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Whence QFT? (239a) Spring 2014
Assignment 1 – Solutions

Posted April 5, 2014 Due Wed, April 16, 2014

All problems are optional in the following sense: if you are sure that you know the ideas
involved so well that it would be a waste of your time to do the problem, don’t do it, or
merely sketch the answer. By this point in your education you don’t need to rely on me to
determine what you know and don’t know.

Note that although the deadline I’ve written above is not so soon, these problems are mainly
illustrations of points from Chapter 1 (QFT from springs), and reminders about simple
aspects of quantum field theory. You should get these done now, because we’re going to do
more stuff!

1. Heisenberg picture

Here we will try to understand in what sense the field momentum of a free scalar field
is π ∼ φ̇, and we will explain the factor of iω by which π and φ differ.

I usually think in what is called Schrödinger picture, where we evolve the states in time

|ψ(t)〉 = U(t)|ψ(0)〉 = e−iHt/~|ψ(0)〉

and leave the operators alone. It is sometimes useful to define time-dependent operators
by implementing the change of basis associated with U on the operators:

A(t) ≡ U(t)AU(t)† = e+iHt/~Ae−iHt/~.

First consider a simple harmonic oscillator,

H =
p2

2m
+

1

2
mω2x2 = ~ω

(
a†a +

1

2

)
with

x =

√
~

2mω

(
a + a†

)
=

√
~

2mω
2Re (a) .

p = −i

√
~ω
2m

(
a− a†

)
=

√
m~ω

2
2Im (a) .
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(a) Using the algebra satisfied by H and a, show that

x(t) ≡ e+iHtxe−iHt =

√
~

2mω
2Re

(
e−iωta

)
.

(b) Using the expression above, show that

p(t) ≡ e+iHtpe−iHt = m∂tx(t)

in agreement with what you would want from the Lagrangian formulation and
from classical mechanics.

The above was pretty simple, I hope. Now we consider a scalar quantum field theory,
in say d+ 1 = 1 + 1 dimensions:

H =

∫
ddx

(
π(x)2

2µ
+

1

2
µv2

s

(
~∇φ · ~∇φ

)
+m2φ2

)
=
∑
k

~ωk
(

a†kak +
1

2

)
.

φ(x) =
∑
k

√
~

2µωk

(
ei
~k·~xak + e−i

~k·~xa†k

)
,

π(x) =
1

i

∑
k

√
~µωk

2

(
ei
~k·~xak − e−i

~k·~xa†k

)
,

(c) Find ωk. (Note that I’ve added a mass term, relative to the model we studied in
lecture.)

(d) Do a Legendre transformation to construct the action, S[φ] =
∫
dtddxL(φ, φ̇).

(e) Show that

φ(t, x) ≡ e+iHtφ(x)e−iHt =
∑
k

√
~

2µωk

(
ei
~k·~x−iωktak + e−i

~k·~x+iωkta†k

)
(f) Using the previous result, show that

π(t, x) ≡ e+iHtφ(x)e−iHt = µ∂tφ(t, x)

so that all is right with the world.

2. Complex scalar field and antiparticles

So far we’ve discussed scalar field theory with one real scalar field. The particles created
by this field are their own antiparticles.

To understand this statement, consider a scalar field theory in d+1 dimensions with two
real fields φ1, φ2. Organize them into one complex field Φ ≡ φ1+iφ2, with Φ? = φ1−iφ2.

S[Φ,Φ?] =

∫
ddxdt

(
1

2
µ∂tΦ∂tΦ

? − 1

2
µv2~∇Φ · ~∇Φ? − V (Φ?Φ)

)
.
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(a) Show that

S[Φ] =

∫ (∑
i=1,2

(
1

2
µ (∂tφi)

2 − 1

2
µv2~∇φi · ~∇φi

)
− V

(
φ2

1 + φ2
2

))
.

That is, if V = 0, it is just the sum of two copies of the action of the theory we
considered previously.

(b) Show by doing the Legendre transformation that the associated hamiltonian is

H =

∫
ddx

(
1

µ
ΠΠ? + µv2~∇Φ · ~∇Φ? + V (ΦΦ?)

)
where the canonical momenta are

Π =
∂L
∂Φ̇

=
1

2
µΦ̇?,Π? =

∂L
∂Φ̇?

=
1

2
µΦ̇

with S =
∫
dtddxL.

(c) This theory has a continuous symmetry under which Φ → eiαΦ,Φ? → e−iαΦ?

with α a real constant. Show that the action S does not change if I make this
replacement. 1

(d) The existence of a continuous symmetry means a conserved charge – a hermitian
operator which commutes with the Hamiltonian, which generates the symmetry
(this is the Emmy “Quantum” Nöther theorem). Show that

q ≡
∫
ddx i (Φ?Π? − ΠΦ)

generates this transformation, in the sense that

δΦ = iαΦ = −iα[q,Φ], δΦ? = −iαΦ? = −iα[q,Φ?].

Show that [q,H] = 0.

(e) For the case where V (ΦΦ?) = m2ΦΦ? the hamiltonian is quadratic. Diagonalize it
in terms of two sets of creation operators and annihilation operators. You should
find something of the form

Φ =

√
~
2µ

∑
k

1
√
ωk

(
eikxak + e−ikxb†k

)
1This is called a U(1) symmetry: it is a unitary rotation (hence ‘U’) on a one-dimensional (hence ‘(1)’)

complex vector. Notice that on the real components φ1, φ2 it acts as a two-dimensional rotation:(
φ1
φ2

)
→
(
cosα − sinα
sinα cosα

)(
φ1
φ2

)
.

The name for this group is SO(2). So U(1) is the same as SO(2).
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(f) Write the canonical commutators

[Φ(x),Π(x′)] = i~δ(x− x′), [Φ(x),Π?(x′)] = 0

(and the hermitian conjugate expressions) in terms of a and b.

(g) Rewrite q in terms of the mode operators.

(h) Evaluate the charge of each type of particle created by a†k and b†k
(i.e. find [q, a†]).

I claim that the particle created by a† is the antiparticle of that created by b†

in the sense that they have opposite quantum numbers. This means that we can
add terms to the hamiltonian by which they can annihilate each other without
breaking any symmetries.

3. Goldstone boson

Here is a simple example of the Goldstone phenomenon. Consider again the complex
scalar field from problem 2.

Suppose the potential is

V (Φ?Φ?) = g
(
Φ?Φ− v2

)2

where g, v are constants. The important features of V are that (1) it is only a function
of |Φ|2 = ΦΦ?, so that it preserves the particle-number symmetry generated by q which
was the hero of problem 2, and (2) the minimum of V (x) away from x = 0.

Treat the system classically. Write the action S[Φ,Φ?] in polar coordinates in field
space:

Φ(x, t) = ρeiθ

where ρ, θ are functions of space and time.

(a) Consider constant field configurations, and show that minimizing the potential
fixes ρ but not θ.

The potential is g(ρ2 − v2)2, independent of θ So θ → θ + α is a symmetry.

(b) Compute the mass2 of the ρ field about its minimum, m2
ρ = 1

2
∂2
ρV |ρ=v.

4gv2.

(c) Now ignore the deviations of ρ from its minimum (it’s heavy), but continue to
treat θ as a field. Plug the resulting expression

Φ = veiθ(x,t)

into the action. Show that θ is a massless scalar field.

S[Φ = veiθ] =

∫
ddxdt

(
1

2
µv2

(
θ̇2 − ~∇θ · ~∇θ

))
There’s no mass term because that would violate the θ → θ + α symmetry.
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(d) How does the U(1) symmetry generated by q act on θ?

Since q : Φ → eiαΦ = eiαρeiθ, we can infer that q : θ → θ + α. A more ugly
calculation using commutators will agree.

4. Gaussian identity.

Show that for a gaussian quantum system

〈eiKq〉 = e−A(K)〈q2〉

and determine A(K). Here 〈...〉 ≡ 〈0|...|0〉. Here by ‘gaussian’ I mean that H contains
only quadratic and linear terms in both q and its conjugate variable p (but for the for-
mula to be exactly correct as stated you must assume H contains only terms quadratic
in q and p; for further entertainment fix the formula for the case with linear terms in
H).

I recommend using the path integral representation.

This result is useful for the following problem and in many other places.

Versions of this problem appear in Peskin problem 11.1a) and in Green-Schwarz-Witten
volume 1 page 429.
One can do it by algebra (as in GSW), using Campbell-Baker-Hausdorff to put the
annihilation operators on the right and the creation operators on the left:

eα(a+a†) = eα
2/2eαa

†
eαa .

The vacuum expectation value of the RHS is eα
2/2.

But it is, I think, more illuminating to do it by path integral. The path integral
representation is

〈eiKq〉 =
1

Z

∫ ∏
i

dqi e
−qiDijqjeiKq0

with Z =
∫ ∏

i dqi e
−qiDijqj . Here i, j are discrete time labels, and Dij is the matrix

which discretizes the action. Repeated indices are summed. Two steps: First, we can
absorb the insertion into the action:

e−qiDijqjeiKq0 = e−qiDijqj+iKq0 = e−q̃iDij q̃jeJiD
−1
ij Jj

with Jj = −iKδj,0, and D−1 is the inverse of the kinetic matrix, i.e. the propagator:

〈qiqj〉 = D−1
ij .

So, plugging in the value of J , we arrive at the answer:

〈eiKq〉 = e−K
2D−1

00 = e−K
2〈q0q0〉 = e−K

2〈q2〉.
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5. Zero-phonon process.

We wish to understand the probability for a photon to hit (our crude model of) a
crystalline solid without exciting any vibrational excitations.

Fermi’s golden rule says that the probability for a transition from one state of the
lattice |Li〉 to another |Lf〉 is proportional to

W (Li → Lf ) = |〈Lf |HL|Li〉|2.

Here HL is the hamiltonian describing the interaction between the photon and an atom
in the lattice. For the first parts of the problem, use the following form (to be justified
in the last part of the problem):

HL = AeiKx + h.c. (1)

here x is the (center of mass) position operator of the atom in question; K is a constant
(the photon wavenumber), and (for the purposes of the first parts of the problem) A
is a constant. +h.c. means ‘plus the hermitian conjugate of the preceding stuff’.

(a) Recalling that x (up to an additive constant) is part of a collection of coupled
harmonic oscillators:

x = nx+ qn

evaluate the “vacuum persistence amplitude” 〈0|HL|0〉. You will find the result
of problem 4 useful.

(b) From the previous calculation, you will find an expression that requires you to
sum over wavenumbers. Show that in one spatial dimension, the probability for
a zero-phonon transition is of the form

PMössbauer ∝ e−Γ lnL

where L is the length of the chain and Γ is a function of other variables. Show
that this infrared divergence is missing for the analogous model of crystalline
solids with more than one spatial dimension. (Cultural remark: these amplitudes
are called ‘Debye-Waller factors’).

(c) [more optional] Convince yourself that a coupling HL of the form (1) arises from
the minimal coupling of the electromagnetic field to the constituent charges of
the atom, after accounting for the transition made by the radiation field when
the photon is absorbed by the atom. ‘Minimal coupling’ means replacing the
momentum operator of the atom p, with the gauge-invariant combination p →
p+A. You will also need to recall the form of the quantized electromagnetic field
in terms creation and annihilation operators for a photon of definite momentum
K.

The key ingredient is

xn = na+ qn = na+
∑
k

Nk
(
eiknaak + e−iknaa†k

)
,
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where a is the lattice spacing and Nk =
√

~
2mNωk

. So

PMössbauer ∝ |〈0|eiK(na+qn)|0〉|2 .

Which means
PMössbauer ∝ e

−K2
∑

k
~

2mωk ∼ e−K
2 ~
2m

1
Na

ln(Na) .

In the last step we’ve approximated the sum as an integral. Here Na is the system
size, and the (IR) divergence is a 1d artifact, related to the Mermin-Wagner theorem
which forbids the existence of solids in one dimension.
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