider what happens in the limit m → 0, θ → π with X ≡ θ−π
m
∼ β−1

fixed. Interpret the result as the partition function for a spin 1/2 particle.

What is the meaning of the ratio X in this interpretation?

In this limit, the higher bands of energies go off to ∞, and we are left with

a two-state system. X is a Zeeman field splitting the two states.
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3. Grassmann brain-warmers.

(a) A useful device is the integral representation of the grassmann delta function.

Show that

−
∫
dψ̄1e

−ψ̄1(ψ1−ψ2) = δ(ψ1 − ψ2)

in the sense that
∫
dψ1δ(ψ1−ψ2)f(ψ1) = f(ψ2) for any grassmann function

f . (Notice that since the grassmann delta function is not even, it matters on

which side of the δ we put the function:
∫
dψ1f(ψ1)δ(ψ1 − ψ2) = f(−ψ2) 6=

f(ψ2).)

(b) Recall the resolution of the identity on a single qbit in terms of fermion

coherent states

1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉

〈
ψ̄
∣∣ . (20)

Show that 12 = 1. (The previous part may be useful.)

(c) In lecture I claimed that a representation of the trace of a bosonic operator

was

trA =

∫
dψ̄dψ e−ψ̄ψ

〈
−ψ̄
∣∣A |ψ〉 ,

and the minus sign in the bra had important consequences.

(Here
〈
−ψ̄
∣∣ c† =

〈
−ψ̄
∣∣ (−ψ̄) ).

Check that using this expression you get the correct answer for

tr(a+ bc†c)

where a, b are ordinary numbers.

(d) Prove the identity (4) by expanding the coherent states in the number basis.

Using |ψ〉 = |0〉+ ψ |1〉 ,
〈
−ψ̄
∣∣ = 〈0| − ψ̄ 〈1|, we have∫

dψ̄dψ e−ψ̄ψ |ψ〉
〈
ψ̄
∣∣ =

∫
dψ̄dψ e−ψ̄ψ (|0〉+ ψ |1〉)

(
〈0| − ψ̄ 〈1|

)
=

∫
dψ̄dψ e−ψ̄ψ

(
|0〉 〈0| − ψψ̄ |1〉 〈1|

)
= |0〉 〈0|+ |1〉 〈1| = 1. (21)

4. Fermionic coherent state exercise.

Consider a collection of fermionic modes ci with quadratic hamiltonian H =∑
ij hijc

†
icj, with h = h†.
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(a) Compute tre−βH by changing basis to the eigenstates of hij (the single-

particle hamiltonian) and performing the trace in that basis: tr... =
∏

ε

∑
nε=c

†
εcε=0,1 ....

In the eigenbasis of hij,

H =
∑
ij

hijc
†
icj =

∑
α

εαc
†
αcα,

the trace factorizes:

tre−βH =
∏
α

∑
nα=c†αcα=0,1

e−βεαnα =
∏
α

(
1 + e−βεα

)
= det

(
1 + e−βh

)
.

(b) Compute tre−βH by coherent state path integral. Compare!

In lecture we showed for a single fermionic mode how to write the thermal

partition function as a grassmann path integral

tre−βH(c†,c) =

∫
[DψDψ̄]e−

∫ β
0 dτ(ψ̄∂τψ−H(ψ̄,ψ))

as long as H is normal-ordered. Here we just have many copies of that

problem:

tre−βH(c†i ,cj) =

∫ ∏
i

[DψiDψ̄i]e
−

∫ β
0 dτ(ψ̄i∂τψi−hij ψ̄iψj).

To do this integral, let’s go to frequency space:

ψi(τ) =
∑
n

e−ωnτψni, ωn = πT (2n+ 1).

Further, let’s change coordinates to diagonalize h, so we have

Z =

∫ ∏
α,n

dψα,ndψ̄α,n
∏
α,n

e−ψ̄α,n(iωn−εα)ψα,n (22)

=
∏
α,n

(iωn − εα) = e
∑
α,n log(iωn−εα) (23)
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So

logZ =
∑
α,n

log (iωn − εα) (24)

=
∑
α

1

2πi

∮
C

dz
β

eβz + 1
log (iωn − εα)

=
1

2πi

∑
α

∫ ∞
εα

dzdisc

(
β

eβz + 1
log (iωn − εα)

)

=
1

2πi

∑
α

∫ ∞
εα

dz
β

eβz + 1
2πi

=
∑
α

∫ ∞
εα

dz
β

eβz + 1
=
∑
α

log
(
1 + e−βεα

)
,

which gives the same answer as above.

(c) [super bonus problem] Consider the case where hij is a random matrix.

What can you say about the thermodynamics?
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