University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Field Theory C (215C) Spring 2013 (Bonus) Assignment 7

Posted June 4, 2013
Due 11am, Thursday, June 13, 2013

Problem Set 7

1. Large- N saddle points [extra credit] [from Halpern]

Consider the partition function for an N-vector of sscalar fields in D dimensions

$$
Z=\int[D \phi] e^{\mathbf{i} S[\phi]}, \quad S[\vec{\phi}]=\int \mathrm{d}^{D} x\left(\frac{1}{2} \partial \phi^{a} \partial \phi^{a}-N V\left(\frac{\vec{\phi}^{2}}{N}\right)\right)
$$

with a general 2-derivative $O(N)$-invariant action. We're going to do this path integral by saddle point, which is a good idea at large N. As usual, the constant prefactors in Z drop out of physical ratios so you should ignore them.
(a) Change variables to the $O(N)$ singlet field $\zeta \equiv \vec{\phi}^{2} / N$ by inserting the identity

$$
1=\int[D \zeta] \delta\left[\zeta-\frac{\vec{\phi}^{2}}{N}\right]
$$

into the path integral representation for Z. Represent the functional delta function as

$$
\delta\left[\zeta-\frac{\vec{\phi}^{2}}{N}\right]=\int[D \sigma] e^{\mathrm{i} \int \mathrm{~d}^{D} x \sigma\left(\vec{\phi}^{2}-\zeta N\right)} .
$$

Do the integral over ϕ^{a} to obtain

$$
Z=\int[D \zeta D \sigma] e^{\mathbf{i} N S_{\mathrm{eff}}[\zeta, \sigma]}
$$

Determine $S_{\text {eff }}[\zeta, \sigma]$.
(b) The integrals over ζ, σ have a well-peaked saddle point at large N. Obtain the coupled large- N saddle point equations for the saddle point configurations ζ_{0}, σ_{0}, and in particular the equation

$$
\zeta_{0}(x)=\left(\frac{\mathbf{i}}{-\square-2 V^{\prime}\left(\zeta_{0}\right)}\right)_{x x}
$$

(the subscript denotes a matrix element of the position-space operator).
(c) [more optional] Show that

$$
\frac{\delta}{\delta \sigma(x)} \operatorname{tr} \log (-\square+\sigma)=\left(\frac{1}{-\square+\sigma}\right)_{x x}
$$

by Taylor expansion.
(d) At large N, we know that

$$
\zeta_{0}(x) \stackrel{N \rightarrow \infty}{=}\left\langle\frac{\vec{\phi}^{2}(x)}{N}\right\rangle=\zeta_{0}, \text { constant. }
$$

Use this to show that the saddle point equation is the gap equation

$$
\zeta_{0}=\int \partial^{D} k_{E} \frac{1}{k_{E}^{2}+2 V^{\prime}\left(\zeta_{0}\right)}
$$

which determines ζ_{0}, the expectation value of the order parameter $\left\langle\vec{\phi}^{2} / N\right\rangle$.
(e) What class of diagrams did you just sum?
(f) Toy model emphasizing the similarity to our discussion of BCS. You might be worried that in the discussion of BCS I didn't introduce the analog of ζ (which is the actual pair field). In this small, very optional, sub-problem I want to show that what we did there is the same as what we did here. Consider the integral

$$
Z=\int \mathrm{d}^{2} x e^{-a|x|^{2}-u|x|^{4}} ;
$$

here x is a proxy for the fermion field ψ, but it is just a complex number. Now we insert

$$
1=\int \mathrm{d}^{2} \zeta \delta\left[\zeta-x^{2}\right] \delta\left[\bar{\zeta}-\bar{x}^{2}\right]=\int \mathrm{d}^{2} \zeta \int \mathrm{~d}^{2} \sigma e^{\mathbf{i} \bar{\sigma}\left(\zeta-x^{2}\right)+\mathbf{i} \sigma\left(\bar{\zeta}-\bar{x}^{2}\right)}
$$

to find

$$
Z=\int \mathrm{d}^{2} \zeta \int \mathrm{~d}^{2} \sigma e^{-u|\zeta|^{2}+\mathbf{i}(\sigma \bar{\zeta}+\bar{\sigma} \zeta)} \int \mathrm{d}^{2} x e^{-a|x|^{2}-\mathbf{i} \bar{\sigma} x^{2}-\mathbf{i} \sigma \bar{x}^{2}}
$$

Do the x integral and find

$$
Z=\int \mathrm{d}^{2} \zeta \int \mathrm{~d}^{2} \sigma e^{-u|\zeta|^{2}+\mathbf{i}(\sigma \bar{\zeta}+\bar{\sigma} \zeta)-\log \left(a^{2}-|\sigma|^{2}\right)}
$$

Now we can do the ζ integral to get

$$
Z=\int \mathrm{d}^{2} \sigma e^{-\frac{1}{u}|\sigma|^{2}-\log \left(a^{2}-|\sigma|^{2}\right)}
$$

which is what we would have found using the usual HS trick as described in lecture. The relationship between ζ and σ on-shell (i.e. at the saddle point of the (gaussian) ζ integral) is $\zeta \sim \mathbf{i} \sigma$, but really they are conjugate variables. Now do the σ integral by saddle point to find the analog of the gap equation for this $0+0$ dimensional QFT.
(g) [super-optional] Show that the BCS interaction is a marginally relevant perturbation of the Fermi liquid fixed point(s). (For help, see the papers by Polchinski or by Shankar cited in the lecture notes.)
2. Chiral anomaly in two dimensions. [extra credit]

Consider a massive relativistic Dirac fermion in $1+1$ dimensions, with

$$
S=\int \mathrm{d} x \mathrm{~d} t \bar{\psi}\left(\mathbf{i} \gamma^{\mu}\left(\partial_{\mu}+e A_{\mu}\right)-m\right) \psi
$$

By heat-kernel regularization of its expectation value, show that the divergence of the axial current $j_{\mu}^{5} \equiv \mathbf{i} \bar{\psi} \gamma^{m} u \gamma^{5} \psi$ is

$$
\partial_{\mu} j_{\mu}^{5}=2 \mathbf{i} m \bar{\psi} \gamma^{5} \psi+\frac{e}{2 \pi} \epsilon_{\mu \nu} F^{\mu \nu}
$$

3. Topological terms in QM [extra credit] [from Abanov]

The euclidean path integral for a particle on a ring with magnetic flux $\theta=\int \vec{B} \cdot \mathrm{~d} \vec{a}$ through the ring is given by

$$
Z=\int[D \phi] e^{-\int_{0}^{\beta} \mathrm{d} \tau\left(\frac{m}{2} \dot{\phi}^{2}-\mathbf{i} \frac{\theta}{2 \pi} \dot{\phi}\right)}
$$

Here

$$
\begin{equation*}
\phi \equiv \phi+2 \pi \tag{1}
\end{equation*}
$$

is a coordinate on the ring. Because of the identification (1), ϕ need not be a singlevalued function of τ - it can wind around the ring. On the other hand, $\dot{\phi}$ is single-valued and periodic and hence has an ordinary Fourier decomposition. This means that we can expand the field as

$$
\begin{equation*}
\phi(\tau)=\frac{2 \pi}{\beta} Q \tau+\sum_{\ell \in \mathbb{Z}} \phi_{\ell} e^{\mathrm{i} \frac{2 \pi}{\beta} \ell \tau} \tag{2}
\end{equation*}
$$

(a) Show that the $\dot{\phi}$ term in the action does not affect the classical equations of motion. In this sense, it is a topological term.
(b) Using the decomposition (2), write the partition function as a sum over topological sectors labelled by the winding number $Q \in \mathbb{Z}$ and calculate it explicitly.
[Hint: use the Poisson resummation formula

$$
\left.\sum_{n \in \mathbb{Z}} e^{-\frac{1}{2} t^{2}+\mathbf{i} z n}=\sqrt{\frac{2 \pi}{t}} \sum_{\ell \in \mathbb{Z}} e^{-\frac{1}{2 t}(z-2 \pi \ell)^{2}} .\right]
$$

(c) Use the result from the previous part to determine the energy spectrum as a function of θ.
(d) [more optional] Derive the canonical momentum and Hamiltonian from the action above and verify the spectrum.
(e) Consider what happens in the limit $m \rightarrow 0, \theta \rightarrow \pi$ with $X \equiv \frac{\theta-\pi}{M} \sim \beta^{-1}$ fixed. Interpret the result as the partition function for a spin $1 / 2$ particle. What is the meaning of the ratio X in this interpretation?

The lesson here is that (even in this simple QM example) total derivative terms in the action do affect the physics.
4. Geometric Quantization of the 2-torus. [extra credit]

Redo the analysis that we did in lecture for the two-sphere for the two-torus, $S^{1} \times S^{1}$. The coordinates on the torus are $(x, y) \simeq(x+2 \pi, y+2 \pi)$; use $N \mathrm{~d} x \wedge \mathrm{~d} y$ as the symplectic form. Show that the resulting Hilbert space represents the heisenberg algebra

$$
e^{\mathbf{i x}} e^{\mathbf{i y}}=e^{\mathbf{i} \mathbf{y}} e^{\mathbf{i x}} e^{\frac{2 \pi \mathrm{i}}{N}}
$$

(I am using boldface letters for operators.) The irreducible representation of this algebra is the same Hilbert space as a particle on a periodic one-dimensional lattice with N sites.
5. Particle on a sphere with a monopole inside. [extra credit]

Consider a particle of mass m and electric charge e with action

$$
S[\vec{x}]=\int \mathrm{d} t\left(\frac{1}{2} m \dot{\vec{x}}^{2}+e \dot{\vec{x}} \cdot \vec{A}(\vec{x})\right)
$$

constrained to move on a two sphere of radius r in three-space, $\vec{x}^{2}=r^{2}$. Suppose further that there is a magnetic monopole inside this sphere: this means that $4 \pi g=$ $\int_{S^{2}} \vec{B} \cdot \mathrm{~d} \vec{A}=\int_{S^{2}} F$, where $F=\mathrm{d} A$. (Since the particle lives only at $\vec{x}^{2}=r^{2}$, the form of the field in the core of the monopole is not relevant here.)
(a) Find an expression for $A=A_{i} \mathrm{~d} x^{i}=A_{\theta} \mathrm{d} \theta+A_{\varphi} \mathrm{d} \varphi$ such that $F=\mathrm{d} A$ has flux $4 \pi g$ through the sphere.
(b) Show that the Witten argument gives the Dirac quantization condition $2 e g \in \mathbb{Z}$.
(c) Take the limit $m \rightarrow 0$. Count the states in the lowest Landau level. It should agree with the result from lecture.
6. Coherent state quantization [extra credit]
(a) Start with first order action $S=\int \mathrm{d} t z_{\alpha}^{\dagger} \dot{z}_{\alpha}$. Show that the Hamiltonian is $\mathbf{H}=0$.
(b) Check the completeness relation in the spin $1 / 2$ coherent state basis.
(c) Show that different spinor representations, i.e. different choices of ψ in

$$
z=\binom{e^{\mathbf{i}(\psi+\varphi / 2)} \cos \theta / 2}{e^{\mathbf{i}(\psi-\varphi / 2)} \sin \theta / 2}
$$

shift the coefficient of the total derivative $\dot{\varphi}$ part of the WZW functional.

