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1. Anomaly cancellation in the Standard Model. If we try to gauge a chiral

symmetry (such as hypercharge in the Standard Model (SM)), it is important

that it is actually a symmetry, i.e. is not anomalous. In D = 3 + 1, a possible

anomaly is associated with a choice of three currents, out of which to make a

triangle diagram. We’ll call a “G1G2G3 anomaly” the diagram with insertions of

currents for G1,G2 and G3. Generalizing a little, we showed that the divergence

of the current for G1 is

∂µj
Aµ
1 =

1

32π2
εµνρσF 2B

µν F
3C
ρσ

∑
f

(−1)f trR(f){TA1 , TB2 }TC3 .

The sum is over each Weyl fermion, R(f) is its representation under the combined

group G1×G2×G3, and TA1 are a basis of generators of the Lie algebra of G1 etc.

in the representation of the field f . By (−1)f I mean ± for left- and right-handed

fermions respectively.

We consider the possibilities in turn.

Schwartz §30.4 does most of this pretty explicitly.

(a) Convince yourself that the divergence of the U(1)Y hypercharge current gets

a contribution of the form

∂µJ
µ
Y =

(∑
left

Y 3
l −

∑
right

Y 3
r

)
g′2

32π2
εµνρσBµνBρσ

from the triangle with three insertions of the current itself (here B is the

hypercharge gauge field strength). The sum on the RHS is over all left-

and right-handed Weyl spinors weighted by the cube of their hypercharge.

Check that this sum evaluates to zero in the SM.

(b) Show that any anomaly of the form SU(N)U(1)2 or SU(N)G1G2 is zero.

(c) (Easy) Convince yourself that there is no SU(3)3 anomaly for QCD.

The charges of the fields under SU(3) are symmetric under L↔ R – i.e. QCD

is non-chiral – so there is a cancellation between the contributions of left-

and right-handed fields.
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(d) Check that there is never an SU(2)3 anomaly. (Hint: the generators satisfy

{τa, τ b} = 2δab.)

(e) Show that the SU(3)2U(1)Y anomaly demands that 2YQ−Yu−Yd = 0. Check

that this is true in the SM.

(f) Show that a necessary condition for hypercharge to not have an anomaly

with the Electroweak gauge bosons on the RHS is YL + 3YQ = 0, where YL
and YQ are the hypercharges of the left-handed leptons and quarks. Check

that this works out in the SM.

It gets contributions only from left-handed fields (those charged under SU(2)EW ):

tr{τa, τ b}Y = δab
∑

left Yl = YL + 3YQ because the quarks carry 3 colors.

(g) There is another kind of anomaly called a gravitational anomaly. This is

a violation of current conservation in response to coupling to curved space.

An example is of the form

∂µj
µ
Y = atrR∧R

where R is a two-form related to the curvature of spacetime (analogous

to the field strength F ). The coefficient a is proportional to
∑

left trYl −∑
right trYr. Check that this too vanishes for hypercharge in the Standard

Model.

These conditions, plus the assumption that the right-handed neutrino is neutral,

actually determine all the hypercharge assignments.

2. Right-handed neutrinos.

[from Iain Stewart, and hep-ph/0210271]

Consider adding a right-handed singlet (under all gauge groups) neutrino NR

to the Standard Model. It may have a majorana mass M ; and it may have a

coupling gν to leptons, so that all the dimension ≤ 4 operators are

LN = N̄Ri/∂NR −
M

2
N̄ c
RNR −

M

2
N̄RN

c
R +

(
gνN̄RH

T
i Ljε

ij + h.c.
)

where N c
R = C

(
N̄R

)T
is the the charge conjugate field, C = iγ2γ0 (in the Dirac

representation), H is the Higgs doublet, L is the left-handed lepton doublet,

containing νL and eL. Take the mass M to be large compared to the electroweak

scale. Integrate out the right-handed neutrinos at tree level. [Hint: you may find

it useful to work in terms of the Majorana field

N ≡ NR +N c
R
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which satisfies N = N c.]

Show that the leading term in the expansion in 1/M is a dimension-5 operator

made of Standard Model fields. Explain the consequences of this operator for

neutrino physics, assuming a vacuum expectation value for the Higgs field.

In terms of N , the lagrangian is

LN =
1

2
N̄ (i/∂ −M)N + gνN̄HiLjε

ij + gνN̄H
?
i L

c
jε
ij.

The equation of motion for N (from varying N̄) is

(i/∂ −M)N = −gν
(
HiLj +H?

i L
c
j

)
εij

which gives

LN | = −
1

2
gν
(
L̄cjHi + L̄jH

?
i

)
εij

1

i/∂ −M
gν (HkL` +H?

kL
c
`) ε

k`.

As for our discussion of W -bosons, we expand this in powers of 1/M to get a

local effective field theory. The leading term is

O(5) =
g2
ν

M
L̄cjHiε

ijL`Hkε
k` + h.c.

Plugging in 〈H〉 6= 0, this is a neutrino mass.

Place a bound on M assuming that the observed neutrinos have masses mν < 0.5

eV.

In terms of the parameterization from lecture, mν = c5v2

2Λnew
. This gives Λnew ≥

1014GeV for c5 ∼ 1. We find Λnew/c5 ∼M , so M ≥ 1014GeV.

3. Gross-Neveu model.

Here’s an example which illustrates the manipulations we did in describing the

BCS phenomenon. Now that we’ve learned about fermionic path integrals, con-

sider the partition function for an N -vector of fermionic spinor fields in D di-

mensions:

Z =

∫
[dψdψ̄]eiS[ψ], S[~ψ] =

∫
dDx

(
ψ̄ai/∂ψa − g

N

(
ψ̄aψa

)2
)
.

(a) At the free fixed point, what is the dimension of the coupling g as a func-

tion of the number of spacetime dimensions D? Show that it is classically

marginal in D = 2, so that this action is (classically) scale invariant.
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(b) We will show that this model in D = 2 exhibits dimensional transmutation

in the form of a dynamically generated mass gap. Here are the steps: first

use the Hubbard-Stratonovich trick to replace ψ4 by σψ2 +σ2 in the action,

where σ is a scalar field. Then integrate out the ψ fields. Find the saddle

point equation for σ; argue that the saddle point dominates the integral for

large N . Find a translation invariant saddle point. Plug the saddle point

configuration of σ back into the action for ψ and describe the resulting

dynamics.

We can decouple the quartic term by writing

Z =

∫
[Dψψ̄]eiS[ψ] =

∫
[DψDψ̄Dσ]eiS2[ψ]+i

∫
dDx(σψ̄aψa+h.c.)+i

∫
dDx

Nσ2(x)
2g .

(1)

Now the integral over ψ is gaussian:∫
[DψDψ̄Dσ]e

∫
dDxψ̄a(i/∂+σ)ψa =

(
det
(
i/∂ + σ

))N
= eNtr log(i/∂+σ).

The resulting path integral is

Z =

∫
[Dσ]eiNSeff[σ]

with Seff[σ] =
∫
dDxσ

2

2g
+ δS[σ] where the term generated by the fermionic

fluctuations is

δS[σ] = tr log
(
/∂ + σ

)
.

We can take care of the spin indices by noticing that

trspin log
(
/∂ + σ

)
=

1

2

(
trspin log

(
/∂ + σ

)
+ trspin log

(
−/∂ + σ

))
(2)

=
1

2
trspin log

(
−∂2 + σ2

) D=2
= log

(
−∂2 + σ2

)
(3)

where at the last step we used the fact that the Dirac spinor in 2D has two

components.

If we assume that σ is constant in spacetime, we can do the trace in mo-

mentum space (V is the volume of spacetime):

tr log
(
−∂2 + σ2

)
= V

∫
d̄Dp log

(
p2 + σ2

)
(4)

Wick rotate
= iV

1

2π
i

∫ Λ

0

pdp log
(
p2 + σ2

)
(5)

= i
V

π

(
−σ2 log

σ2

Λ2
+ UV divergent terms

)
. (6)
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I introduced a hard UV cutoff, since we have no gauge invariance to preserve.

At the last step I’ve assumed σ � Λ. We ignore the divergent constants.

Because of the big honking factor of N in front of Seff, the σ integral is

dominated by its saddle point configuration, where

0 =
δSeff

δσ
= V

(
σ

g
+

2σ

π
(1 + log σ/Λ)

)

from which we conclude that there is a minimum for σ at

σ = Λe−
π
g /
√
e. (The figure at right is for g = .3,Λ = 1000.)

Thus, the fermions get a mass of order Λe−π/g, non-perturbative in g, and

parametrically smaller than the cutoff.

4. Polyacetylene returns.

On HW01 problem 4, you may have wondered what is the connection between

the field theory we were studying (a scalar coupled to fermions in D = 2) and

polyacetylene. I’d like to explain that connection a bit.

Consider an extension of the model above to include also phonon modes, i.e. de-

grees of freedom encoding the positions of the ions in the solid. (Again we ignore

the spins of the electrons for simplicity.)

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.+
∑
n

K(un − un+1)2 ≡ HF +HE.

Here un is the deviation of the nth ion from its equilibrium position (in the +x

direction), so the second term represents an elastic energy.

(a) (The part with the free massless Dirac field you had time to do on HW2.)

(b) Consider a configuration

un = φ(−1)n (7)

where the ions move closer in pairs. Compute the electronic spectrum.

(Hint: this enlarges the unit cell. Define c2n ≡ an, c2n+1 ≡ bn, and solve in

Fourier space, an ≡
∮

d̄ke2iknak etc.) You should find that when φ 6= 0 there

is a gap in the electron spectrum (unlike φ = 0). Expand the spectrum near

the minimum gap and include the effects of the field φ in the continuum

theory.
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When doubling the unit cell, we halve the Brillouin zone. So even when

φ = 0, the spectrum gets folded on itself, like this:

1 2 3 4 5 6
k

-1.0

-0.5

0.5

1.0

ε

This means that at half-filling, with φ = 0, it looks like there is a Dirac

point at k = π/2.

Now, including φ, it allows the two branches of the Dirac point to mix with

each other and produces a gap:

ε(k) = ±
√

cos2 k + φ2 sin2 k

which looks like this:

0.5 1.0 1.5 2.0 2.5 3.0
k

-1.0

-0.5

0.5

1.0

ϵk

ϕ=0

ϕ=1/2

Near the minimum gap at k = π/2, we can expand to find

ε(k =
π

2
+ δk) = ±

√
cos2 k(1− φ2) + φ2 = ±

√
δk2(1− φ2) + φ2. (8)

Comparing to the spectrum of a Dirac fermion with action

S[ψ, φ] =

∫
d2x

(
ψ̄i/∂ψ − φψ̄ψ

)
which has

H = γ0(iγ1∂x − φ) =

(
φ k

k −φ

)
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and therefore

εk = ±
√
k2 + φ2

which agrees with (??) at small k (which is really the deviation from k =

π/2) and small φ.

(c) Peierls’ instability. Compute the groundstate energy of the electrons HF

in the configuration (1), at half-filling (i.e. the number of electrons is half

the number of available states). Check that you recover the previous answer

when φ = 0. Interpret the answer when φ = 1.

Compute HE in this configuration, and minimize the sum of the two as a

function of φ.

At half-filling, in the groundstate the lower band is filled. The energy is

EF (φ) = −
∮
dk

√
cos2 k + φ2 sin2 k = − 1

π
EllipticE(1− φ2).

For 8K2 = .2 the total energy looks like this:

0.2 0.4 0.6 0.8 1.0
ϕ

-0.335

-0.330

-0.325

-0.320

-0.315

-0.310

-0.305

-0.300

EF+EE

There is a minimum at φ2 6= 0, i.e. two minima at φ = ±φ0. Increasing φ

lowers the total energy because it lowers the energy of the filled states.

(d) You should find that the energy is independent of the sign of φ. This means

that there are two groundstates. We can consider a domain wall between a

region of + and a region of −. Show that this domain wall carries a fermion

mode whose energy lies in the bandgap and has fermion number ±1
2
.

The basic idea is that φ must go through zero in between. We showed on

HW01 that this is the case using the field theory we derived in the earlier

parts of the problem. In particular, the two states (zero-mode occupied and

zero-mode unoccupied) must have a fermion number which differ by 1, but

they are related to each other by particle-hole symmetry, so they must have

fermion number ±1
2

(as we found on HW01).
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(e) Verify the result of the previous part by diagonalizing the relevant tight-

binding matrix.

Here is the spectrum of a chain (of length 40) with φ = +0.5 everywhere:

0 10 20 30 40 50 60 70 80
eigenvalue number

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

E

And here is the result when φ switches to −0.5 in the middle:

0 10 20 30 40 50 60 70 80
eigenvalue number

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

E

The wavefunctions of the states in the middle look like

0 10 20 30 40 50 60 70 80
n

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Re
(

n)

eigenfunctions of the midgap states
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(f) Time-reversal played an important role here. If we allow complex hopping

amplitudes, we can make a domain wall without midgap modes. Explain

this from field theory. Bonus: explain this from the lattice hamiltonian.

If the mass is allowed to be complex, then we can interpolate between −m
and +m without going through m = 0.
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