University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 215C QFT Spring 2019
Assignment $4-\underset{\text { Solutions }}{ }$

Due 12:30pm Monday, April 29, 2019

1. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are marginal. Keeping only these interactions, show that cactus diagrams (like this: of) dominate.
The diagrams which dominate are made of the marginal 4 -fermion vertices, which have the momenta equal and opposite in pairs, i.e. $V\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=$ $V\left(k,-k, k^{\prime},-k^{\prime}\right)$. This is automatic in cactus diagrams. The model which keeps only these terms is called the Reduced BCS model.
(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue that this correction to the propagator is innocuous and can be ignored.
These diagrams do not depend on the external momenta. Therefore, they are merely a renormalization of the chemical potential. Fixing the propagator according to the correct particle density therefore removes all effects of these diagrams.
To resum their effects we use the self-energy with the pink blob which satisfies

(c) Armed with these results, compute diagrammatically the Cooper-channel susceptibility (two-particle Green's function),

$$
\chi\left(\omega_{0}\right) \equiv\left\langle\mathcal{T} \psi_{\vec{k}, \omega_{3}, \psi}^{\dagger} \psi_{-\vec{k}, \omega_{4}, \uparrow}^{\dagger} \psi_{\vec{p}, \omega_{1}, \downarrow} \psi_{-\vec{p}, \omega_{2}, \uparrow}\right\rangle
$$

as a function of $\omega_{0} \equiv \omega_{1}+\omega_{2}$, the frequencies of the incoming particles. Think of χ as a two point function of the Cooper pair field $\Phi=\epsilon_{\alpha \beta} \psi_{\alpha}^{\dagger} \psi_{\alpha}$ at zero momentum.
Sum the geometric series in terms of a (one-loop) integral kernel.

$$
\begin{align*}
\chi\left(\omega_{0}\right) & = \tag{1}\\
& =-\mathbf{i} V+(-\mathbf{i} V)^{2} \frac{1}{2} \int \mathrm{~d}^{d} k d \epsilon G\left(\epsilon+\omega_{0}, \vec{k}\right) G(-\epsilon,-\vec{k})+(-\mathbf{i} V)^{3}\left(\frac{1}{2}\right)^{2} \int G G \int G G+ \tag{2.}\\
& \equiv-\mathbf{i} V\left(1-\frac{\mathbf{i}}{2} V \int G G+\left(--V(G G)^{2}+\cdots\right)\right. \tag{3}\\
& =-\mathbf{i} V\left(1-\mathcal{I}+\mathcal{I}^{2}+\cdots\right)=\frac{-\mathbf{i} V}{1+\mathcal{I}} \tag{4}
\end{align*}
$$

The $\frac{1}{2}$ is a symmetry factor.
(d) Do the integrals. In the loops, restrict the range of energies to $|\omega|<E_{D}$ (or $|\epsilon(k)|<E_{D}$), the Debye energy, since it is electrons with these energies which experience attractive interactions.
Consider for simplicity a round Fermi surface. For doing integrals of functions singular near a round Fermi surface, make the approximation $\epsilon(k) \simeq$ $v_{F}\left(|k|-k_{F}\right)$, so that $d^{d} k \simeq k_{F}^{d-1} \frac{d \xi}{v_{F}} d \Omega_{d-1}$.
Now we have to do the integral.

$$
\begin{align*}
\mathcal{I} & =\frac{\mathbf{i}}{2} V \int \mathrm{~d}^{d} k d \epsilon G\left(\epsilon+\omega_{0}, \vec{k}\right) G(-\epsilon,-\vec{k}) \tag{5}\\
& =\frac{\mathbf{i}}{2} V \int \mathrm{~d}^{d} k d \epsilon \frac{1}{\left(\epsilon+\omega_{0}\right)(1+\mathbf{i} \eta)-\xi(\vec{k})} \frac{1}{(-\epsilon)(1+\mathbf{i} \eta)-\xi(-\vec{k})} \tag{6}\\
& =\frac{\mathbf{i}}{2} V \int \mathrm{~d}^{d} k \frac{2 \pi \mathbf{i}}{2 \pi}(-1)^{\operatorname{sign}(\xi(k))} \frac{1}{\omega_{0}-2 \xi(k)} \tag{7}\\
& =-\frac{V}{2} \int \mathrm{~d}^{d} k(-1)^{\operatorname{sign}(\xi(k))} \frac{1}{\omega_{0}-2 \xi(k)} \tag{8}
\end{align*}
$$

In the third line we assumed parity $\xi(k)=\xi(-k)$, and did the frequency integral by residues, as recommended. The orientation of the contour depends on the sign of $\xi(k)$. Now we use the approximation $d^{d} k \simeq k_{F}^{d-1} \frac{d \xi}{v_{F}} d \Omega_{d-1}$ to
write

$$
\begin{align*}
\mathcal{I} & =-V \underbrace{\frac{\int \mathrm{~d}^{d-1} k}{2 v_{F}}}_{\equiv N}\left(\int_{0}^{E_{D}} \frac{d \xi}{\omega_{0}-2 \xi}-\int_{-E_{D}}^{0} \frac{d \xi}{\omega_{0}-2 \xi}\right) \tag{9}\\
& =-N V\left(\int_{0}^{E_{D}} \frac{d \xi}{\omega_{0}-2 \xi}-\int_{0}^{E_{D}} \frac{d \xi}{\omega_{0}+2 \xi}\right) \tag{10}\\
& =-N V\left(-\frac{1}{2} \log \frac{\omega_{0}-2 E_{D}}{\omega_{0}}-\frac{1}{2} \log \frac{\omega_{0}+2 E_{D}}{\omega_{0}}\right) \tag{11}\\
& =N V\left(\log \frac{2 E_{D}}{\omega_{0}}+\frac{\mathbf{i} \pi}{2}\right) . \tag{12}
\end{align*}
$$

(e) Show that when $V<0$ is attractive, $\chi\left(\omega_{0}\right)$ has a pole. Does it represent a bound-state? Interpret this pole in the two-particle Green's function as indicating an instability of the Fermi liquid to superconductivity. Compare the location of the pole to the energy E_{BCS} where the Cooper-channel interaction becomes strong.
The pole occurs at

$$
0=1+\mathcal{I}=1+N V\left(\log \frac{2 E_{D}}{\omega_{0}}+\frac{\mathbf{i} \pi}{2}\right)
$$

which says

$$
\omega_{0}=2 \mathbf{i} E_{D} e^{-\frac{1}{N V}} .
$$

Note the crucial factor of \mathbf{i}. This says that the pole is in the UHP of the ω_{0} plane. The fact that the pole occurs in the UHP of the ω_{0} plane means that the Fourier transform of this quantity grows exponentially in time (for short times at least).
(f) Cooper problem. [optional] We can compare this result to Cooper's influential analysis of the problem of two electrons interacting with each other in the presence of an inert Fermi sea. Consider a state with two electrons with antipodal momenta and opposite spin

$$
|\psi\rangle=\sum_{k} a_{k} \psi_{k, \uparrow}^{\dagger} \psi_{-k, \downarrow}^{\dagger}|F\rangle
$$

where $|F\rangle=\prod_{k<k_{F}} \psi_{k, \uparrow}^{\dagger} \psi_{k, \downarrow}^{\dagger}|0\rangle$ is a filled Fermi sea. Consider the Hamiltonian

$$
H=\sum_{k} \epsilon_{k} \psi_{k, \sigma}^{\dagger} \psi_{k, \sigma}+\sum_{k, k^{\prime}} V_{k, k^{\prime}} \psi_{k, \sigma}^{\dagger} \psi_{k, \sigma} \psi_{k^{\prime}, \sigma^{\prime}}^{\dagger} \psi_{k^{\prime}, \sigma^{\prime}}
$$

Write the Schrödinger equation as

$$
\left(\omega-2 \epsilon_{k}\right) a_{k}=\sum_{k^{\prime}} V_{k, k^{\prime}} a_{k^{\prime}} .
$$

Now assume (following Cooper) that the potential has the following form:

$$
V_{k, k^{\prime}}=V w_{k^{\prime}}^{\star} w_{k}, \quad w_{k}= \begin{cases}1, & 0<\epsilon_{k}<E_{D} \\ 0, & \text { else }\end{cases}
$$

Defining $C \equiv \sum_{k} \omega_{k}^{\star} a_{k}$, show that the Schrödinger equation requires

$$
\begin{equation*}
1=V \sum_{k} \frac{\left|w_{k}\right|^{2}}{\omega-2 \epsilon_{k}} . \tag{14}
\end{equation*}
$$

Assuming V is attractive, find a bound state. Compare (1) to the condition for a pole found from the bubble chains above.
This leads to a boundstate at ω such that

$$
1=V N \int_{0}^{E_{D}} \frac{d \xi}{\omega-2 \xi}=-\frac{V N}{2} \log \left(\frac{-2 E_{D}}{\omega}\right)
$$

which says

$$
\omega=-2 E_{D} e^{-\frac{2}{|V| N}} .
$$

The Cooper bound-state equation (1) is just what we would get if we left out the contribution of the virtual electrons with $\xi<0$ - the ones below the Fermi energy (which in fact I did when I was first writing this problem). This results in a factor of two in the exponent (so the Cooper pair binding energy is exponentially larger than the magnitude frequency found above). More importantly it results in a minus sign rather than a factor of \mathbf{i} (a boundstate energy should be negative). Including (correctly) the effects of fluctuations below Fermi sea level changes the boundstate to an instability. I recommend the book by Schrieffer (called Superconductivity) for this subject.

2. Topological terms in QM. [from Abanov]

The purpose of this problem is to demonstrate that total derivative terms in the action (like the θ term in QCD) do affect the physics.
The euclidean path integral for a particle on a ring with magnetic flux $\theta=\int \vec{B} \cdot \mathrm{~d} \vec{a}$ through the ring is given by

$$
Z=\int[D \phi] e^{-\int_{0}^{\beta} \mathrm{d} \tau\left(\frac{m}{2} \dot{\phi}^{2}-\mathbf{i} \frac{\theta}{2 \pi} \dot{\phi}\right)}
$$

Here

$$
\begin{equation*}
\phi \equiv \phi+2 \pi \tag{15}
\end{equation*}
$$

is a coordinate on the ring. Because of the identification (2), ϕ need not be a single-valued function of τ - it can wind around the ring. On the other hand, $\dot{\phi}$ is single-valued and periodic and hence has an ordinary Fourier decomposition. This means that we can expand the field as

$$
\begin{equation*}
\phi(\tau)=\frac{2 \pi}{\beta} Q \tau+\sum_{\ell \in \mathbb{Z} \backslash 0} \phi_{\ell} e^{\mathrm{i} \frac{2 \pi}{\beta} \ell \tau} \tag{16}
\end{equation*}
$$

(a) Show that the $\dot{\phi}$ term in the action does not affect the classical equations of motion. In this sense, it is a topological term.
(b) Using the decomposition (3), write the partition function as a sum over topological sectors labelled by the winding number $Q \in \mathbb{Z}$ and calculate it explicitly.
[Hint: use the Poisson resummation formula

$$
\left.\sum_{n \in \mathbb{Z}} e^{-\frac{1}{2} t^{2}+\mathbf{i} z n}=\sqrt{\frac{2 \pi}{t}} \sum_{\ell \in \mathbb{Z}} e^{-\frac{1}{2 t}(z-2 \pi \ell)^{2}} .\right]
$$

I should have mentioned that more generally the Poisson resummation formula says

$$
\sum_{n} f(n)=\sum_{l} \hat{f}(2 \pi l)
$$

where $\hat{f}(p)=\int d x e^{-\mathrm{i} p x} f(x)$ is the fourier transform of f.
Using the given mode expansion and $\int_{0}^{\beta} d t e^{\frac{2 \pi \mathrm{i}\left(l-l^{\prime}\right) \tau}{\beta}}=\beta \delta_{l, l^{\prime}}$ the action is

$$
S[\phi]=\mathbf{i} \theta Q+\frac{m(2 \pi Q)^{2}}{2 \beta}+\sum_{\ell \neq 0} \frac{(2 \pi \ell)^{2} m}{2 \beta} \phi_{\ell} \phi_{-\ell}
$$

where $\phi_{\ell}=\phi_{-\ell}^{\star}$. Thus

$$
\begin{align*}
Z & =\sum_{Q \in \mathbb{Z}} e^{-\mathbf{i} \theta Q+\frac{m(2 \pi Q)^{2}}{2 \beta}} \prod_{\ell \neq 0} \int d^{2} \phi_{\ell} e^{\frac{(2 \pi \ell)^{2} m}{2 \beta} \phi_{\ell} \phi_{\ell}^{\star}} \tag{17}\\
& =\sum_{Q \in \mathbb{Z}} e^{-\mathbf{i} \theta Q+\frac{m(2 \pi Q)^{2}}{2 \beta}} \prod_{\ell \neq 0}\left(\frac{\beta}{2 \pi \ell^{2} m}\right) \tag{18}\\
& \propto \sum_{n \in \mathbb{Z}} e^{-\beta \frac{1}{2 m(2 \pi)^{2}}(\theta-2 \pi n)^{2}}=\sum_{n \in \mathbb{Z}} e^{-\beta \frac{1}{2 m}\left(n-\frac{\theta}{2 \pi}\right)^{2}} \tag{19}
\end{align*}
$$

where in the last step we used the above Poisson summation formula with $z=\theta$ and $t=\frac{m(2 \pi)^{2}}{\beta}$.
(c) Use the result from the previous part to determine the energy spectrum as a function of θ.
After the Poisson resummation, this is manifestly the partition function of a system with energies $E_{n}=\frac{1}{2 m}\left(n-\frac{\theta}{2 \pi}\right)^{2}$.
(d) Derive the canonical momentum and Hamiltonian from the action above and verify the spectrum.
Note that the action given above is the Euclidean action. The real time action (from which we should derive the hamiltonian) is

$$
S=\int d t\left(\frac{1}{2} m \dot{\phi}^{2}+\dot{\phi} \frac{\theta}{2 \pi}\right) .
$$

This gives $p=\frac{\partial L}{\partial \dot{\phi}}=m \dot{\phi}+\frac{\theta}{2 \pi}$, and hence

$$
H=\frac{\left(p-\frac{\theta}{2 \pi}\right)^{2}}{2 m}
$$

Now, since $\phi \equiv \phi+2 \pi$, its canonical momentum is quantized, $p \in \mathbb{Z}$, so

$$
E_{n}=\frac{1}{2 m}\left(n-\frac{\theta}{2 \pi}\right)^{2}
$$

as above. We find the following spectrum for various θ (I am plotting the energies of the states with wavenumbers $n \in[-3,2])$:

(In the axis label, I is the moment of inertia of the rotor.) Notice that when $\theta=\pi$, the groundstate becomes doubly degenerate.
(e) Consider what happens in the limit $m \rightarrow 0, \theta \rightarrow \pi$ with $X \equiv \frac{\theta-\pi}{m} \sim \beta^{-1}$ fixed. Interpret the result as the partition function for a spin $1 / 2$ particle. What is the meaning of the ratio X in this interpretation?
In this limit, the higher bands of energies go off to ∞, and we are left with a two-state system. X is a Zeeman field splitting the two states.

3. Grassmann brain-warmers.

(a) A useful device is the integral representation of the grassmann delta function. Show that

$$
-\int d \bar{\psi}_{1} e^{-\bar{\psi}_{1}\left(\psi_{1}-\psi_{2}\right)}=\delta\left(\psi_{1}-\psi_{2}\right)
$$

in the sense that $\int d \psi_{1} \delta\left(\psi_{1}-\psi_{2}\right) f\left(\psi_{1}\right)=f\left(\psi_{2}\right)$ for any grassmann function f. (Notice that since the grassmann delta function is not even, it matters on which side of the δ we put the function: $\int d \psi_{1} f\left(\psi_{1}\right) \delta\left(\psi_{1}-\psi_{2}\right)=f\left(-\psi_{2}\right) \neq$ $f\left(\psi_{2}\right)$.)
(b) Recall the resolution of the identity on a single qbit in terms of fermion coherent states

$$
\begin{equation*}
\mathbb{1}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}|\psi\rangle\langle\bar{\psi}| . \tag{20}
\end{equation*}
$$

Show that $\mathbb{1}^{2}=\mathbb{1}$. (The previous part may be useful.)
(c) In lecture I claimed that a representation of the trace of a bosonic operator was

$$
\operatorname{tr} \mathbf{A}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}\langle-\bar{\psi}| \mathbf{A}|\psi\rangle,
$$

and the minus sign in the bra had important consequences.
(Here $\langle-\bar{\psi}| \mathbf{c}^{\dagger}=\langle-\bar{\psi}|(-\bar{\psi})$).
Check that using this expression you get the correct answer for

$$
\operatorname{tr}\left(a+b \mathbf{c}^{\dagger} \mathbf{c}\right)
$$

where a, b are ordinary numbers.
(d) Prove the identity (4) by expanding the coherent states in the number basis. Using $|\psi\rangle=|0\rangle+\psi|1\rangle,\langle-\bar{\psi}|=\langle 0|-\bar{\psi}\langle 1|$, we have

$$
\begin{align*}
\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}|\psi\rangle\langle\bar{\psi}| & =\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}(|0\rangle+\psi|1\rangle)(\langle 0|-\bar{\psi}\langle 1|) \\
& =\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}(|0\rangle\langle 0|-\psi \bar{\psi}|1\rangle\langle 1|) \\
& =|0\rangle\langle 0|+|1\rangle\langle 1|=\mathbb{1} . \tag{21}
\end{align*}
$$

4. Fermionic coherent state exercise.

Consider a collection of fermionic modes c_{i} with quadratic hamiltonian $H=$ $\sum_{i j} h_{i j} c_{i}^{\dagger} c_{j}$, with $h=h^{\dagger}$.
(a) Compute tre $e^{-\beta H}$ by changing basis to the eigenstates of $h_{i j}$ (the singleparticle hamiltonian) and performing the trace in that basis: $\operatorname{tr} \ldots=\prod_{\epsilon} \sum_{n_{\epsilon}=c_{\epsilon}^{\dagger} c_{\epsilon}=0,1} \cdots$ In the eigenbasis of $h_{i j}$,

$$
H=\sum_{i j} h_{i j} c_{i}^{\dagger} c_{j}=\sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}
$$

the trace factorizes:

$$
\operatorname{tr} e^{-\beta H}=\prod_{\alpha} \sum_{n_{\alpha}=c_{\alpha}^{\dagger} c_{\alpha}=0,1} e^{-\beta \epsilon_{\alpha} n_{\alpha}}=\prod_{\alpha}\left(1+e^{-\beta \epsilon_{\alpha}}\right)=\operatorname{det}\left(1+e^{-\beta h}\right) .
$$

(b) Compute tre $e^{-\beta H}$ by coherent state path integral. Compare!

In lecture we showed for a single fermionic mode how to write the thermal partition function as a grassmann path integral

$$
\operatorname{tr} e^{-\beta H\left(c^{\dagger}, c\right)}=\int[D \psi D \bar{\psi}] e^{-\int_{0}^{\beta} d \tau\left(\bar{\psi} \partial_{\tau} \psi-H(\bar{\psi}, \psi)\right)}
$$

as long as H is normal-ordered. Here we just have many copies of that problem:

$$
\operatorname{tr} e^{-\beta H\left(c_{i}^{\dagger}, c_{j}\right)}=\int \prod_{i}\left[D \psi_{i} D \bar{\psi}_{i}\right] e^{-\int_{0}^{\beta} d \tau\left(\bar{\psi}_{i} \partial_{\tau} \psi_{i}-h_{i j} \bar{\psi}_{i} \psi_{j}\right)}
$$

To do this integral, let's go to frequency space:

$$
\psi_{i}(\tau)=\sum_{n} e^{-\omega_{n} \tau} \psi_{n i}, \quad \omega_{n}=\pi T(2 n+1)
$$

Further, let's change coordinates to diagonalize h, so we have

$$
\begin{align*}
Z & =\int \prod_{\alpha, n} d \psi_{\alpha, n} d \bar{\psi}_{\alpha, n} \prod_{\alpha, n} e^{-\bar{\psi}_{\alpha, n}\left(\mathbf{i} \omega_{n}-\epsilon_{\alpha}\right) \psi_{\alpha, n}} \tag{22}\\
& =\prod_{\alpha, n}\left(\mathbf{i} \omega_{n}-\epsilon_{\alpha}\right)=e^{\sum_{\alpha, n} \log \left(\mathrm{i} \omega_{n}-\epsilon_{\alpha}\right)} \tag{23}
\end{align*}
$$

So

$$
\begin{align*}
\log Z & =\sum_{\alpha, n} \log \left(\mathbf{i} \omega_{n}-\epsilon_{\alpha}\right) \tag{24}\\
& =\sum_{\alpha} \frac{1}{2 \pi \mathbf{i}} \oint_{C} d z \frac{\beta}{e^{\beta z}+1} \log \left(\mathbf{i} \omega_{n}-\epsilon_{\alpha}\right)
\end{align*}
$$

$$
=\frac{1}{2 \pi \mathbf{i}} \sum_{\alpha} \int_{\epsilon_{\alpha}}^{\infty} d z \operatorname{disc}\left(\frac{\beta}{e^{\beta z}+1} \log \left(\mathbf{i} \omega_{n}-\epsilon_{\alpha}\right)\right)
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi \mathbf{i}} \sum_{\alpha} \int_{\epsilon_{\alpha}}^{\infty} d z \frac{\beta}{e^{\beta z}+1} 2 \pi \mathbf{i} \\
& =\sum_{\alpha} \int_{\epsilon_{\alpha}}^{\infty} d z \frac{\beta}{e^{\beta z}+1}=\sum_{\alpha} \log \left(1+e^{-\beta \epsilon_{\alpha}}\right),
\end{aligned}
$$

which gives the same answer as above.
(c) [super bonus problem] Consider the case where $h_{i j}$ is a random matrix. What can you say about the thermodynamics?

