University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2017 Assignment 5

Due 12:30pm Wednesday, May 10, 2017

1. Grassmann brain-warmers.

(a) A useful device is the integral representation of the grassmann delta function. Show that

$$
-\int d \bar{\psi}_{1} e^{-\bar{\psi}_{1}\left(\psi_{1}-\psi_{2}\right)}=\delta\left(\psi_{1}-\psi_{2}\right)
$$

in the sense that $\int d \psi_{1} f\left(\psi_{1}\right) \delta\left(\psi_{1}-\psi_{2}\right)=f\left(\psi_{2}\right)$ for any grassmann function f.
(b) Recall the resolution of the identity on a single qbit in terms of fermion coherent states

$$
\begin{equation*}
\mathbb{1}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}|\psi\rangle\langle\bar{\psi}| . \tag{1}
\end{equation*}
$$

Show that $\mathbb{1}^{2}=\mathbb{1}$. (The previous part may be useful.)
(c) In lecture I claimed that a representation of the trace of a bosonic operator was

$$
\operatorname{tr} \mathbf{A}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}\langle-\bar{\psi}| \mathbf{A}|\psi\rangle
$$

and the minus sign in the bra had important consequences.
(Here $\langle-\bar{\psi}| \mathbf{c}^{\dagger}=\langle-\bar{\psi}|(-\bar{\psi})$).
Check that using this expression you get the correct answer for

$$
\operatorname{tr}\left(a+b \mathbf{c}^{\dagger} \mathbf{c}\right)
$$

where a, b are ordinary numbers.
(d) Prove the identity (1) by expanding the coherent states in the number basis.

2. Fermionic coherent state exercise.

Consider a collection of fermionic modes c_{i} with quadratic hamiltonian $H=$ $\sum_{i j} h_{i j} c_{i}^{\dagger} c_{j}$, with $h=h^{\dagger}$.
(a) Compute tre $e^{-\beta H}$ by changing basis to the eigenstates of $h_{i j}$ (the singleparticle hamiltonian) and performing the trace in that basis: tr... $=\prod_{\epsilon} \sum_{n_{\epsilon}=c_{\epsilon}^{\dagger} c_{\epsilon}=0,1} \ldots$
(b) Compute $\operatorname{tr} e^{-\beta H}$ by coherent state path integral. Compare!
(c) [super bonus problem] Consider the case where $h_{i j}$ is a random matrix. What can you say about the thermodynamics?

3. Gross-Neveu model.

Now that we've learned about fermionic path integrals, consider the partition function for an N-vector of fermionic spinor fields in D dimensions:

$$
Z=\int[d \psi d \bar{\psi}] e^{\mathbf{i} S[\psi]}, \quad S[\vec{\psi}]=\int \mathrm{d}^{D} x\left(\bar{\psi}^{a} \mathbf{i} \not \partial \psi^{a}-\frac{g}{N}\left(\bar{\psi}^{a} \psi^{a}\right)^{2}\right) .
$$

(a) At the free fixed point, what is the dimension of the coupling g as a function of the number of spacetime dimensions D ? Show that it is classically marginal in $D=2$, so that this action is (classically) scale invariant.
(b) Follow the steps from the $\mathrm{O}(N)$ saddle problem on the previous homework to show that this model in $D=2$ exhibits dimensional transmutation in the form of a dynamically generated mass gap.

