
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2019
Assignment 1 – Solutions

Due 12:30pm Monday, April 8, 2019

Some of you will have seen some of these problems in Winter 2018 215B. Please do

the parts you didn’t do then.

1. Brain-warmer: chiral anomaly in two dimensions.

Consider a massive relativistic Dirac fermion in 1+1 dimensions, with

S =

∫
dxdtψ̄ (iγµ (∂µ + eAµ)−m)ψ.

By heat-kernel regularization of its expectation value, show that the divergence

of the axial current j5
µ ≡ iψ̄γµγ

5ψ is

∂µj
5
µ = 2imψ̄γ5ψ +

e

2π
εµνF

µν .

The calculation follows very closely the one in the lecture notes. There are two

new ingredients: the mass, and the change to D = 2. We know that classically

the mass contributes to a violation of the axial current (in any even dimension).

From the derivation in terms of the path integral measure we can see that the

effects of this and the anomaly contribute additively to the divergence of j5
µ.

Again we expand the exponent using (i /D)2 = D2 + ı
2
iΣµνFµν . In D = 2, we

use the fact that trγ5Σµν = 2εµν (check by picking a basis or using the Clifford

algebra directly) to find that the contribution from the anomaly is:

∂µ
〈
j5
µ

〉
= strγ5ΣµνFµν

∫
d̄2ke−sk

2

︸ ︷︷ ︸
= 1

4πs

+O(s)
s→0
=

1

2π
εµνFµν .

2. Where to find a Chern-Simons term.

Consider a field theory in D = 2 + 1 of a massive Dirac fermion, coupled to a

background U(1) gauge field A:

S[ψ,A] =

∫
d3xψ̄

(
i /D −m

)
ψ

where Dµ = ∂µ − iAµ.
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(a) Convince yourself that the mass term for the Dirac fermion in D = 2 + 1

breaks parity symmetry. That is, parity takes m → −m. (Note that the

definition of a parity transformation in d spatial dimensions is an element

of O(d, 1) that’s not in SO(d, 1), i.e. one with det(g) = −1.)

First: the definition of parity is an element of O(d, 1) that’s not in SO(d, 1),

i.e. one with det(g) = −1. In three spatial dimensions this is accomplished

by (t, ~x) → (t,−~x). But in two spatial dimensions, the analogous transfor-

mation has only two minus signs and so has determinant one – it is just

a π rotation. (Certainly ψ̄ψ is invariant under it. And in fact Peskin’s

argument for the transformation of the Dirac field goes through exactly –

it picks up a γ0.) Instead we must do something like (t, x, y) → (t, x,−y)

(other transformations are related by composing with a rotation).

Now we must figure out what this does to the Dirac spinor. First recall

that the clifford algebra in D = 2 + 1 can be represented by 2× 2 matrices

(e.g. the Paulis, times some factors of i to get the squares right) and there is

no notion of chirality, since the product of the three Paulis is proportional

to the identity. We want an operation on ψ(t, x,−y) which gives back the

(massless) Dirac equation:

0 =
(
γ0∂t + γ1∂x + γ2∂y

)
ψ(t, x,−y) =

(
γ0∂t + γ1∂x − γ2∂ỹ

)
ψ(t, x, ỹ)

with ỹ ≡ −y. Inserting 1 = −γ2
2 before ψ we have

0 =
(
γ0∂t + γ1∂x − γ2∂ỹ

) (
−γ2

2

)
ψ(t, x, ỹ) = γ2

(
γ0∂t + γ1∂x + γ2∂ỹ

)
γ2ψ(t, x, ỹ)

which is proportional to /∂γ2ψ(x̃) = 0. We conclude that Pψ(t, x, y)P =

γ2ψ(t, x,−y) will work (up to a sign).

This gives ψ̄ψ 7→
(
ψ†γ2†) γ0γ2ψ = ψ̄ (γ2)

2
ψ = −ψ̄ψ, while ψ̄ /Dψ → ψ̄ /Dψ.

Here we used (γµ)† γ0 = γ0γµ, andAµ(t, x, y)→ (A0(t, x,−y), Ax(t, x,−y),−Ay(t, x,−y))µ.

(b) We would like to study the effective action for the gauge field that results

from integrating out the fermion field

e−Seff [A] =

∫
[Dψ]e−S[ψ,A].

Focus on the term quadratic in A:

Seff [A] =

∫
dDqAµ(q)Πµν(q)Aν(−q) + ...

We can compute Πµν by Feynman diagrams. Convince yourself that Π comes

from a single loop of ψ with two A insertions.
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(c) Evaluate this diagram using dim reg near D = 3. Show that, in the low-

energy limit q � m (where we can’t make on-shell fermions),

Πµν = a
m

|m|
εµνρqρ + ...

for some constant a. Find a. Convince yourself that in position space this

is a Chern-Simons term with level k = 1
2
m
|m| .

The key ingredient is that in D = 3 we have trγµγνγρ = −2εµνρ. Note

that this would have been zero in D = 4, as in Peskin’s calculation on page

247-248.

Clearly this shows that the mass term is odd under parity, since the Chern-

Simons term it generates is proportional to sign(m).

(d) [bonus] Redo this calculation by doing the Gaussian path integral over ψ.

Roughly: ∫
[DψDψ̄]eS[ψ,ψ̄,A] = det

(
i /D −m

)
= etr log(i /D−m).

Therefore

Seff[A] = tr log
(
i/∂ − /A−m

)
= tr log

(
i/∂ −m

) (
1 + /A

(
i/∂ −m

)−1
)
.

We need to expand this in A to second order to get Π, and the result is

Seff[A] = ...+

∫
d3x 〈x| /A

(
i/∂ −m

)−1 /A
(
i/∂ −m

)−1 |x〉 (1)

= ...+

∫
d3x

∫
d̄dqe−iqxAµ(q)Aν(−q)

∫
d̄dptr

(
γµ

1

/p−m
γν

1

/p− /q −m

)
(2)

which is the same as the diagrammatic calculation above.

3. A bit more about Chern-Simons theory.

Consider again U(1) gauge theory in D = 2+1 dimensions with the Chern-Simons

action

S[a] =
k

4π

∫
Σ

a ∧ da.

(Here I’ve changed the name of the dynamical gauge field to a lowercase a to

distinguish it from the electromagnetic field A which will appear anon.)

(a) Show that the Chern-Simons action is gauge invariant under a→ a+dλ, as

long as there is no boundary of spacetime Σ. Compute the variation of the

action in the presence of a boundary of Σ.
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(b) [bonus] Actually, the situation is a bit more subtle than the previous part

suggests. The actual gauge transformation is

a→ g−1ag +
1

i
g−1dg

which reduces to the previous if we set g = eiλ. That expression, however,

ignores the global structure of the gauge group (e.g. in the abelian case, the

fact that g is a periodic function). Consider the case where spacetime is

Σ = S1 × S2, and consider a large gauge transformation:

g = einθ

where θ is the coordinate on the circle. Show that the variation of the CS

term is k
4π

∫
g−1∂g∧ f (where f = da). Since the action appears in the path

integral in the form eiS, convince yourself that the path integrand is gauge

invariant if

(1)
∫

Γ
f ∈ 2πZ for all closed 2-surfaces Γ in spacetime, and

(2) k ∈ Z.

The first condition is called flux quantization, and is closely related to Dirac’s

condition.

(c) [bonus] In the case where G is a non-abelian lie group, the argument for

quantization of the level (k) is more straightforward. Show that the variation

of the CS Lagrangian

LCS =
k

4π
tr

(
a ∧ da+

2

3
a ∧ a ∧ a

)
under a→ gag−1 − ∂gg−1 is

LCS → LCS +
k

4π
dtrdgg−1 ∧ a+

k

12π
tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

The integral of the second term over any closed surface is an integer. Con-

clude that eiSCS is gauge invariant if k ∈ Z.

The first term integrates to zero on a closed manifold. The second term is

the winding number of the map g : Σ→ G

(d) If there is a boundary of spacetime, something must be done to fix up this

problem. Consider the case where Σ = R × UHP where R is the time

direction, and UHP is the upper half-plane y > 0. One way to fix the

problem is simply to declare that the would-be gauge transformations which

do not vanish at y = 0 are not redundancies. This means that they represent

physical degrees of freedom.
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The exterior derivative on this spacetime decomposes into d = ∂tdt+d̃ where

d̃ is just the spatial part, and similarly the gauge field is a = a0dt+ ã.

Let us choose the gauge a0 = 0. We must still impose the equations of

motion for a0 (in the path integral it is a Lagrange multiplier). Solve this

equation, and evaluate the action for the resulting solution.

We must still impose the equations of motion for a0 (in the path integral it

is a Lagrange multiplier) which says d̃ã = 0 (just the spatial part). (If you

took seriously the boundary terms in the variation of the action, you would

also conclude that ã|∂Σ = 0, but this conclusion can be modified by adding

boundary terms to the action.) This equation is solved by ã = d̃φ (or rather

ã = g−1dg where g is a U(1)-valued function). This is pure gauge except at

the boundary. Plugging this into the CS term gives

S =
k

4π

∫
R×D

ã ∧
(
dt∂t + d̃

)
ã (3)

=
k

4π

∫
R×D

d̃φ ∧ dt∂td̃φ (4)

=
k

4π

∫
R×D

d̃
(
φ ∧ dt∂td̃φ

)
(5)

Stokes
=

k

4π

∫
R×∂D

φdt∂td̃φ (6)

=
k

4π

∫
R×∂D

dxdtφ∂t∂xφ (7)

IBP
= −

∫
R×∂D

dxdt∂xφ∂tφ. (8)

We can also add local terms at the boundary to the action. Consider adding

∆S = g
∫
∂Σ
ã2
x (for some coupling constant g). In the presence of such a

boundary term, find the equations of motion for the boundary degrees of

freedom.

This term evaluates to ∆S =
∫
∂Σ
v (∂xφ)2 . Altogether we now have

Sedge[φ] =

∫
y=0

dxdt∂xφ

(
k

4π
∂tφ+ g∂xφ

)
.

The EoM is then

δ

δφ(x)
Sedge[φ] ∝ ∂x

(
k

4π
∂tφ+ g∂xφ

)
which is solved if k

4π
∂tφ + g∂xφ = 0. This describes a dispersionless wave

which moves only in the sign(k) direction – a chiral bosonic edge mode.
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I should mention that this physics is realized in integer quantum Hall states

and incompressible fractional quantum Hall states. For more, I recommend

the textbook by Xiao-Gang Wen.

Interpretation: the Chern-Simons theory on a space with boundary neces-

sarily produces a chiral edge mode.

This was pointed out by Witten here (in §5).

(e) Suppose we had a system in 2 + 1 dimensions with a gap to all excitations,

which breaks parity symmetry and time-reversal invariance, and involves a

conserved current Jµ, with

0 = ∂µJµ. (9)

Solve this equation by writing Jµ = εµνρ∂νaρ in terms of a one-form a =

aµdx
µ. Guess the leading terms in the action for aµ in a derivative expansion.

Well, the CS term has dimension 3 so is marginal. It has just the right

symmetries. We can also add a Maxwell term, but that has dimension 4 so

we can ignore it at low energies.

(f) Now suppose the current Jµ is coupled to an external electromagnetic field

Aµ by S 3
∫
JµAµ. Ignoring the Maxwell term for a, compute the Hall

conductivity, σxy, which is defined by Ohm’s law Jx = σxyEy.

Using the action

S[a,A] =

∫ (
k

4π
a ∧ da+ JµAµ

)
=

∫
d3x

k

4π
εµνρaµ∂νaρ + εµνρ∂νaρAµ

we find the EoM

0 =
δS

δa
∝ k

2π
fµν + F µν .

Using J = ?da we can rewrite this as

F µν =
k

2π
εµνρJρ.

The components of this equation with µ, ν = 0, i) say Ei = k
2π
εijJj or

Jj =
2π

k
εijE

j

which says σxy = 4π
k

(in natural units, which means σxy = 1
k
e2

h
).

4. An application of the anomaly to a theory without gauge fields.

Consider a 1+1d theory of Dirac fermions coupled to a background scalar field θ

as follows:

L = Ψ̄
(
i/∂ +meiθγ

5
)

Ψ.
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We wish to ask: if we subject the fermion to various configurations of θ(x) (such

as a domain wall where θ(x) = π+θ(x)) what does the fermion number do in the

groundstate?

(a) Convince yourself that when θ is constant

〈jµ〉 = 0

where jµ = Ψ̄γµΨ is the fermion number current.

Lorentz invariance forbids an expectation value for a vector quantity.

(b) Minimally couple the fermion to a background gauge field Aµ. Let eiΓ[A,θ] =∫
[dΨ]eiS. Convince yourself that the term linear in A in Γ[A, θ] = const +∫
AµJ

µ +O(A2) is the vacuum expectation value of the current 〈jµ〉 = Jµ.

A is a source for j in the path integral:

1

i

δ

δAµ(x)
logZ[A] = Z−1

∫
Dψjµ(x)eiS = 〈jµ(x)〉 .

(c) Show that by a local chiral transformation Ψ → eiθ(x)γ5/2Ψ we can remove

the dependence on θ from the mass term.

(d) Where does the theta-dependence go? Use the 2d chiral anomaly to relate

〈jµ〉 to ∂θ. Notice that the result is independent of m. [This relation

was found by Goldstone and Wilczek. The associated physics is realized in

Polyacetylene.]

iΓ[A, θ] = tr log
(
i /D +meiθ

)
= i

∫
AµJ

µ +O(A2).

It looks challenging to evaluate this determinant. But we’ve already done

the necessary work in studying the chiral anomaly. The variation of the

effective action under a (can be local!) chiral rotation by angle θ(x) is

δΓ =

∫
d2xθ(x)

Fµνε
µν

2π
.

Since we showed Γ[θ = constant] = 0, the anomaly is the whole thing:

Γ[A, θ] =

∫
d2xθ(x)

Fµνε
µν

2π
IBP
= −

∫
d2x

∂µθε
µν

2π
Aν

Therefore

〈jµ〉 = −∂µθε
µν

2π
.
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(e) Show that a domain wall where θ jumps from 0 to π localizes fractional

fermion number.

The charge on the domain wall is

Q =

∫ ε

−ε
dxj0 =

∫ ε

−ε
dx
∂xθ

2π
=

1

2π
(θ(+ε)− θ(−ε)) =

1

2
.

(f) [bonus problem] Consider the Dirac hamiltonian in the presence of such a

soliton. Show that there is a localized mode of zero energy.

In the basis for the gamma matrices where

γ0 = σ1, γ1 = iσ2, γ5 ≡ γ0γ1 = −σ3,

the D = 2 Dirac Hamiltonian is

H = γ0(i~γ·~∇+m(x)) = −σ3i∂x+σ
1m(x), m(x) = meiθ(x)γ5 = cos θ−iσ3 sin θ

so

H = −σ3i∂x +m(σ1 cos θ(x)− σ2 sin θ(x)).

The condition for a zero-mode is

0 = Hψ =

(
−i∂x e

iθ

e−iθ i∂x

)(
ψ↑
ψ↓

)
,

with ψ normalizable. If θ(x) =

{
0, x < 0

π, x > 0
, then m(x) =

{
m,x < 0

−m,x > 0
.

Let’s expand ψ in eigenstates of σ2 (ψ↑ = ±iψ↓); since {H, σ2} = 0, the

terms don’t mix, and we find

0 = −i∂x (±iψ↓)+m(x)ψ↓ = (±∂x +m(x))ψ↓ =⇒ ψ↓(x) = ψ↓(0)e∓
∫ x
0 dx′m(x′).

Only one of the two choices (the lower sign) is normalizable far from the

domain wall (on both sides), which gives the localized zero-energy mode

ψ(x) = ψ↓(0)e−m|x|
(
−i

1

)
.
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