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Whence QFT? (239a) Spring 2014
Assignment 6

Posted June 4 2014 Due later

All problems are optional in the following sense: if you are sure that you know the ideas
involved so well that it would be a waste of your time to do the problem, don’t do it, or
merely sketch the answer. By this point in your education you don’t need to rely on me to
determine what you know and don’t know.

1. Warmup. Compute the scaling dimension of the operator Ok ≡: eikX : in the free
boson theory whose stress tensor is T (z) = − 1

α′ : ∂X∂X(z) :, using the TOk OPE.

2. Linear dilaton CFT.

The linear dilaton theory is a 2d CFT made from a free boson in the presence of a
’background charge.’ This means that the boson X has some funny coupling to the
worldsheet gravity, which can be described by a linear dilaton term in the action SΦ =∫
d2σΦ(X)R(2), Φ(X) = QX, Q is a constant. On a flat worldsheet, the quantization

of X proceeds as before. In that case, the only difference from the ordinary free boson
is that the stress tensor (which is sensitive to how the theory is coupled to gravity) has
the form

TQ = − 1

α′
: ∂X∂X : +V ∂2X

(where V ∼ Q).

[Optional: relate V to Q.]

(a) Verify that TQ has the right OPE with itself to be the stress tensor for a CFT.
Compute the Virasoro central charge for the linear dilaton theory.

(b) Compute the scaling dimension of the operator : eikX : in the linear dilaton theory.

3. The stress tensor is not a conformal primary if c 6= 0. 1

(a) For any 2d CFT, use the general form of the TT OPE to show that the transfor-
mation of T under an infinitesimal conformal transformation z 7→ z + ξ(z) is

δξT (w) = (ξ∂ + 2∂ξ)T (w) +
c

12
∂3ξ. (1)

(b) Consider the finite conformal transformation z 7→ f(z). Show that (1) is the
infinitesimal version of the transformation law

T (z) 7→ (∂f)2T (f(z)) +
c

12
{f, z}

1I got this problem from Robbert Dijkgraaf.
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where

{f, z} ≡
∂f∂3f − 3

2
(∂2f)2

(∂f)2

is called a Schwarzian derivative.

[Optional: verify that this extra term does the right thing when composing two maps
z → f(z)→ g(f(z)).]

(c) Given that the conformal map from the cylinder to the plane is z = e−iw, show
that (b) means that

Tcyl(w)(dw)2 =
(
Tplane(z)− c

24

)
(dz)2.

Use this relation to show that the Hamiltonian on the cylinder

H =

∫
dσ

2π
Tττ

is

H = L0 + L̃0 −
c+ c̄

24
.

Comment: After all this complication, the result has a very simple physical inter-
pretation: when putting a CFT on a cylinder, the scale invariance is spontaneously
broken by the fact that the cylinder has a radius, i.e. the cylinder introduces a (world-
sheet) length scale into the problem. The term in the energy extensive in the radius
of the cylinder but not the length (and proportional to c) is actually experimentally
observable sometimes.

4. OPE and mode commutator algebra. [Bonus tedium] This is a continuation of
the problem on HW 5 about the SU(2) radius.

Defining modes of the current (as usual for a dimension 1 operator) by

Ja(z) =
∑
n∈Z

Janz
−n−1

show (from the current-current OPE) that

[Jam, J
b
n] = iεabcJ cm+n +mkδabδm+n

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that the
m = 0 modes satisfy the ordinary SU(2) lie algebra.

5. Constraints from Unitarity. Show that in a unitary CFT, c > 0, and h ≥ 0 for all
primaries. Hint: consider 〈φ|[Ln, L−n]|φ〉.

6. Orbifolds.

Suppose you have in your possession a 2d CFT with the correct central charge to
provide (part of) a critical string background. Suppose further that this CFT has a
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symmetry group Γ (for simplicity let’s assume it’s discrete, finite and abelian). For
example, say the CFT is a sigma model, and the target space has a discrete isometry,
which could be a subgroup of a continuous isometry.

Let’s try to make a new CFT by gauging this symmetry; in particular, this will mean
projecting onto states invariant under Γ.

(a) By considering the torus amplitude of this theory, show that a modular transfor-
mation (τ → −1/τ) relates the projection onto Γ-invariant states to a sum over new
sectors of states called twisted sectors. These are sectors of strings which are only
closed modulo the action of Γ:

x(σ + 2π) = γx(σ)

for some γ ∈ Γ.

The resulting procedure of projecting onto invariant states and summing over twisted
sectors in a modular-invariant way is called the orbifold construction.

(b) Consider the simple example where our initial CFT is four free bosons of infinite
radius; group them into complex pairs zi=1,2, and consider the group Γ = ZN generated
by

γ :

((
z1

z2

))
→
((

ω 0
0 ω−1

))((
z1

z2

))
, ωN = 1.

For the case of N = 2, compute the spectrum of marginal operators. Note that γ
does not act freely; the geometric space you get by identifying points under gamma is
therefore scary to mathematicians; it is called an AN−1 singularity. Strings propagation
on this space on the other hand is completely fine.

(c) [BONUS] Note that the orbifolded theory has a new global discrete symmetry,
called the quantum symmetry (not my fault), which acts with a phase αk on the sector
twisted by ωk. This symmetry constrains the interactions of the orbifold theory. What
can you say about the theory you get by orbifolding by the quantum symmetry?
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